1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
|
#include "vehicle_body.h"
#define ROLLING_INFLUENCE_FIX
class btVehicleJacobianEntry
{
public:
Vector3 m_linearJointAxis;
Vector3 m_aJ;
Vector3 m_bJ;
Vector3 m_0MinvJt;
Vector3 m_1MinvJt;
//Optimization: can be stored in the w/last component of one of the vectors
real_t m_Adiag;
real_t getDiagonal() const { return m_Adiag; }
btVehicleJacobianEntry() {};
//constraint between two different rigidbodies
btVehicleJacobianEntry(
const Matrix3& world2A,
const Matrix3& world2B,
const Vector3& rel_pos1,
const Vector3& rel_pos2,
const Vector3& jointAxis,
const Vector3& inertiaInvA,
const real_t massInvA,
const Vector3& inertiaInvB,
const real_t massInvB)
:m_linearJointAxis(jointAxis)
{
m_aJ = world2A.xform(rel_pos1.cross(m_linearJointAxis));
m_bJ = world2B.xform(rel_pos2.cross(-m_linearJointAxis));
m_0MinvJt = inertiaInvA * m_aJ;
m_1MinvJt = inertiaInvB * m_bJ;
m_Adiag = massInvA + m_0MinvJt.dot(m_aJ) + massInvB + m_1MinvJt.dot(m_bJ);
//btAssert(m_Adiag > real_t(0.0));
}
real_t getRelativeVelocity(const Vector3& linvelA,const Vector3& angvelA,const Vector3& linvelB,const Vector3& angvelB)
{
Vector3 linrel = linvelA - linvelB;
Vector3 angvela = angvelA * m_aJ;
Vector3 angvelb = angvelB * m_bJ;
linrel *= m_linearJointAxis;
angvela += angvelb;
angvela += linrel;
real_t rel_vel2 = angvela[0]+angvela[1]+angvela[2];
return rel_vel2 + CMP_EPSILON;
}
};
void VehicleWheel::_notification(int p_what) {
if (p_what==NOTIFICATION_ENTER_SCENE) {
if (!get_parent())
return;
VehicleBody *cb = get_parent()->cast_to<VehicleBody>();
if (!cb)
return;
body=cb;
local_xform=get_transform();
cb->wheels.push_back(this);
m_chassisConnectionPointCS = get_transform().origin;
m_wheelDirectionCS = -get_transform().basis.get_axis(Vector3::AXIS_Y).normalized();
m_wheelAxleCS = get_transform().basis.get_axis(Vector3::AXIS_X).normalized();
}
if (p_what==NOTIFICATION_EXIT_SCENE) {
if (!get_parent())
return;
VehicleBody *cb = get_parent()->cast_to<VehicleBody>();
if (!cb)
return;
cb->wheels.erase(this);
body=NULL;
}
}
void VehicleWheel::_update(PhysicsDirectBodyState *s) {
if (m_raycastInfo.m_isInContact)
{
real_t project= m_raycastInfo.m_contactNormalWS.dot( m_raycastInfo.m_wheelDirectionWS );
Vector3 chassis_velocity_at_contactPoint;
Vector3 relpos = m_raycastInfo.m_contactPointWS - s->get_transform().origin;
chassis_velocity_at_contactPoint = s->get_linear_velocity() +
(s->get_angular_velocity()).cross(relpos);// * mPos);
real_t projVel = m_raycastInfo.m_contactNormalWS.dot( chassis_velocity_at_contactPoint );
if ( project >= real_t(-0.1))
{
m_suspensionRelativeVelocity = real_t(0.0);
m_clippedInvContactDotSuspension = real_t(1.0) / real_t(0.1);
}
else
{
real_t inv = real_t(-1.) / project;
m_suspensionRelativeVelocity = projVel * inv;
m_clippedInvContactDotSuspension = inv;
}
}
else // Not in contact : position wheel in a nice (rest length) position
{
m_raycastInfo.m_suspensionLength = m_suspensionRestLength;
m_suspensionRelativeVelocity = real_t(0.0);
m_raycastInfo.m_contactNormalWS = -m_raycastInfo.m_wheelDirectionWS;
m_clippedInvContactDotSuspension = real_t(1.0);
}
}
void VehicleWheel::_bind_methods() {
}
VehicleWheel::VehicleWheel() {
m_steering = real_t(0.);
m_engineForce = real_t(0.);
m_rotation = real_t(0.);
m_deltaRotation = real_t(0.);
m_brake = real_t(0.);
m_rollInfluence = real_t(0.1);
m_suspensionRestLength = 0.15;
m_wheelRadius = 0.5;//0.28;
m_suspensionStiffness = 5.88;
m_wheelsDampingCompression = 0.83;
m_wheelsDampingRelaxation = 0.88;
m_frictionSlip = 10.5;
m_bIsFrontWheel = false;
m_maxSuspensionTravelCm = 500;
m_maxSuspensionForce = 6000;
m_suspensionRelativeVelocity=0;
m_clippedInvContactDotSuspension=1.0;
m_raycastInfo.m_isInContact=false;
body=NULL;
}
void VehicleBody::_update_wheel_transform(VehicleWheel& wheel ,PhysicsDirectBodyState *s) {
wheel.m_raycastInfo.m_isInContact = false;
Transform chassisTrans = s->get_transform();
//if (interpolatedTransform && (getRigidBody()->getMotionState()))
//{
// getRigidBody()->getMotionState()->getWorldTransform(chassisTrans);
//}
wheel.m_raycastInfo.m_hardPointWS = chassisTrans.xform( wheel.m_chassisConnectionPointCS );
wheel.m_raycastInfo.m_wheelDirectionWS = chassisTrans.get_basis().xform( wheel.m_wheelDirectionCS).normalized();
wheel.m_raycastInfo.m_wheelAxleWS = chassisTrans.get_basis().xform( wheel.m_wheelAxleCS ).normalized();
}
void VehicleBody::_update_wheel(int p_idx,PhysicsDirectBodyState *s) {
VehicleWheel& wheel = *wheels[p_idx];
_update_wheel_transform(wheel,s);
Vector3 up = -wheel.m_raycastInfo.m_wheelDirectionWS;
const Vector3& right = wheel.m_raycastInfo.m_wheelAxleWS;
Vector3 fwd = up.cross(right);
fwd = fwd.normalized();
// up = right.cross(fwd);
// up.normalize();
//rotate around steering over de wheelAxleWS
real_t steering = wheel.m_steering;
Matrix3 steeringMat(up,steering);
Matrix3 rotatingMat(right,-wheel.m_rotation);
Matrix3 basis2(
right[0],up[0],fwd[0],
right[1],up[1],fwd[1],
right[2],up[2],fwd[2]
);
wheel.m_worldTransform.set_basis(steeringMat * rotatingMat * basis2);
wheel.m_worldTransform.set_origin(
wheel.m_raycastInfo.m_hardPointWS + wheel.m_raycastInfo.m_wheelDirectionWS * wheel.m_raycastInfo.m_suspensionLength
);
}
real_t VehicleBody::_ray_cast(int p_idx,PhysicsDirectBodyState *s) {
VehicleWheel& wheel = *wheels[p_idx];
_update_wheel_transform(wheel,s);
real_t depth = -1;
real_t raylen = wheel.m_suspensionRestLength+wheel.m_wheelRadius;
Vector3 rayvector = wheel.m_raycastInfo.m_wheelDirectionWS * (raylen);
const Vector3& source = wheel.m_raycastInfo.m_hardPointWS;
wheel.m_raycastInfo.m_contactPointWS = source + rayvector;
const Vector3& target = wheel.m_raycastInfo.m_contactPointWS;
real_t param = real_t(0.);
PhysicsDirectSpaceState::RayResult rr;
PhysicsDirectSpaceState *ss=s->get_space_state();
bool col = ss->intersect_ray(source,target,rr,exclude);
wheel.m_raycastInfo.m_groundObject = 0;
if (col)
{
//print_line("WHEEL "+itos(p_idx)+" FROM "+source+" TO: "+target);
//print_line("WHEEL "+itos(p_idx)+" COLLIDE? "+itos(col));
param = source.distance_to(rr.position)/source.distance_to(target);
depth = raylen * param;
wheel.m_raycastInfo.m_contactNormalWS = rr.normal;
wheel.m_raycastInfo.m_isInContact = true;
if (rr.collider)
wheel.m_raycastInfo.m_groundObject=rr.collider->cast_to<PhysicsBody>();
real_t hitDistance = param*raylen;
wheel.m_raycastInfo.m_suspensionLength = hitDistance - wheel.m_wheelRadius;
//clamp on max suspension travel
real_t minSuspensionLength = wheel.m_suspensionRestLength - wheel.m_maxSuspensionTravelCm*real_t(0.01);
real_t maxSuspensionLength = wheel.m_suspensionRestLength+ wheel.m_maxSuspensionTravelCm*real_t(0.01);
if (wheel.m_raycastInfo.m_suspensionLength < minSuspensionLength)
{
wheel.m_raycastInfo.m_suspensionLength = minSuspensionLength;
}
if (wheel.m_raycastInfo.m_suspensionLength > maxSuspensionLength)
{
wheel.m_raycastInfo.m_suspensionLength = maxSuspensionLength;
}
wheel.m_raycastInfo.m_contactPointWS = rr.position;
real_t denominator= wheel.m_raycastInfo.m_contactNormalWS.dot( wheel.m_raycastInfo.m_wheelDirectionWS );
Vector3 chassis_velocity_at_contactPoint;
//Vector3 relpos = wheel.m_raycastInfo.m_contactPointWS-getRigidBody()->getCenterOfMassPosition();
//chassis_velocity_at_contactPoint = getRigidBody()->getVelocityInLocalPoint(relpos);
chassis_velocity_at_contactPoint = s->get_linear_velocity() +
(s->get_angular_velocity()).cross(wheel.m_raycastInfo.m_contactPointWS-s->get_transform().origin);// * mPos);
real_t projVel = wheel.m_raycastInfo.m_contactNormalWS.dot( chassis_velocity_at_contactPoint );
if ( denominator >= real_t(-0.1))
{
wheel.m_suspensionRelativeVelocity = real_t(0.0);
wheel.m_clippedInvContactDotSuspension = real_t(1.0) / real_t(0.1);
}
else
{
real_t inv = real_t(-1.) / denominator;
wheel.m_suspensionRelativeVelocity = projVel * inv;
wheel.m_clippedInvContactDotSuspension = inv;
}
} else
{
wheel.m_raycastInfo.m_isInContact = false;
//put wheel info as in rest position
wheel.m_raycastInfo.m_suspensionLength = wheel.m_suspensionRestLength;
wheel.m_suspensionRelativeVelocity = real_t(0.0);
wheel.m_raycastInfo.m_contactNormalWS = - wheel.m_raycastInfo.m_wheelDirectionWS;
wheel.m_clippedInvContactDotSuspension = real_t(1.0);
}
return depth;
}
void VehicleBody::_update_suspension(PhysicsDirectBodyState *s)
{
real_t deltaTime = s->get_step();
real_t chassisMass = mass;
for (int w_it=0; w_it<wheels.size(); w_it++)
{
VehicleWheel& wheel_info = *wheels[w_it];
if ( wheel_info.m_raycastInfo.m_isInContact )
{
real_t force;
// Spring
{
real_t susp_length = wheel_info.m_suspensionRestLength;
real_t current_length = wheel_info.m_raycastInfo.m_suspensionLength;
real_t length_diff = (susp_length - current_length);
force = wheel_info.m_suspensionStiffness
* length_diff * wheel_info.m_clippedInvContactDotSuspension;
}
// Damper
{
real_t projected_rel_vel = wheel_info.m_suspensionRelativeVelocity;
{
real_t susp_damping;
if ( projected_rel_vel < real_t(0.0) )
{
susp_damping = wheel_info.m_wheelsDampingCompression;
}
else
{
susp_damping = wheel_info.m_wheelsDampingRelaxation;
}
force -= susp_damping * projected_rel_vel;
}
}
// RESULT
wheel_info.m_wheelsSuspensionForce = force * chassisMass;
if (wheel_info.m_wheelsSuspensionForce < real_t(0.))
{
wheel_info.m_wheelsSuspensionForce = real_t(0.);
}
}
else
{
wheel_info.m_wheelsSuspensionForce = real_t(0.0);
}
}
}
//bilateral constraint between two dynamic objects
void VehicleBody::_resolve_single_bilateral(PhysicsDirectBodyState *s, const Vector3& pos1,
PhysicsBody* body2, const Vector3& pos2, const Vector3& normal,real_t& impulse)
{
real_t normalLenSqr = normal.length_squared();
//ERR_FAIL_COND( normalLenSqr < real_t(1.1));
if (normalLenSqr > real_t(1.1))
{
impulse = real_t(0.);
return;
}
Vector3 rel_pos1 = pos1 - s->get_transform().origin;
Vector3 rel_pos2;
if (body2)
rel_pos2 = pos2 - body2->get_global_transform().origin;
//this jacobian entry could be re-used for all iterations
Vector3 vel1 = s->get_linear_velocity() + (s->get_angular_velocity()).cross(rel_pos1);// * mPos);
Vector3 vel2;
if (body2)
vel2=body2->get_linear_velocity() + body2->get_angular_velocity().cross(rel_pos2);
Vector3 vel = vel1 - vel2;
Matrix3 b2trans;
float b2invmass=0;
Vector3 b2lv;
Vector3 b2av;
Vector3 b2invinertia; //todo
if (body2) {
b2trans = body2->get_global_transform().basis.transposed();
b2invmass = body2->get_inverse_mass();
b2lv = body2->get_linear_velocity();
b2av = body2->get_angular_velocity();
}
btVehicleJacobianEntry jac(s->get_transform().basis.transposed(),
b2trans,
rel_pos1,
rel_pos2,
normal,
s->get_inverse_inertia(),
1.0/mass,
b2invinertia,
b2invmass);
real_t jacDiagAB = jac.getDiagonal();
real_t jacDiagABInv = real_t(1.) / jacDiagAB;
real_t rel_vel = jac.getRelativeVelocity(
s->get_linear_velocity(),
s->get_transform().basis.transposed().xform(s->get_angular_velocity()),
b2lv,
b2trans.xform(b2av));
real_t a;
a=jacDiagABInv;
rel_vel = normal.dot(vel);
//todo: move this into proper structure
real_t contactDamping = real_t(0.4);
#define ONLY_USE_LINEAR_MASS
#ifdef ONLY_USE_LINEAR_MASS
real_t massTerm = real_t(1.) / ((1.0/mass) + b2invmass);
impulse = - contactDamping * rel_vel * massTerm;
#else
real_t velocityImpulse = -contactDamping * rel_vel * jacDiagABInv;
impulse = velocityImpulse;
#endif
}
VehicleBody::btVehicleWheelContactPoint::btVehicleWheelContactPoint(PhysicsDirectBodyState *s,PhysicsBody* body1,const Vector3& frictionPosWorld,const Vector3& frictionDirectionWorld, real_t maxImpulse)
:m_s(s),
m_body1(body1),
m_frictionPositionWorld(frictionPosWorld),
m_frictionDirectionWorld(frictionDirectionWorld),
m_maxImpulse(maxImpulse)
{
float denom0=0;
float denom1=0;
{
Vector3 r0 = frictionPosWorld - s->get_transform().origin;
Vector3 c0 = (r0).cross(frictionDirectionWorld);
Vector3 vec = s->get_inverse_inertia_tensor().xform_inv(c0).cross(r0);
denom0= s->get_inverse_mass() + frictionDirectionWorld.dot(vec);
}
if (body1) {
Vector3 r0 = frictionPosWorld - body1->get_global_transform().origin;
Vector3 c0 = (r0).cross(frictionDirectionWorld);
Vector3 vec = s->get_inverse_inertia_tensor().xform_inv(c0).cross(r0);
//denom1= body1->get_inverse_mass() + frictionDirectionWorld.dot(vec);
denom1=0;
}
real_t relaxation = 1.f;
m_jacDiagABInv = relaxation/(denom0+denom1);
}
real_t VehicleBody::_calc_rolling_friction(btVehicleWheelContactPoint& contactPoint) {
real_t j1=0.f;
const Vector3& contactPosWorld = contactPoint.m_frictionPositionWorld;
Vector3 rel_pos1 = contactPosWorld - contactPoint.m_s->get_transform().origin;
Vector3 rel_pos2;
if (contactPoint.m_body1)
rel_pos2 = contactPosWorld - contactPoint.m_body1->get_global_transform().origin;
real_t maxImpulse = contactPoint.m_maxImpulse;
Vector3 vel1 = contactPoint.m_s->get_linear_velocity() + (contactPoint.m_s->get_angular_velocity()).cross(rel_pos1);// * mPos);
Vector3 vel2;
if (contactPoint.m_body1) {
vel2=contactPoint.m_body1->get_linear_velocity() + contactPoint.m_body1->get_angular_velocity().cross(rel_pos2);
}
Vector3 vel = vel1 - vel2;
real_t vrel = contactPoint.m_frictionDirectionWorld.dot(vel);
// calculate j that moves us to zero relative velocity
j1 = -vrel * contactPoint.m_jacDiagABInv;
return CLAMP(j1,-maxImpulse,maxImpulse);
}
static const real_t sideFrictionStiffness2 = real_t(1.0);
void VehicleBody::_update_friction(PhysicsDirectBodyState *s) {
//calculate the impulse, so that the wheels don't move sidewards
int numWheel = wheels.size();
if (!numWheel)
return;
m_forwardWS.resize(numWheel);
m_axle.resize(numWheel);
m_forwardImpulse.resize(numWheel);
m_sideImpulse.resize(numWheel);
int numWheelsOnGround = 0;
//collapse all those loops into one!
for (int i=0;i<wheels.size();i++)
{
VehicleWheel& wheelInfo = *wheels[i];
if (wheelInfo.m_raycastInfo.m_isInContact)
numWheelsOnGround++;
m_sideImpulse[i] = real_t(0.);
m_forwardImpulse[i] = real_t(0.);
}
{
for (int i=0;i<wheels.size();i++)
{
VehicleWheel& wheelInfo = *wheels[i];
if (wheelInfo.m_raycastInfo.m_isInContact)
{
//const btTransform& wheelTrans = getWheelTransformWS( i );
Matrix3 wheelBasis0 = wheelInfo.get_global_transform().basis;
m_axle[i] = wheelBasis0.get_axis(Vector3::AXIS_X);
m_axle[i] = wheelInfo.m_raycastInfo.m_wheelAxleWS;
const Vector3& surfNormalWS = wheelInfo.m_raycastInfo.m_contactNormalWS;
real_t proj = m_axle[i].dot(surfNormalWS);
m_axle[i] -= surfNormalWS * proj;
m_axle[i] = m_axle[i].normalized();
m_forwardWS[i] = surfNormalWS.cross(m_axle[i]);
m_forwardWS[i].normalize();
_resolve_single_bilateral(s, wheelInfo.m_raycastInfo.m_contactPointWS,
wheelInfo.m_raycastInfo.m_groundObject, wheelInfo.m_raycastInfo.m_contactPointWS,
m_axle[i],m_sideImpulse[i]);
m_sideImpulse[i] *= sideFrictionStiffness2;
}
}
}
real_t sideFactor = real_t(1.);
real_t fwdFactor = 0.5;
bool sliding = false;
{
for (int wheel =0;wheel <wheels.size();wheel++)
{
VehicleWheel& wheelInfo = *wheels[wheel];
//class btRigidBody* groundObject = (class btRigidBody*) wheelInfo.m_raycastInfo.m_groundObject;
real_t rollingFriction = 0.f;
if (wheelInfo.m_raycastInfo.m_isInContact)
{
if (wheelInfo.m_engineForce != 0.f)
{
rollingFriction = wheelInfo.m_engineForce* s->get_step();
} else
{
real_t defaultRollingFrictionImpulse = 0.f;
real_t maxImpulse = wheelInfo.m_brake ? wheelInfo.m_brake : defaultRollingFrictionImpulse;
btVehicleWheelContactPoint contactPt(s,wheelInfo.m_raycastInfo.m_groundObject,wheelInfo.m_raycastInfo.m_contactPointWS,m_forwardWS[wheel],maxImpulse);
rollingFriction = _calc_rolling_friction(contactPt);
}
}
//switch between active rolling (throttle), braking and non-active rolling friction (no throttle/break)
m_forwardImpulse[wheel] = real_t(0.);
wheelInfo.m_skidInfo= real_t(1.);
if (wheelInfo.m_raycastInfo.m_isInContact)
{
wheelInfo.m_skidInfo= real_t(1.);
real_t maximp = wheelInfo.m_wheelsSuspensionForce * s->get_step() * wheelInfo.m_frictionSlip;
real_t maximpSide = maximp;
real_t maximpSquared = maximp * maximpSide;
m_forwardImpulse[wheel] = rollingFriction;//wheelInfo.m_engineForce* timeStep;
real_t x = (m_forwardImpulse[wheel] ) * fwdFactor;
real_t y = (m_sideImpulse[wheel] ) * sideFactor;
real_t impulseSquared = (x*x + y*y);
if (impulseSquared > maximpSquared)
{
sliding = true;
real_t factor = maximp / Math::sqrt(impulseSquared);
wheelInfo.m_skidInfo *= factor;
}
}
}
}
if (sliding)
{
for (int wheel = 0;wheel < wheels.size(); wheel++)
{
if (m_sideImpulse[wheel] != real_t(0.))
{
if (wheels[wheel]->m_skidInfo< real_t(1.))
{
m_forwardImpulse[wheel] *= wheels[wheel]->m_skidInfo;
m_sideImpulse[wheel] *= wheels[wheel]->m_skidInfo;
}
}
}
}
// apply the impulses
{
for (int wheel = 0;wheel<wheels.size(); wheel++)
{
VehicleWheel& wheelInfo = *wheels[wheel];
Vector3 rel_pos = wheelInfo.m_raycastInfo.m_contactPointWS -
s->get_transform().origin;
if (m_forwardImpulse[wheel] != real_t(0.))
{
s->apply_impulse(rel_pos,m_forwardWS[wheel]*(m_forwardImpulse[wheel]));
}
if (m_sideImpulse[wheel] != real_t(0.))
{
PhysicsBody* groundObject = wheelInfo.m_raycastInfo.m_groundObject;
Vector3 rel_pos2;
if (groundObject) {
rel_pos2=wheelInfo.m_raycastInfo.m_contactPointWS - groundObject->get_global_transform().origin;
}
Vector3 sideImp = m_axle[wheel] * m_sideImpulse[wheel];
#if defined ROLLING_INFLUENCE_FIX // fix. It only worked if car's up was along Y - VT.
Vector3 vChassisWorldUp = s->get_transform().basis.transposed()[1];//getRigidBody()->getCenterOfMassTransform().getBasis().getColumn(m_indexUpAxis);
rel_pos -= vChassisWorldUp * (vChassisWorldUp.dot(rel_pos) * (1.f-wheelInfo.m_rollInfluence));
#else
rel_pos[1] *= wheelInfo.m_rollInfluence; //?
#endif
s->apply_impulse(rel_pos,sideImp);
//apply friction impulse on the ground
//todo
//groundObject->applyImpulse(-sideImp,rel_pos2);
}
}
}
}
void VehicleBody::_direct_state_changed(Object *p_state) {
PhysicsDirectBodyState *s = p_state->cast_to<PhysicsDirectBodyState>();
set_ignore_transform_notification(true);
set_global_transform(s->get_transform());
set_ignore_transform_notification(false);
float step = s->get_step();
for(int i=0;i<wheels.size();i++) {
_update_wheel(i,s);
}
for(int i=0;i<wheels.size();i++) {
_ray_cast(i,s);
}
_update_suspension(s);
for(int i=0;i<wheels.size();i++) {
//apply suspension force
VehicleWheel& wheel = *wheels[i];
real_t suspensionForce = wheel.m_wheelsSuspensionForce;
if (suspensionForce > wheel.m_maxSuspensionForce)
{
suspensionForce = wheel.m_maxSuspensionForce;
}
Vector3 impulse = wheel.m_raycastInfo.m_contactNormalWS * suspensionForce * step;
Vector3 relpos = wheel.m_raycastInfo.m_contactPointWS - s->get_transform().origin;
s->apply_impulse(relpos,impulse);
//getRigidBody()->applyImpulse(impulse, relpos);
}
_update_friction(s);
for (int i=0;i<wheels.size();i++)
{
VehicleWheel& wheel = *wheels[i];
Vector3 relpos = wheel.m_raycastInfo.m_hardPointWS - s->get_transform().origin;
Vector3 vel = s->get_linear_velocity() + (s->get_angular_velocity()).cross(relpos);// * mPos);
if (wheel.m_raycastInfo.m_isInContact)
{
const Transform& chassisWorldTransform = s->get_transform();
Vector3 fwd (
chassisWorldTransform.basis[0][Vector3::AXIS_Z],
chassisWorldTransform.basis[1][Vector3::AXIS_Z],
chassisWorldTransform.basis[2][Vector3::AXIS_Z]);
real_t proj = fwd.dot(wheel.m_raycastInfo.m_contactNormalWS);
fwd -= wheel.m_raycastInfo.m_contactNormalWS * proj;
real_t proj2 = fwd.dot(vel);
wheel.m_deltaRotation = (proj2 * step) / (wheel.m_wheelRadius);
wheel.m_rotation += wheel.m_deltaRotation;
} else
{
wheel.m_rotation += wheel.m_deltaRotation;
}
wheel.m_deltaRotation *= real_t(0.99);//damping of rotation when not in contact
}
}
void VehicleBody::set_mass(real_t p_mass) {
mass=p_mass;
PhysicsServer::get_singleton()->body_set_param(get_rid(),PhysicsServer::BODY_PARAM_MASS,mass);
}
real_t VehicleBody::get_mass() const{
return mass;
}
void VehicleBody::set_friction(real_t p_friction) {
friction=p_friction;
PhysicsServer::get_singleton()->body_set_param(get_rid(),PhysicsServer::BODY_PARAM_FRICTION,friction);
}
real_t VehicleBody::get_friction() const{
return friction;
}
void VehicleBody::_bind_methods(){
ObjectTypeDB::bind_method(_MD("set_mass","mass"),&VehicleBody::set_mass);
ObjectTypeDB::bind_method(_MD("get_mass"),&VehicleBody::get_mass);
ObjectTypeDB::bind_method(_MD("set_friction","friction"),&VehicleBody::set_friction);
ObjectTypeDB::bind_method(_MD("get_friction"),&VehicleBody::get_friction);
ObjectTypeDB::bind_method(_MD("_direct_state_changed"),&VehicleBody::_direct_state_changed);
ADD_PROPERTY( PropertyInfo(Variant::REAL,"body/mass",PROPERTY_HINT_RANGE,"0.01,65536,0.01"),_SCS("set_mass"),_SCS("get_mass"));
ADD_PROPERTY( PropertyInfo(Variant::REAL,"body/friction",PROPERTY_HINT_RANGE,"0.01,1,0.01"),_SCS("set_friction"),_SCS("get_friction"));
}
VehicleBody::VehicleBody() : PhysicsBody(PhysicsServer::BODY_MODE_RIGID) {
m_pitchControl=0;
m_currentVehicleSpeedKmHour = real_t(0.);
m_steeringValue = real_t(0.);
mass=1;
friction=1;
ccd=false;
exclude.insert(get_rid());
PhysicsServer::get_singleton()->body_set_force_integration_callback(get_rid(),this,"_direct_state_changed");
}
|