summaryrefslogtreecommitdiff
path: root/scene/3d/baked_lightmap.cpp
blob: 6208b1a1dc9372dbd119aef1048cfc2ada99e275 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
/*************************************************************************/
/*  baked_lightmap.cpp                                                   */
/*************************************************************************/
/*                       This file is part of:                           */
/*                           GODOT ENGINE                                */
/*                      https://godotengine.org                          */
/*************************************************************************/
/* Copyright (c) 2007-2021 Juan Linietsky, Ariel Manzur.                 */
/* Copyright (c) 2014-2021 Godot Engine contributors (cf. AUTHORS.md).   */
/*                                                                       */
/* Permission is hereby granted, free of charge, to any person obtaining */
/* a copy of this software and associated documentation files (the       */
/* "Software"), to deal in the Software without restriction, including   */
/* without limitation the rights to use, copy, modify, merge, publish,   */
/* distribute, sublicense, and/or sell copies of the Software, and to    */
/* permit persons to whom the Software is furnished to do so, subject to */
/* the following conditions:                                             */
/*                                                                       */
/* The above copyright notice and this permission notice shall be        */
/* included in all copies or substantial portions of the Software.       */
/*                                                                       */
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,       */
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF    */
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY  */
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,  */
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE     */
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.                */
/*************************************************************************/

#include "baked_lightmap.h"

#include "core/io/config_file.h"
#include "core/io/resource_saver.h"
#include "core/math/camera_matrix.h"
#include "core/math/delaunay_3d.h"
#include "core/os/dir_access.h"
#include "core/os/file_access.h"
#include "core/os/os.h"
#include "core/templates/sort_array.h"
#include "lightmap_probe.h"

void BakedLightmapData::add_user(const NodePath &p_path, const Rect2 &p_uv_scale, int p_slice_index, int32_t p_sub_instance) {
	User user;
	user.path = p_path;
	user.uv_scale = p_uv_scale;
	user.slice_index = p_slice_index;
	user.sub_instance = p_sub_instance;
	users.push_back(user);
}

int BakedLightmapData::get_user_count() const {
	return users.size();
}

NodePath BakedLightmapData::get_user_path(int p_user) const {
	ERR_FAIL_INDEX_V(p_user, users.size(), NodePath());
	return users[p_user].path;
}

int32_t BakedLightmapData::get_user_sub_instance(int p_user) const {
	ERR_FAIL_INDEX_V(p_user, users.size(), -1);
	return users[p_user].sub_instance;
}

Rect2 BakedLightmapData::get_user_lightmap_uv_scale(int p_user) const {
	ERR_FAIL_INDEX_V(p_user, users.size(), Rect2());
	return users[p_user].uv_scale;
}

int BakedLightmapData::get_user_lightmap_slice_index(int p_user) const {
	ERR_FAIL_INDEX_V(p_user, users.size(), -1);
	return users[p_user].slice_index;
}

void BakedLightmapData::clear_users() {
	users.clear();
}

void BakedLightmapData::_set_user_data(const Array &p_data) {
	ERR_FAIL_COND(p_data.size() <= 0);
	ERR_FAIL_COND((p_data.size() % 4) != 0);

	for (int i = 0; i < p_data.size(); i += 4) {
		add_user(p_data[i + 0], p_data[i + 1], p_data[i + 2], p_data[i + 3]);
	}
}

Array BakedLightmapData::_get_user_data() const {
	Array ret;
	for (int i = 0; i < users.size(); i++) {
		ret.push_back(users[i].path);
		ret.push_back(users[i].uv_scale);
		ret.push_back(users[i].slice_index);
		ret.push_back(users[i].sub_instance);
	}
	return ret;
}

RID BakedLightmapData::get_rid() const {
	return lightmap;
}

void BakedLightmapData::clear() {
	users.clear();
}

void BakedLightmapData::set_light_texture(const Ref<TextureLayered> &p_light_texture) {
	light_texture = p_light_texture;
	RS::get_singleton()->lightmap_set_textures(lightmap, light_texture.is_valid() ? light_texture->get_rid() : RID(), uses_spherical_harmonics);
}

Ref<TextureLayered> BakedLightmapData::get_light_texture() const {
	return light_texture;
}

void BakedLightmapData::set_uses_spherical_harmonics(bool p_enable) {
	uses_spherical_harmonics = p_enable;
	RS::get_singleton()->lightmap_set_textures(lightmap, light_texture.is_valid() ? light_texture->get_rid() : RID(), uses_spherical_harmonics);
}

bool BakedLightmapData::is_using_spherical_harmonics() const {
	return uses_spherical_harmonics;
}

void BakedLightmapData::set_capture_data(const AABB &p_bounds, bool p_interior, const PackedVector3Array &p_points, const PackedColorArray &p_point_sh, const PackedInt32Array &p_tetrahedra, const PackedInt32Array &p_bsp_tree) {
	if (p_points.size()) {
		int pc = p_points.size();
		ERR_FAIL_COND(pc * 9 != p_point_sh.size());
		ERR_FAIL_COND((p_tetrahedra.size() % 4) != 0);
		ERR_FAIL_COND((p_bsp_tree.size() % 6) != 0);
		RS::get_singleton()->lightmap_set_probe_capture_data(lightmap, p_points, p_point_sh, p_tetrahedra, p_bsp_tree);
		RS::get_singleton()->lightmap_set_probe_bounds(lightmap, p_bounds);
		RS::get_singleton()->lightmap_set_probe_interior(lightmap, p_interior);
	} else {
		RS::get_singleton()->lightmap_set_probe_capture_data(lightmap, PackedVector3Array(), PackedColorArray(), PackedInt32Array(), PackedInt32Array());
		RS::get_singleton()->lightmap_set_probe_bounds(lightmap, AABB());
		RS::get_singleton()->lightmap_set_probe_interior(lightmap, false);
	}
	interior = p_interior;
	bounds = p_bounds;
}

PackedVector3Array BakedLightmapData::get_capture_points() const {
	return RS::get_singleton()->lightmap_get_probe_capture_points(lightmap);
}

PackedColorArray BakedLightmapData::get_capture_sh() const {
	return RS::get_singleton()->lightmap_get_probe_capture_sh(lightmap);
}

PackedInt32Array BakedLightmapData::get_capture_tetrahedra() const {
	return RS::get_singleton()->lightmap_get_probe_capture_tetrahedra(lightmap);
}

PackedInt32Array BakedLightmapData::get_capture_bsp_tree() const {
	return RS::get_singleton()->lightmap_get_probe_capture_bsp_tree(lightmap);
}

AABB BakedLightmapData::get_capture_bounds() const {
	return bounds;
}

bool BakedLightmapData::is_interior() const {
	return interior;
}

void BakedLightmapData::_set_probe_data(const Dictionary &p_data) {
	ERR_FAIL_COND(!p_data.has("bounds"));
	ERR_FAIL_COND(!p_data.has("points"));
	ERR_FAIL_COND(!p_data.has("tetrahedra"));
	ERR_FAIL_COND(!p_data.has("bsp"));
	ERR_FAIL_COND(!p_data.has("sh"));
	ERR_FAIL_COND(!p_data.has("interior"));
	set_capture_data(p_data["bounds"], p_data["interior"], p_data["points"], p_data["sh"], p_data["tetrahedra"], p_data["bsp"]);
}

Dictionary BakedLightmapData::_get_probe_data() const {
	Dictionary d;
	d["bounds"] = get_capture_bounds();
	d["points"] = get_capture_points();
	d["tetrahedra"] = get_capture_tetrahedra();
	d["bsp"] = get_capture_bsp_tree();
	d["sh"] = get_capture_sh();
	d["interior"] = is_interior();
	return d;
}

void BakedLightmapData::_bind_methods() {
	ClassDB::bind_method(D_METHOD("_set_user_data", "data"), &BakedLightmapData::_set_user_data);
	ClassDB::bind_method(D_METHOD("_get_user_data"), &BakedLightmapData::_get_user_data);

	ClassDB::bind_method(D_METHOD("set_light_texture", "light_texture"), &BakedLightmapData::set_light_texture);
	ClassDB::bind_method(D_METHOD("get_light_texture"), &BakedLightmapData::get_light_texture);

	ClassDB::bind_method(D_METHOD("set_uses_spherical_harmonics", "uses_spherical_harmonics"), &BakedLightmapData::set_uses_spherical_harmonics);
	ClassDB::bind_method(D_METHOD("is_using_spherical_harmonics"), &BakedLightmapData::is_using_spherical_harmonics);

	ClassDB::bind_method(D_METHOD("add_user", "path", "uv_scale", "slice_index", "sub_instance"), &BakedLightmapData::add_user);
	ClassDB::bind_method(D_METHOD("get_user_count"), &BakedLightmapData::get_user_count);
	ClassDB::bind_method(D_METHOD("get_user_path", "user_idx"), &BakedLightmapData::get_user_path);
	ClassDB::bind_method(D_METHOD("clear_users"), &BakedLightmapData::clear_users);

	ClassDB::bind_method(D_METHOD("_set_probe_data", "data"), &BakedLightmapData::_set_probe_data);
	ClassDB::bind_method(D_METHOD("_get_probe_data"), &BakedLightmapData::_get_probe_data);

	ADD_PROPERTY(PropertyInfo(Variant::OBJECT, "light_texture", PROPERTY_HINT_RESOURCE_TYPE, "TextureLayered"), "set_light_texture", "get_light_texture");
	ADD_PROPERTY(PropertyInfo(Variant::BOOL, "uses_spherical_harmonics", PROPERTY_HINT_NONE, "", PROPERTY_USAGE_NOEDITOR | PROPERTY_USAGE_INTERNAL), "set_uses_spherical_harmonics", "is_using_spherical_harmonics");
	ADD_PROPERTY(PropertyInfo(Variant::ARRAY, "user_data", PROPERTY_HINT_NONE, "", PROPERTY_USAGE_NOEDITOR | PROPERTY_USAGE_INTERNAL), "_set_user_data", "_get_user_data");
	ADD_PROPERTY(PropertyInfo(Variant::DICTIONARY, "probe_data", PROPERTY_HINT_NONE, "", PROPERTY_USAGE_NOEDITOR | PROPERTY_USAGE_INTERNAL), "_set_probe_data", "_get_probe_data");
}

BakedLightmapData::BakedLightmapData() {
	lightmap = RS::get_singleton()->lightmap_create();
}

BakedLightmapData::~BakedLightmapData() {
	RS::get_singleton()->free(lightmap);
}

///////////////////////////

void BakedLightmap::_find_meshes_and_lights(Node *p_at_node, Vector<MeshesFound> &meshes, Vector<LightsFound> &lights, Vector<Vector3> &probes) {
	MeshInstance3D *mi = Object::cast_to<MeshInstance3D>(p_at_node);
	if (mi && mi->get_gi_mode() == GeometryInstance3D::GI_MODE_BAKED && mi->is_visible_in_tree()) {
		Ref<Mesh> mesh = mi->get_mesh();
		if (mesh.is_valid()) {
			bool all_have_uv2_and_normal = true;
			bool surfaces_found = false;
			for (int i = 0; i < mesh->get_surface_count(); i++) {
				if (mesh->surface_get_primitive_type(i) != Mesh::PRIMITIVE_TRIANGLES) {
					continue;
				}
				if (!(mesh->surface_get_format(i) & Mesh::ARRAY_FORMAT_TEX_UV2)) {
					all_have_uv2_and_normal = false;
					break;
				}
				if (!(mesh->surface_get_format(i) & Mesh::ARRAY_FORMAT_NORMAL)) {
					all_have_uv2_and_normal = false;
					break;
				}
				surfaces_found = true;
			}

			if (surfaces_found && all_have_uv2_and_normal) {
				//READY TO BAKE! size hint could be computed if not found, actually..

				MeshesFound mf;
				mf.xform = get_global_transform().affine_inverse() * mi->get_global_transform();
				mf.node_path = get_path_to(mi);
				mf.subindex = -1;
				mf.mesh = mesh;

				static const int lightmap_scale[GeometryInstance3D::LIGHTMAP_SCALE_MAX] = { 1, 2, 4, 8 };
				mf.lightmap_scale = lightmap_scale[mi->get_lightmap_scale()];

				Ref<Material> all_override = mi->get_material_override();
				for (int i = 0; i < mesh->get_surface_count(); i++) {
					if (all_override.is_valid()) {
						mf.overrides.push_back(all_override);
					} else {
						mf.overrides.push_back(mi->get_surface_override_material(i));
					}
				}

				meshes.push_back(mf);
			}
		}
	}

	Node3D *s = Object::cast_to<Node3D>(p_at_node);

	if (!mi && s) {
		Array bmeshes = p_at_node->call("get_bake_bmeshes");
		if (bmeshes.size() && (bmeshes.size() & 1) == 0) {
			Transform3D xf = get_global_transform().affine_inverse() * s->get_global_transform();
			for (int i = 0; i < bmeshes.size(); i += 2) {
				Ref<Mesh> mesh = bmeshes[i];
				if (!mesh.is_valid()) {
					continue;
				}

				MeshesFound mf;

				Transform3D mesh_xf = bmeshes[i + 1];
				mf.xform = xf * mesh_xf;
				mf.node_path = get_path_to(s);
				mf.subindex = i / 2;
				mf.lightmap_scale = 1;
				mf.mesh = mesh;

				meshes.push_back(mf);
			}
		}
	}

	Light3D *light = Object::cast_to<Light3D>(p_at_node);

	if (light && light->get_bake_mode() != Light3D::BAKE_DISABLED) {
		LightsFound lf;
		lf.xform = get_global_transform().affine_inverse() * light->get_global_transform();
		lf.light = light;
		lights.push_back(lf);
	}

	LightmapProbe *probe = Object::cast_to<LightmapProbe>(p_at_node);

	if (probe) {
		Transform3D xf = get_global_transform().affine_inverse() * probe->get_global_transform();
		probes.push_back(xf.origin);
	}

	for (int i = 0; i < p_at_node->get_child_count(); i++) {
		Node *child = p_at_node->get_child(i);
		if (!child->get_owner()) {
			continue; //maybe a helper
		}

		_find_meshes_and_lights(child, meshes, lights, probes);
	}
}

int BakedLightmap::_bsp_get_simplex_side(const Vector<Vector3> &p_points, const LocalVector<BSPSimplex> &p_simplices, const Plane &p_plane, uint32_t p_simplex) const {
	int over = 0;
	int under = 0;
	int coplanar = 0;
	const BSPSimplex &s = p_simplices[p_simplex];
	for (int i = 0; i < 4; i++) {
		const Vector3 v = p_points[s.vertices[i]];
		if (p_plane.has_point(v)) { //coplanar
			coplanar++;
		} else if (p_plane.is_point_over(v)) {
			over++;
		} else {
			under++;
		}
	}

	ERR_FAIL_COND_V(under == 0 && over == 0, -2); //should never happen, we discarded flat simplices before, but in any case drop it from the bsp tree and throw an error
	if (under == 0) {
		return 1; // all over
	} else if (over == 0) {
		return -1; // all under
	} else {
		return 0; // crossing
	}
}

//#define DEBUG_BSP

int32_t BakedLightmap::_compute_bsp_tree(const Vector<Vector3> &p_points, const LocalVector<Plane> &p_planes, LocalVector<int32_t> &planes_tested, const LocalVector<BSPSimplex> &p_simplices, const LocalVector<int32_t> &p_simplex_indices, LocalVector<BSPNode> &bsp_nodes) {
	//if we reach here, it means there is more than one simplex
	int32_t node_index = (int32_t)bsp_nodes.size();
	bsp_nodes.push_back(BSPNode());

	//test with all the simplex planes
	Plane best_plane;
	float best_plane_score = -1.0;

	for (uint32_t i = 0; i < p_simplex_indices.size(); i++) {
		const BSPSimplex &s = p_simplices[p_simplex_indices[i]];
		for (int j = 0; j < 4; j++) {
			uint32_t plane_index = s.planes[j];
			if (planes_tested[plane_index] == node_index) {
				continue; //tested this plane already
			}

			planes_tested[plane_index] = node_index;

			static const int face_order[4][3] = {
				{ 0, 1, 2 },
				{ 0, 2, 3 },
				{ 0, 1, 3 },
				{ 1, 2, 3 }
			};

			// despite getting rid of plane duplicates, we should still use here the actual plane to avoid numerical error
			// from thinking this same simplex is intersecting rather than on a side
			Vector3 v0 = p_points[s.vertices[face_order[j][0]]];
			Vector3 v1 = p_points[s.vertices[face_order[j][1]]];
			Vector3 v2 = p_points[s.vertices[face_order[j][2]]];

			Plane plane(v0, v1, v2);

			//test with all the simplices
			int over_count = 0;
			int under_count = 0;

			for (uint32_t k = 0; k < p_simplex_indices.size(); k++) {
				int side = _bsp_get_simplex_side(p_points, p_simplices, plane, p_simplex_indices[k]);
				if (side == -2) {
					continue; //this simplex is invalid, skip for now
				} else if (side < 0) {
					under_count++;
				} else if (side > 0) {
					over_count++;
				}
			}

			if (under_count == 0 && over_count == 0) {
				continue; //most likely precision issue with a flat simplex, do not try this plane
			}

			if (under_count > over_count) { //make sure under is always less than over, so we can compute the same ratio
				SWAP(under_count, over_count);
			}

			float score = 0; //by default, score is 0 (worst)
			if (over_count > 0) {
				//give score mainly based on ratio (under / over), this means that this plane is splitting simplices a lot, but its balanced
				score = float(under_count) / over_count;
			}

			//adjusting priority over least splits, probably not a great idea
			//score *= Math::sqrt(float(over_count + under_count) / p_simplex_indices.size()); //also multiply score

			if (score > best_plane_score) {
				best_plane = plane;
				best_plane_score = score;
			}
		}
	}

	LocalVector<int32_t> indices_over;
	LocalVector<int32_t> indices_under;

	//split again, but add to list
	for (uint32_t i = 0; i < p_simplex_indices.size(); i++) {
		uint32_t index = p_simplex_indices[i];
		int side = _bsp_get_simplex_side(p_points, p_simplices, best_plane, index);

		if (side == -2) {
			continue; //simplex sits on the plane, does not make sense to use it
		}
		if (side <= 0) {
			indices_under.push_back(index);
		}

		if (side >= 0) {
			indices_over.push_back(index);
		}
	}

#ifdef DEBUG_BSP
	print_line("node " + itos(node_index) + " found plane: " + best_plane + " score:" + rtos(best_plane_score) + " - over " + itos(indices_over.size()) + " under " + itos(indices_under.size()) + " intersecting " + itos(intersecting));
#endif

	if (best_plane_score < 0.0 || indices_over.size() == p_simplex_indices.size() || indices_under.size() == p_simplex_indices.size()) {
		ERR_FAIL_COND_V(p_simplex_indices.size() <= 1, 0); //should not happen, this is a bug

		// Failed to separate the tetrahedrons using planes
		// this means Delaunay broke at some point.
		// Luckily, because we are using tetrahedrons, we can resort to
		// less precise but still working ways to generate the separating plane
		// this will most likely look bad when interpolating, but at least it will not crash.
		// and the arctifact will most likely also be very small, so too difficult to notice.

		//find the longest axis

		WARN_PRINT("Inconsistency found in triangulation while building BSP, probe interpolation quality may degrade a bit.");

		LocalVector<Vector3> centers;
		AABB bounds_all;
		for (uint32_t i = 0; i < p_simplex_indices.size(); i++) {
			AABB bounds;
			for (uint32_t j = 0; j < 4; j++) {
				Vector3 p = p_points[p_simplices[p_simplex_indices[i]].vertices[j]];
				if (j == 0) {
					bounds.position = p;
				} else {
					bounds.expand_to(p);
				}
			}
			if (i == 0) {
				centers.push_back(bounds.position + bounds.size * 0.5);
			} else {
				bounds_all.merge_with(bounds);
			}
		}
		Vector3::Axis longest_axis = Vector3::Axis(bounds_all.get_longest_axis_index());

		//find the simplex that will go under
		uint32_t min_d_idx = 0xFFFFFFFF;
		float min_d_dist = 1e20;

		for (uint32_t i = 0; i < centers.size(); i++) {
			if (centers[i][longest_axis] < min_d_dist) {
				min_d_idx = i;
				min_d_dist = centers[i][longest_axis];
			}
		}
		//rebuild best_plane and over/under arrays
		best_plane = Plane();
		best_plane.normal[longest_axis] = 1.0;
		best_plane.d = min_d_dist;

		indices_under.clear();
		indices_under.push_back(min_d_idx);

		indices_over.clear();

		for (uint32_t i = 0; i < p_simplex_indices.size(); i++) {
			if (i == min_d_idx) {
				continue;
			}
			indices_over.push_back(p_simplex_indices[i]);
		}
	}

	BSPNode node;
	node.plane = best_plane;

	if (indices_under.size() == 0) {
		//nothing to do here
		node.under = BSPNode::EMPTY_LEAF;
	} else if (indices_under.size() == 1) {
		node.under = -(indices_under[0] + 1);
	} else {
		node.under = _compute_bsp_tree(p_points, p_planes, planes_tested, p_simplices, indices_under, bsp_nodes);
	}

	if (indices_over.size() == 0) {
		//nothing to do here
		node.over = BSPNode::EMPTY_LEAF;
	} else if (indices_over.size() == 1) {
		node.over = -(indices_over[0] + 1);
	} else {
		node.over = _compute_bsp_tree(p_points, p_planes, planes_tested, p_simplices, indices_over, bsp_nodes);
	}

	bsp_nodes[node_index] = node;

	return node_index;
}

bool BakedLightmap::_lightmap_bake_step_function(float p_completion, const String &p_text, void *ud, bool p_refresh) {
	BakeStepUD *bsud = (BakeStepUD *)ud;
	bool ret = false;
	if (bsud->func) {
		ret = bsud->func(bsud->from_percent + p_completion * (bsud->to_percent - bsud->from_percent), p_text, bsud->ud, p_refresh);
	}
	return ret;
}

void BakedLightmap::_plot_triangle_into_octree(GenProbesOctree *p_cell, float p_cell_size, const Vector3 *p_triangle) {
	for (int i = 0; i < 8; i++) {
		Vector3i pos = p_cell->offset;
		uint32_t half_size = p_cell->size / 2;
		if (i & 1) {
			pos.x += half_size;
		}
		if (i & 2) {
			pos.y += half_size;
		}
		if (i & 4) {
			pos.z += half_size;
		}

		AABB subcell;
		subcell.position = Vector3(pos) * p_cell_size;
		subcell.size = Vector3(half_size, half_size, half_size) * p_cell_size;

		if (!Geometry3D::triangle_box_overlap(subcell.position + subcell.size * 0.5, subcell.size * 0.5, p_triangle)) {
			continue;
		}

		if (p_cell->children[i] == nullptr) {
			GenProbesOctree *child = memnew(GenProbesOctree);
			child->offset = pos;
			child->size = half_size;
			p_cell->children[i] = child;
		}

		if (half_size > 1) {
			//still levels missing
			_plot_triangle_into_octree(p_cell->children[i], p_cell_size, p_triangle);
		}
	}
}

void BakedLightmap::_gen_new_positions_from_octree(const GenProbesOctree *p_cell, float p_cell_size, const Vector<Vector3> &probe_positions, LocalVector<Vector3> &new_probe_positions, HashMap<Vector3i, bool, Vector3iHash> &positions_used, const AABB &p_bounds) {
	for (int i = 0; i < 8; i++) {
		Vector3i pos = p_cell->offset;
		if (i & 1) {
			pos.x += p_cell->size;
		}
		if (i & 2) {
			pos.y += p_cell->size;
		}
		if (i & 4) {
			pos.z += p_cell->size;
		}

		if (p_cell->size == 1 && !positions_used.has(pos)) {
			//new position to insert!
			Vector3 real_pos = p_bounds.position + Vector3(pos) * p_cell_size;
			//see if a user submitted probe is too close
			int ppcount = probe_positions.size();
			const Vector3 *pp = probe_positions.ptr();
			bool exists = false;
			for (int j = 0; j < ppcount; j++) {
				if (pp[j].distance_to(real_pos) < CMP_EPSILON) {
					exists = true;
					break;
				}
			}

			if (!exists) {
				new_probe_positions.push_back(real_pos);
			}

			positions_used[pos] = true;
		}

		if (p_cell->children[i] != nullptr) {
			_gen_new_positions_from_octree(p_cell->children[i], p_cell_size, probe_positions, new_probe_positions, positions_used, p_bounds);
		}
	}
}

BakedLightmap::BakeError BakedLightmap::bake(Node *p_from_node, String p_image_data_path, Lightmapper::BakeStepFunc p_bake_step, void *p_bake_userdata) {
	if (p_image_data_path == "") {
		if (get_light_data().is_null()) {
			return BAKE_ERROR_NO_SAVE_PATH;
		}

		p_image_data_path = get_light_data()->get_path();
		if (!p_image_data_path.is_resource_file()) {
			return BAKE_ERROR_NO_SAVE_PATH;
		}
	}

	Ref<Lightmapper> lightmapper = Lightmapper::create();
	ERR_FAIL_COND_V(lightmapper.is_null(), BAKE_ERROR_NO_LIGHTMAPPER);

	BakeStepUD bsud;
	bsud.func = p_bake_step;
	bsud.ud = p_bake_userdata;
	bsud.from_percent = 0.2;
	bsud.to_percent = 0.8;

	if (p_bake_step) {
		p_bake_step(0.0, TTR("Finding meshes, lights and probes"), p_bake_userdata, true);
	}
	/* STEP 1, FIND MESHES, LIGHTS AND PROBES */
	Vector<Lightmapper::MeshData> mesh_data;
	Vector<LightsFound> lights_found;
	Vector<Vector3> probes_found;
	AABB bounds;
	{
		Vector<MeshesFound> meshes_found;
		_find_meshes_and_lights(p_from_node ? p_from_node : get_parent(), meshes_found, lights_found, probes_found);

		if (meshes_found.size() == 0) {
			return BAKE_ERROR_NO_MESHES;
		}
		// create mesh data for insert

		//get the base material textures, help compute atlas size and bounds
		for (int m_i = 0; m_i < meshes_found.size(); m_i++) {
			if (p_bake_step) {
				float p = (float)(m_i) / meshes_found.size();
				p_bake_step(p * 0.1, vformat(TTR("Preparing geometry %d/%d"), m_i, meshes_found.size()), p_bake_userdata, false);
			}

			MeshesFound &mf = meshes_found.write[m_i];

			Size2i lightmap_size = mf.mesh->get_lightmap_size_hint() * mf.lightmap_scale;
			Vector<RID> overrides;
			overrides.resize(mf.overrides.size());
			for (int i = 0; i < mf.overrides.size(); i++) {
				if (mf.overrides[i].is_valid()) {
					overrides.write[i] = mf.overrides[i]->get_rid();
				}
			}
			TypedArray<Image> images = RS::get_singleton()->bake_render_uv2(mf.mesh->get_rid(), overrides, lightmap_size);

			ERR_FAIL_COND_V(images.is_empty(), BAKE_ERROR_CANT_CREATE_IMAGE);

			Ref<Image> albedo = images[RS::BAKE_CHANNEL_ALBEDO_ALPHA];
			Ref<Image> orm = images[RS::BAKE_CHANNEL_ORM];

			//multiply albedo by metal

			Lightmapper::MeshData md;

			{
				Dictionary d;
				d["path"] = mf.node_path;
				if (mf.subindex >= 0) {
					d["subindex"] = mf.subindex;
				}
				md.userdata = d;
			}

			{
				if (albedo->get_format() != Image::FORMAT_RGBA8) {
					albedo->convert(Image::FORMAT_RGBA8);
				}
				if (orm->get_format() != Image::FORMAT_RGBA8) {
					orm->convert(Image::FORMAT_RGBA8);
				}
				Vector<uint8_t> albedo_alpha = albedo->get_data();
				Vector<uint8_t> orm_data = orm->get_data();

				Vector<uint8_t> albedom;
				uint32_t len = albedo_alpha.size();
				albedom.resize(len);
				const uint8_t *r_aa = albedo_alpha.ptr();
				const uint8_t *r_orm = orm_data.ptr();
				uint8_t *w_albedo = albedom.ptrw();

				for (uint32_t i = 0; i < len; i += 4) {
					w_albedo[i + 0] = uint8_t(CLAMP(float(r_aa[i + 0]) * (1.0 - float(r_orm[i + 2] / 255.0)), 0, 255));
					w_albedo[i + 1] = uint8_t(CLAMP(float(r_aa[i + 1]) * (1.0 - float(r_orm[i + 2] / 255.0)), 0, 255));
					w_albedo[i + 2] = uint8_t(CLAMP(float(r_aa[i + 2]) * (1.0 - float(r_orm[i + 2] / 255.0)), 0, 255));
					w_albedo[i + 3] = 255;
				}

				md.albedo_on_uv2.instance();
				md.albedo_on_uv2->create(lightmap_size.width, lightmap_size.height, false, Image::FORMAT_RGBA8, albedom);
			}

			md.emission_on_uv2 = images[RS::BAKE_CHANNEL_EMISSION];
			if (md.emission_on_uv2->get_format() != Image::FORMAT_RGBAH) {
				md.emission_on_uv2->convert(Image::FORMAT_RGBAH);
			}

			//get geometry

			Basis normal_xform = mf.xform.basis.inverse().transposed();

			for (int i = 0; i < mf.mesh->get_surface_count(); i++) {
				if (mf.mesh->surface_get_primitive_type(i) != Mesh::PRIMITIVE_TRIANGLES) {
					continue;
				}
				Array a = mf.mesh->surface_get_arrays(i);

				Vector<Vector3> vertices = a[Mesh::ARRAY_VERTEX];
				const Vector3 *vr = vertices.ptr();
				Vector<Vector2> uv = a[Mesh::ARRAY_TEX_UV2];
				const Vector2 *uvr = nullptr;
				Vector<Vector3> normals = a[Mesh::ARRAY_NORMAL];
				const Vector3 *nr = nullptr;
				Vector<int> index = a[Mesh::ARRAY_INDEX];

				ERR_CONTINUE(uv.size() == 0);
				ERR_CONTINUE(normals.size() == 0);

				uvr = uv.ptr();
				nr = normals.ptr();

				int facecount;
				const int *ir = nullptr;

				if (index.size()) {
					facecount = index.size() / 3;
					ir = index.ptr();
				} else {
					facecount = vertices.size() / 3;
				}

				for (int j = 0; j < facecount; j++) {
					uint32_t vidx[3];

					if (ir) {
						for (int k = 0; k < 3; k++) {
							vidx[k] = ir[j * 3 + k];
						}
					} else {
						for (int k = 0; k < 3; k++) {
							vidx[k] = j * 3 + k;
						}
					}

					for (int k = 0; k < 3; k++) {
						Vector3 v = mf.xform.xform(vr[vidx[k]]);
						if (bounds == AABB()) {
							bounds.position = v;
						} else {
							bounds.expand_to(v);
						}
						md.points.push_back(v);

						md.uv2.push_back(uvr[vidx[k]]);
						md.normal.push_back(normal_xform.xform(nr[vidx[k]]).normalized());
					}
				}
			}

			mesh_data.push_back(md);
		}
	}

	/* STEP 2, CREATE PROBES */

	if (p_bake_step) {
		p_bake_step(0.3, TTR("Creating probes"), p_bake_userdata, true);
	}

	//bounds need to include the user probes
	for (int i = 0; i < probes_found.size(); i++) {
		bounds.expand_to(probes_found[i]);
	}

	bounds.grow_by(bounds.size.length() * 0.001);

	if (gen_probes == GENERATE_PROBES_DISABLED) {
		// generate 8 probes on bound endpoints
		for (int i = 0; i < 8; i++) {
			probes_found.push_back(bounds.get_endpoint(i));
		}
	} else {
		// detect probes from geometry
		static const int subdiv_values[6] = { 0, 4, 8, 16, 32 };
		int subdiv = subdiv_values[gen_probes];

		float subdiv_cell_size;
		Vector3i bound_limit;
		{
			int longest_axis = bounds.get_longest_axis_index();
			subdiv_cell_size = bounds.size[longest_axis] / subdiv;
			int axis_n1 = (longest_axis + 1) % 3;
			int axis_n2 = (longest_axis + 2) % 3;

			bound_limit[longest_axis] = subdiv;
			bound_limit[axis_n1] = int(Math::ceil(bounds.size[axis_n1] / subdiv_cell_size));
			bound_limit[axis_n2] = int(Math::ceil(bounds.size[axis_n2] / subdiv_cell_size));
			//compensate bounds
			bounds.size[axis_n1] = bound_limit[axis_n1] * subdiv_cell_size;
			bounds.size[axis_n2] = bound_limit[axis_n2] * subdiv_cell_size;
		}

		GenProbesOctree octree;
		octree.size = subdiv;

		for (int i = 0; i < mesh_data.size(); i++) {
			if (p_bake_step) {
				float p = (float)(i) / mesh_data.size();
				p_bake_step(0.3 + p * 0.1, vformat(TTR("Creating probes from mesh %d/%d"), i, mesh_data.size()), p_bake_userdata, false);
			}

			for (int j = 0; j < mesh_data[i].points.size(); j += 3) {
				Vector3 points[3] = { mesh_data[i].points[j + 0] - bounds.position, mesh_data[i].points[j + 1] - bounds.position, mesh_data[i].points[j + 2] - bounds.position };
				_plot_triangle_into_octree(&octree, subdiv_cell_size, points);
			}
		}

		LocalVector<Vector3> new_probe_positions;
		HashMap<Vector3i, bool, Vector3iHash> positions_used;
		for (uint32_t i = 0; i < 8; i++) { //insert bounding endpoints
			Vector3i pos;
			if (i & 1) {
				pos.x += bound_limit.x;
			}
			if (i & 2) {
				pos.y += bound_limit.y;
			}
			if (i & 4) {
				pos.z += bound_limit.z;
			}

			positions_used[pos] = true;
			Vector3 real_pos = bounds.position + Vector3(pos) * subdiv_cell_size; //use same formula for numerical stability
			new_probe_positions.push_back(real_pos);
		}
		//skip first level, since probes are always added at bounds endpoints anyway (code above this)
		for (int i = 0; i < 8; i++) {
			if (octree.children[i]) {
				_gen_new_positions_from_octree(octree.children[i], subdiv_cell_size, probes_found, new_probe_positions, positions_used, bounds);
			}
		}

		for (uint32_t i = 0; i < new_probe_positions.size(); i++) {
			probes_found.push_back(new_probe_positions[i]);
		}
	}

	// Add everything to lightmapper
	if (p_bake_step) {
		p_bake_step(0.4, TTR("Preparing Lightmapper"), p_bake_userdata, true);
	}

	{
		for (int i = 0; i < mesh_data.size(); i++) {
			lightmapper->add_mesh(mesh_data[i]);
		}
		for (int i = 0; i < lights_found.size(); i++) {
			Light3D *light = lights_found[i].light;
			Transform3D xf = lights_found[i].xform;

			if (Object::cast_to<DirectionalLight3D>(light)) {
				DirectionalLight3D *l = Object::cast_to<DirectionalLight3D>(light);
				lightmapper->add_directional_light(light->get_bake_mode() == Light3D::BAKE_STATIC, -xf.basis.get_axis(Vector3::AXIS_Z).normalized(), l->get_color(), l->get_param(Light3D::PARAM_ENERGY), l->get_param(Light3D::PARAM_SIZE));
			} else if (Object::cast_to<OmniLight3D>(light)) {
				OmniLight3D *l = Object::cast_to<OmniLight3D>(light);
				lightmapper->add_omni_light(light->get_bake_mode() == Light3D::BAKE_STATIC, xf.origin, l->get_color(), l->get_param(Light3D::PARAM_ENERGY), l->get_param(Light3D::PARAM_RANGE), l->get_param(Light3D::PARAM_ATTENUATION), l->get_param(Light3D::PARAM_SIZE));
			} else if (Object::cast_to<SpotLight3D>(light)) {
				SpotLight3D *l = Object::cast_to<SpotLight3D>(light);
				lightmapper->add_spot_light(light->get_bake_mode() == Light3D::BAKE_STATIC, xf.origin, -xf.basis.get_axis(Vector3::AXIS_Z).normalized(), l->get_color(), l->get_param(Light3D::PARAM_ENERGY), l->get_param(Light3D::PARAM_RANGE), l->get_param(Light3D::PARAM_ATTENUATION), l->get_param(Light3D::PARAM_SPOT_ANGLE), l->get_param(Light3D::PARAM_SPOT_ATTENUATION), l->get_param(Light3D::PARAM_SIZE));
			}
		}
		for (int i = 0; i < probes_found.size(); i++) {
			lightmapper->add_probe(probes_found[i]);
		}
	}

	Ref<Image> environment_image;
	Basis environment_transform;

	// Add everything to lightmapper
	if (environment_mode != ENVIRONMENT_MODE_DISABLED) {
		if (p_bake_step) {
			p_bake_step(4.1, TTR("Preparing Environment"), p_bake_userdata, true);
		}

		environment_transform = get_global_transform().basis;

		switch (environment_mode) {
			case ENVIRONMENT_MODE_DISABLED: {
				//nothing
			} break;
			case ENVIRONMENT_MODE_SCENE: {
				Ref<World3D> world = get_world_3d();
				if (world.is_valid()) {
					Ref<Environment> env = world->get_environment();
					if (env.is_null()) {
						env = world->get_fallback_environment();
					}

					if (env.is_valid()) {
						environment_image = RS::get_singleton()->environment_bake_panorama(env->get_rid(), true, Size2i(128, 64));
					}
				}
			} break;
			case ENVIRONMENT_MODE_CUSTOM_SKY: {
				if (environment_custom_sky.is_valid()) {
					environment_image = RS::get_singleton()->sky_bake_panorama(environment_custom_sky->get_rid(), environment_custom_energy, true, Size2i(128, 64));
				}

			} break;
			case ENVIRONMENT_MODE_CUSTOM_COLOR: {
				environment_image.instance();
				environment_image->create(128, 64, false, Image::FORMAT_RGBAF);
				Color c = environment_custom_color;
				c.r *= environment_custom_energy;
				c.g *= environment_custom_energy;
				c.b *= environment_custom_energy;
				for (int i = 0; i < 128; i++) {
					for (int j = 0; j < 64; j++) {
						environment_image->set_pixel(i, j, c);
					}
				}

			} break;
		}
	}

	Lightmapper::BakeError bake_err = lightmapper->bake(Lightmapper::BakeQuality(bake_quality), use_denoiser, bounces, bias, max_texture_size, directional, Lightmapper::GenerateProbes(gen_probes), environment_image, environment_transform, _lightmap_bake_step_function, &bsud);

	if (bake_err == Lightmapper::BAKE_ERROR_LIGHTMAP_CANT_PRE_BAKE_MESHES) {
		return BAKE_ERROR_MESHES_INVALID;
	}

	/* POSTBAKE: Save Textures */

	Ref<TextureLayered> texture;
	{
		Vector<Ref<Image>> images;
		for (int i = 0; i < lightmapper->get_bake_texture_count(); i++) {
			images.push_back(lightmapper->get_bake_texture(i));
		}
		//we assume they are all the same, so let's create a large one for saving
		Ref<Image> large_image;
		large_image.instance();

		large_image->create(images[0]->get_width(), images[0]->get_height() * images.size(), false, images[0]->get_format());

		for (int i = 0; i < lightmapper->get_bake_texture_count(); i++) {
			large_image->blit_rect(images[i], Rect2(0, 0, images[i]->get_width(), images[i]->get_height()), Point2(0, images[i]->get_height() * i));
		}

		String base_path = p_image_data_path.get_basename() + ".exr";

		Ref<ConfigFile> config;

		config.instance();
		if (FileAccess::exists(base_path + ".import")) {
			config->load(base_path + ".import");
		}

		config->set_value("remap", "importer", "2d_array_texture");
		config->set_value("remap", "type", "StreamTexture2DArray");
		if (!config->has_section_key("params", "compress/mode")) {
			config->set_value("params", "compress/mode", 2); //user may want another compression, so leave it be
		}
		config->set_value("params", "compress/channel_pack", 1);
		config->set_value("params", "mipmaps/generate", false);
		config->set_value("params", "slices/horizontal", 1);
		config->set_value("params", "slices/vertical", images.size());

		config->save(base_path + ".import");

		Error err = large_image->save_exr(base_path, false);
		ERR_FAIL_COND_V(err, BAKE_ERROR_CANT_CREATE_IMAGE);
		ResourceLoader::import(base_path);
		Ref<Texture> t = ResourceLoader::load(base_path); //if already loaded, it will be updated on refocus?
		ERR_FAIL_COND_V(t.is_null(), BAKE_ERROR_CANT_CREATE_IMAGE);
		texture = t;
	}

	/* POSTBAKE: Save Light Data */

	Ref<BakedLightmapData> data;
	if (get_light_data().is_valid()) {
		data = get_light_data();
		set_light_data(Ref<BakedLightmapData>()); //clear
		data->clear();
	} else {
		data.instance();
	}

	data->set_light_texture(texture);
	data->set_uses_spherical_harmonics(directional);

	for (int i = 0; i < lightmapper->get_bake_mesh_count(); i++) {
		Dictionary d = lightmapper->get_bake_mesh_userdata(i);
		NodePath np = d["path"];
		int32_t subindex = -1;
		if (d.has("subindex")) {
			subindex = d["subindex"];
		}

		Rect2 uv_scale = lightmapper->get_bake_mesh_uv_scale(i);
		int slice_index = lightmapper->get_bake_mesh_texture_slice(i);
		data->add_user(np, uv_scale, slice_index, subindex);
	}

	{
		// create tetrahedrons
		Vector<Vector3> points;
		Vector<Color> sh;
		points.resize(lightmapper->get_bake_probe_count());
		sh.resize(lightmapper->get_bake_probe_count() * 9);
		for (int i = 0; i < lightmapper->get_bake_probe_count(); i++) {
			points.write[i] = lightmapper->get_bake_probe_point(i);
			Vector<Color> colors = lightmapper->get_bake_probe_sh(i);
			ERR_CONTINUE(colors.size() != 9);
			for (int j = 0; j < 9; j++) {
				sh.write[i * 9 + j] = colors[j];
			}
		}

		//Obtain solved simplices

		if (p_bake_step) {
			p_bake_step(0.8, TTR("Generating Probe Volumes"), p_bake_userdata, true);
		}
		Vector<Delaunay3D::OutputSimplex> solved_simplices = Delaunay3D::tetrahedralize(points);

		LocalVector<BSPSimplex> bsp_simplices;
		LocalVector<Plane> bsp_planes;
		LocalVector<int32_t> bsp_simplex_indices;
		PackedInt32Array tetrahedrons;

		for (int i = 0; i < solved_simplices.size(); i++) {
			//Prepare a special representation of the simplex, which uses a BSP Tree
			BSPSimplex bsp_simplex;
			for (int j = 0; j < 4; j++) {
				bsp_simplex.vertices[j] = solved_simplices[i].points[j];
			}
			for (int j = 0; j < 4; j++) {
				static const int face_order[4][3] = {
					{ 0, 1, 2 },
					{ 0, 2, 3 },
					{ 0, 1, 3 },
					{ 1, 2, 3 }
				};
				Vector3 a = points[solved_simplices[i].points[face_order[j][0]]];
				Vector3 b = points[solved_simplices[i].points[face_order[j][1]]];
				Vector3 c = points[solved_simplices[i].points[face_order[j][2]]];

				//store planes in an array, but ensure they are reused, to speed up processing

				Plane p(a, b, c);
				int plane_index = -1;
				for (uint32_t k = 0; k < bsp_planes.size(); k++) {
					if (bsp_planes[k].is_equal_approx_any_side(p)) {
						plane_index = k;
						break;
					}
				}

				if (plane_index == -1) {
					plane_index = bsp_planes.size();
					bsp_planes.push_back(p);
				}

				bsp_simplex.planes[j] = plane_index;

				//also fill simplex array
				tetrahedrons.push_back(solved_simplices[i].points[j]);
			}

			bsp_simplex_indices.push_back(bsp_simplices.size());
			bsp_simplices.push_back(bsp_simplex);
		}

//#define DEBUG_SIMPLICES_AS_OBJ_FILE
#ifdef DEBUG_SIMPLICES_AS_OBJ_FILE
		{
			FileAccessRef f = FileAccess::open("res://bsp.obj", FileAccess::WRITE);
			for (uint32_t i = 0; i < bsp_simplices.size(); i++) {
				f->store_line("o Simplex" + itos(i));
				for (int j = 0; j < 4; j++) {
					f->store_line(vformat("v %f %f %f", points[bsp_simplices[i].vertices[j]].x, points[bsp_simplices[i].vertices[j]].y, points[bsp_simplices[i].vertices[j]].z));
				}
				static const int face_order[4][3] = {
					{ 1, 2, 3 },
					{ 1, 3, 4 },
					{ 1, 2, 4 },
					{ 2, 3, 4 }
				};

				for (int j = 0; j < 4; j++) {
					f->store_line(vformat("f %d %d %d", 4 * i + face_order[j][0], 4 * i + face_order[j][1], 4 * i + face_order[j][2]));
				}
			}
			f->close();
		}
#endif

		LocalVector<BSPNode> bsp_nodes;
		LocalVector<int32_t> planes_tested;
		planes_tested.resize(bsp_planes.size());
		for (uint32_t i = 0; i < planes_tested.size(); i++) {
			planes_tested[i] = 0x7FFFFFFF;
		}

		if (p_bake_step) {
			p_bake_step(0.9, TTR("Generating Probe Acceleration Structures"), p_bake_userdata, true);
		}

		_compute_bsp_tree(points, bsp_planes, planes_tested, bsp_simplices, bsp_simplex_indices, bsp_nodes);

		PackedInt32Array bsp_array;
		bsp_array.resize(bsp_nodes.size() * 6); // six 32 bits values used for each BSP node
		{
			float *fptr = (float *)bsp_array.ptrw();
			int32_t *iptr = (int32_t *)bsp_array.ptrw();
			for (uint32_t i = 0; i < bsp_nodes.size(); i++) {
				fptr[i * 6 + 0] = bsp_nodes[i].plane.normal.x;
				fptr[i * 6 + 1] = bsp_nodes[i].plane.normal.y;
				fptr[i * 6 + 2] = bsp_nodes[i].plane.normal.z;
				fptr[i * 6 + 3] = bsp_nodes[i].plane.d;
				iptr[i * 6 + 4] = bsp_nodes[i].over;
				iptr[i * 6 + 5] = bsp_nodes[i].under;
			}
//#define DEBUG_BSP_TREE
#ifdef DEBUG_BSP_TREE
			FileAccessRef f = FileAccess::open("res://bsp.txt", FileAccess::WRITE);
			for (uint32_t i = 0; i < bsp_nodes.size(); i++) {
				f->store_line(itos(i) + " - plane: " + bsp_nodes[i].plane + " over: " + itos(bsp_nodes[i].over) + " under: " + itos(bsp_nodes[i].under));
			}
#endif
		}

		/* Obtain the colors from the images, they will be re-created as cubemaps on the server, depending on the driver */

		data->set_capture_data(bounds, interior, points, sh, tetrahedrons, bsp_array);
		/* Compute a BSP tree of the simplices, so it's easy to find the exact one */
	}

	Error err = ResourceSaver::save(p_image_data_path, data);
	data->set_path(p_image_data_path);

	if (err != OK) {
		return BAKE_ERROR_CANT_CREATE_IMAGE;
	}

	set_light_data(data);

	return BAKE_ERROR_OK;
}

void BakedLightmap::_notification(int p_what) {
	if (p_what == NOTIFICATION_POST_ENTER_TREE) {
		if (light_data.is_valid()) {
			_assign_lightmaps();
		}
	}

	if (p_what == NOTIFICATION_EXIT_TREE) {
		if (light_data.is_valid()) {
			_clear_lightmaps();
		}
	}
}

void BakedLightmap::_assign_lightmaps() {
	ERR_FAIL_COND(!light_data.is_valid());

	for (int i = 0; i < light_data->get_user_count(); i++) {
		Node *node = get_node(light_data->get_user_path(i));
		int instance_idx = light_data->get_user_sub_instance(i);
		if (instance_idx >= 0) {
			RID instance = node->call("get_bake_mesh_instance", instance_idx);
			if (instance.is_valid()) {
				RS::get_singleton()->instance_geometry_set_lightmap(instance, get_instance(), light_data->get_user_lightmap_uv_scale(i), light_data->get_user_lightmap_slice_index(i));
			}
		} else {
			VisualInstance3D *vi = Object::cast_to<VisualInstance3D>(node);
			ERR_CONTINUE(!vi);
			RS::get_singleton()->instance_geometry_set_lightmap(vi->get_instance(), get_instance(), light_data->get_user_lightmap_uv_scale(i), light_data->get_user_lightmap_slice_index(i));
		}
	}
}

void BakedLightmap::_clear_lightmaps() {
	ERR_FAIL_COND(!light_data.is_valid());
	for (int i = 0; i < light_data->get_user_count(); i++) {
		Node *node = get_node(light_data->get_user_path(i));
		int instance_idx = light_data->get_user_sub_instance(i);
		if (instance_idx >= 0) {
			RID instance = node->call("get_bake_mesh_instance", instance_idx);
			if (instance.is_valid()) {
				RS::get_singleton()->instance_geometry_set_lightmap(instance, RID(), Rect2(), 0);
			}
		} else {
			VisualInstance3D *vi = Object::cast_to<VisualInstance3D>(node);
			ERR_CONTINUE(!vi);
			RS::get_singleton()->instance_geometry_set_lightmap(vi->get_instance(), RID(), Rect2(), 0);
		}
	}
}

void BakedLightmap::set_light_data(const Ref<BakedLightmapData> &p_data) {
	if (light_data.is_valid()) {
		if (is_inside_tree()) {
			_clear_lightmaps();
		}
		set_base(RID());
	}
	light_data = p_data;

	if (light_data.is_valid()) {
		set_base(light_data->get_rid());
		if (is_inside_tree()) {
			_assign_lightmaps();
		}
	}

	update_gizmo();
}

Ref<BakedLightmapData> BakedLightmap::get_light_data() const {
	return light_data;
}

void BakedLightmap::set_bake_quality(BakeQuality p_quality) {
	bake_quality = p_quality;
}

BakedLightmap::BakeQuality BakedLightmap::get_bake_quality() const {
	return bake_quality;
}

AABB BakedLightmap::get_aabb() const {
	return AABB();
}

Vector<Face3> BakedLightmap::get_faces(uint32_t p_usage_flags) const {
	return Vector<Face3>();
}

void BakedLightmap::set_use_denoiser(bool p_enable) {
	use_denoiser = p_enable;
}

bool BakedLightmap::is_using_denoiser() const {
	return use_denoiser;
}

void BakedLightmap::set_directional(bool p_enable) {
	directional = p_enable;
}

bool BakedLightmap::is_directional() const {
	return directional;
}

void BakedLightmap::set_interior(bool p_enable) {
	interior = p_enable;
}

bool BakedLightmap::is_interior() const {
	return interior;
}

void BakedLightmap::set_environment_mode(EnvironmentMode p_mode) {
	environment_mode = p_mode;
	notify_property_list_changed();
}

BakedLightmap::EnvironmentMode BakedLightmap::get_environment_mode() const {
	return environment_mode;
}

void BakedLightmap::set_environment_custom_sky(const Ref<Sky> &p_sky) {
	environment_custom_sky = p_sky;
}

Ref<Sky> BakedLightmap::get_environment_custom_sky() const {
	return environment_custom_sky;
}

void BakedLightmap::set_environment_custom_color(const Color &p_color) {
	environment_custom_color = p_color;
}

Color BakedLightmap::get_environment_custom_color() const {
	return environment_custom_color;
}

void BakedLightmap::set_environment_custom_energy(float p_energy) {
	environment_custom_energy = p_energy;
}

float BakedLightmap::get_environment_custom_energy() const {
	return environment_custom_energy;
}

void BakedLightmap::set_bounces(int p_bounces) {
	ERR_FAIL_COND(p_bounces < 0 || p_bounces > 16);
	bounces = p_bounces;
}

int BakedLightmap::get_bounces() const {
	return bounces;
}

void BakedLightmap::set_bias(float p_bias) {
	ERR_FAIL_COND(p_bias < 0.00001);
	bias = p_bias;
}

float BakedLightmap::get_bias() const {
	return bias;
}

void BakedLightmap::set_max_texture_size(int p_size) {
	ERR_FAIL_COND(p_size < 2048);
	max_texture_size = p_size;
}

int BakedLightmap::get_max_texture_size() const {
	return max_texture_size;
}

void BakedLightmap::set_generate_probes(GenerateProbes p_generate_probes) {
	gen_probes = p_generate_probes;
}

BakedLightmap::GenerateProbes BakedLightmap::get_generate_probes() const {
	return gen_probes;
}

void BakedLightmap::_validate_property(PropertyInfo &property) const {
	if (property.name == "environment_custom_sky" && environment_mode != ENVIRONMENT_MODE_CUSTOM_SKY) {
		property.usage = 0;
	}
	if (property.name == "environment_custom_color" && environment_mode != ENVIRONMENT_MODE_CUSTOM_COLOR) {
		property.usage = 0;
	}
	if (property.name == "environment_custom_energy" && environment_mode != ENVIRONMENT_MODE_CUSTOM_COLOR && environment_mode != ENVIRONMENT_MODE_CUSTOM_SKY) {
		property.usage = 0;
	}
}

void BakedLightmap::_bind_methods() {
	ClassDB::bind_method(D_METHOD("set_light_data", "data"), &BakedLightmap::set_light_data);
	ClassDB::bind_method(D_METHOD("get_light_data"), &BakedLightmap::get_light_data);

	ClassDB::bind_method(D_METHOD("set_bake_quality", "bake_quality"), &BakedLightmap::set_bake_quality);
	ClassDB::bind_method(D_METHOD("get_bake_quality"), &BakedLightmap::get_bake_quality);

	ClassDB::bind_method(D_METHOD("set_bounces", "bounces"), &BakedLightmap::set_bounces);
	ClassDB::bind_method(D_METHOD("get_bounces"), &BakedLightmap::get_bounces);

	ClassDB::bind_method(D_METHOD("set_generate_probes", "subdivision"), &BakedLightmap::set_generate_probes);
	ClassDB::bind_method(D_METHOD("get_generate_probes"), &BakedLightmap::get_generate_probes);

	ClassDB::bind_method(D_METHOD("set_bias", "bias"), &BakedLightmap::set_bias);
	ClassDB::bind_method(D_METHOD("get_bias"), &BakedLightmap::get_bias);

	ClassDB::bind_method(D_METHOD("set_environment_mode", "mode"), &BakedLightmap::set_environment_mode);
	ClassDB::bind_method(D_METHOD("get_environment_mode"), &BakedLightmap::get_environment_mode);

	ClassDB::bind_method(D_METHOD("set_environment_custom_sky", "sky"), &BakedLightmap::set_environment_custom_sky);
	ClassDB::bind_method(D_METHOD("get_environment_custom_sky"), &BakedLightmap::get_environment_custom_sky);

	ClassDB::bind_method(D_METHOD("set_environment_custom_color", "color"), &BakedLightmap::set_environment_custom_color);
	ClassDB::bind_method(D_METHOD("get_environment_custom_color"), &BakedLightmap::get_environment_custom_color);

	ClassDB::bind_method(D_METHOD("set_environment_custom_energy", "energy"), &BakedLightmap::set_environment_custom_energy);
	ClassDB::bind_method(D_METHOD("get_environment_custom_energy"), &BakedLightmap::get_environment_custom_energy);

	ClassDB::bind_method(D_METHOD("set_max_texture_size", "max_texture_size"), &BakedLightmap::set_max_texture_size);
	ClassDB::bind_method(D_METHOD("get_max_texture_size"), &BakedLightmap::get_max_texture_size);

	ClassDB::bind_method(D_METHOD("set_use_denoiser", "use_denoiser"), &BakedLightmap::set_use_denoiser);
	ClassDB::bind_method(D_METHOD("is_using_denoiser"), &BakedLightmap::is_using_denoiser);

	ClassDB::bind_method(D_METHOD("set_interior", "enable"), &BakedLightmap::set_interior);
	ClassDB::bind_method(D_METHOD("is_interior"), &BakedLightmap::is_interior);

	ClassDB::bind_method(D_METHOD("set_directional", "directional"), &BakedLightmap::set_directional);
	ClassDB::bind_method(D_METHOD("is_directional"), &BakedLightmap::is_directional);

	//	ClassDB::bind_method(D_METHOD("bake", "from_node"), &BakedLightmap::bake, DEFVAL(Variant()));

	ADD_GROUP("Tweaks", "");
	ADD_PROPERTY(PropertyInfo(Variant::INT, "quality", PROPERTY_HINT_ENUM, "Low,Medium,High,Ultra"), "set_bake_quality", "get_bake_quality");
	ADD_PROPERTY(PropertyInfo(Variant::INT, "bounces", PROPERTY_HINT_RANGE, "0,16,1"), "set_bounces", "get_bounces");
	ADD_PROPERTY(PropertyInfo(Variant::BOOL, "directional"), "set_directional", "is_directional");
	ADD_PROPERTY(PropertyInfo(Variant::BOOL, "interior"), "set_interior", "is_interior");
	ADD_PROPERTY(PropertyInfo(Variant::BOOL, "use_denoiser"), "set_use_denoiser", "is_using_denoiser");
	ADD_PROPERTY(PropertyInfo(Variant::FLOAT, "bias", PROPERTY_HINT_RANGE, "0.00001,0.1,0.00001,or_greater"), "set_bias", "get_bias");
	ADD_PROPERTY(PropertyInfo(Variant::INT, "max_texture_size"), "set_max_texture_size", "get_max_texture_size");
	ADD_GROUP("Environment", "environment_");
	ADD_PROPERTY(PropertyInfo(Variant::INT, "environment_mode", PROPERTY_HINT_ENUM, "Disabled,Scene,Custom Sky,Custom Color"), "set_environment_mode", "get_environment_mode");
	ADD_PROPERTY(PropertyInfo(Variant::OBJECT, "environment_custom_sky", PROPERTY_HINT_RESOURCE_TYPE, "Sky"), "set_environment_custom_sky", "get_environment_custom_sky");
	ADD_PROPERTY(PropertyInfo(Variant::COLOR, "environment_custom_color", PROPERTY_HINT_COLOR_NO_ALPHA), "set_environment_custom_color", "get_environment_custom_color");
	ADD_PROPERTY(PropertyInfo(Variant::FLOAT, "environment_custom_energy", PROPERTY_HINT_RANGE, "0,64,0.01"), "set_environment_custom_energy", "get_environment_custom_energy");
	ADD_GROUP("Gen Probes", "generate_probes_");
	ADD_PROPERTY(PropertyInfo(Variant::INT, "generate_probes_subdiv", PROPERTY_HINT_ENUM, "Disabled,4,8,16,32"), "set_generate_probes", "get_generate_probes");
	ADD_GROUP("Data", "");
	ADD_PROPERTY(PropertyInfo(Variant::OBJECT, "light_data", PROPERTY_HINT_RESOURCE_TYPE, "BakedLightmapData"), "set_light_data", "get_light_data");

	BIND_ENUM_CONSTANT(BAKE_QUALITY_LOW);
	BIND_ENUM_CONSTANT(BAKE_QUALITY_MEDIUM);
	BIND_ENUM_CONSTANT(BAKE_QUALITY_HIGH);
	BIND_ENUM_CONSTANT(BAKE_QUALITY_ULTRA);

	BIND_ENUM_CONSTANT(GENERATE_PROBES_DISABLED);
	BIND_ENUM_CONSTANT(GENERATE_PROBES_SUBDIV_4);
	BIND_ENUM_CONSTANT(GENERATE_PROBES_SUBDIV_8);
	BIND_ENUM_CONSTANT(GENERATE_PROBES_SUBDIV_16);
	BIND_ENUM_CONSTANT(GENERATE_PROBES_SUBDIV_32);

	BIND_ENUM_CONSTANT(BAKE_ERROR_OK);
	BIND_ENUM_CONSTANT(BAKE_ERROR_NO_LIGHTMAPPER);
	BIND_ENUM_CONSTANT(BAKE_ERROR_NO_SAVE_PATH);
	BIND_ENUM_CONSTANT(BAKE_ERROR_NO_MESHES);
	BIND_ENUM_CONSTANT(BAKE_ERROR_MESHES_INVALID);
	BIND_ENUM_CONSTANT(BAKE_ERROR_CANT_CREATE_IMAGE);
	BIND_ENUM_CONSTANT(BAKE_ERROR_USER_ABORTED);

	BIND_ENUM_CONSTANT(ENVIRONMENT_MODE_DISABLED);
	BIND_ENUM_CONSTANT(ENVIRONMENT_MODE_SCENE);
	BIND_ENUM_CONSTANT(ENVIRONMENT_MODE_CUSTOM_SKY);
	BIND_ENUM_CONSTANT(ENVIRONMENT_MODE_CUSTOM_COLOR);
}

BakedLightmap::BakedLightmap() {
}