1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
|
/**************************************************************************/
/* nav_map.cpp */
/**************************************************************************/
/* This file is part of: */
/* GODOT ENGINE */
/* https://godotengine.org */
/**************************************************************************/
/* Copyright (c) 2014-present Godot Engine contributors (see AUTHORS.md). */
/* Copyright (c) 2007-2014 Juan Linietsky, Ariel Manzur. */
/* */
/* Permission is hereby granted, free of charge, to any person obtaining */
/* a copy of this software and associated documentation files (the */
/* "Software"), to deal in the Software without restriction, including */
/* without limitation the rights to use, copy, modify, merge, publish, */
/* distribute, sublicense, and/or sell copies of the Software, and to */
/* permit persons to whom the Software is furnished to do so, subject to */
/* the following conditions: */
/* */
/* The above copyright notice and this permission notice shall be */
/* included in all copies or substantial portions of the Software. */
/* */
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. */
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
/**************************************************************************/
#include "nav_map.h"
#include "core/object/worker_thread_pool.h"
#include "nav_agent.h"
#include "nav_link.h"
#include "nav_region.h"
#include <algorithm>
#define THREE_POINTS_CROSS_PRODUCT(m_a, m_b, m_c) (((m_c) - (m_a)).cross((m_b) - (m_a)))
// Helper macro
#define APPEND_METADATA(poly) \
if (r_path_types) { \
r_path_types->push_back(poly->owner->get_type()); \
} \
if (r_path_rids) { \
r_path_rids->push_back(poly->owner->get_self()); \
} \
if (r_path_owners) { \
r_path_owners->push_back(poly->owner->get_owner_id()); \
}
void NavMap::set_up(Vector3 p_up) {
up = p_up;
regenerate_polygons = true;
}
void NavMap::set_cell_size(float p_cell_size) {
cell_size = p_cell_size;
regenerate_polygons = true;
}
void NavMap::set_edge_connection_margin(float p_edge_connection_margin) {
edge_connection_margin = p_edge_connection_margin;
regenerate_links = true;
}
void NavMap::set_link_connection_radius(float p_link_connection_radius) {
link_connection_radius = p_link_connection_radius;
regenerate_links = true;
}
gd::PointKey NavMap::get_point_key(const Vector3 &p_pos) const {
const int x = int(Math::floor(p_pos.x / cell_size));
const int y = int(Math::floor(p_pos.y / cell_size));
const int z = int(Math::floor(p_pos.z / cell_size));
gd::PointKey p;
p.key = 0;
p.x = x;
p.y = y;
p.z = z;
return p;
}
Vector<Vector3> NavMap::get_path(Vector3 p_origin, Vector3 p_destination, bool p_optimize, uint32_t p_navigation_layers, Vector<int32_t> *r_path_types, TypedArray<RID> *r_path_rids, Vector<int64_t> *r_path_owners) const {
// Clear metadata outputs.
if (r_path_types) {
r_path_types->clear();
}
if (r_path_rids) {
r_path_rids->clear();
}
if (r_path_owners) {
r_path_owners->clear();
}
// Find the start poly and the end poly on this map.
const gd::Polygon *begin_poly = nullptr;
const gd::Polygon *end_poly = nullptr;
Vector3 begin_point;
Vector3 end_point;
float begin_d = 1e20;
float end_d = 1e20;
// Find the initial poly and the end poly on this map.
for (const gd::Polygon &p : polygons) {
// Only consider the polygon if it in a region with compatible layers.
if ((p_navigation_layers & p.owner->get_navigation_layers()) == 0) {
continue;
}
// For each face check the distance between the origin/destination
for (size_t point_id = 2; point_id < p.points.size(); point_id++) {
const Face3 face(p.points[0].pos, p.points[point_id - 1].pos, p.points[point_id].pos);
Vector3 point = face.get_closest_point_to(p_origin);
float distance_to_point = point.distance_to(p_origin);
if (distance_to_point < begin_d) {
begin_d = distance_to_point;
begin_poly = &p;
begin_point = point;
}
point = face.get_closest_point_to(p_destination);
distance_to_point = point.distance_to(p_destination);
if (distance_to_point < end_d) {
end_d = distance_to_point;
end_poly = &p;
end_point = point;
}
}
}
// Check for trivial cases
if (!begin_poly || !end_poly) {
return Vector<Vector3>();
}
if (begin_poly == end_poly) {
if (r_path_types) {
r_path_types->resize(2);
r_path_types->write[0] = begin_poly->owner->get_type();
r_path_types->write[1] = end_poly->owner->get_type();
}
if (r_path_rids) {
r_path_rids->resize(2);
(*r_path_rids)[0] = begin_poly->owner->get_self();
(*r_path_rids)[1] = end_poly->owner->get_self();
}
if (r_path_owners) {
r_path_owners->resize(2);
r_path_owners->write[0] = begin_poly->owner->get_owner_id();
r_path_owners->write[1] = end_poly->owner->get_owner_id();
}
Vector<Vector3> path;
path.resize(2);
path.write[0] = begin_point;
path.write[1] = end_point;
return path;
}
// List of all reachable navigation polys.
LocalVector<gd::NavigationPoly> navigation_polys;
navigation_polys.reserve(polygons.size() * 0.75);
// Add the start polygon to the reachable navigation polygons.
gd::NavigationPoly begin_navigation_poly = gd::NavigationPoly(begin_poly);
begin_navigation_poly.self_id = 0;
begin_navigation_poly.entry = begin_point;
begin_navigation_poly.back_navigation_edge_pathway_start = begin_point;
begin_navigation_poly.back_navigation_edge_pathway_end = begin_point;
navigation_polys.push_back(begin_navigation_poly);
// List of polygon IDs to visit.
List<uint32_t> to_visit;
to_visit.push_back(0);
// This is an implementation of the A* algorithm.
int least_cost_id = 0;
int prev_least_cost_id = -1;
bool found_route = false;
const gd::Polygon *reachable_end = nullptr;
float reachable_d = 1e30;
bool is_reachable = true;
while (true) {
// Takes the current least_cost_poly neighbors (iterating over its edges) and compute the traveled_distance.
for (const gd::Edge &edge : navigation_polys[least_cost_id].poly->edges) {
// Iterate over connections in this edge, then compute the new optimized travel distance assigned to this polygon.
for (int connection_index = 0; connection_index < edge.connections.size(); connection_index++) {
const gd::Edge::Connection &connection = edge.connections[connection_index];
// Only consider the connection to another polygon if this polygon is in a region with compatible layers.
if ((p_navigation_layers & connection.polygon->owner->get_navigation_layers()) == 0) {
continue;
}
const gd::NavigationPoly &least_cost_poly = navigation_polys[least_cost_id];
float poly_enter_cost = 0.0;
float poly_travel_cost = least_cost_poly.poly->owner->get_travel_cost();
if (prev_least_cost_id != -1 && (navigation_polys[prev_least_cost_id].poly->owner->get_self() != least_cost_poly.poly->owner->get_self())) {
poly_enter_cost = least_cost_poly.poly->owner->get_enter_cost();
}
prev_least_cost_id = least_cost_id;
Vector3 pathway[2] = { connection.pathway_start, connection.pathway_end };
const Vector3 new_entry = Geometry3D::get_closest_point_to_segment(least_cost_poly.entry, pathway);
const float new_distance = (least_cost_poly.entry.distance_to(new_entry) * poly_travel_cost) + poly_enter_cost + least_cost_poly.traveled_distance;
int64_t already_visited_polygon_index = navigation_polys.find(gd::NavigationPoly(connection.polygon));
if (already_visited_polygon_index != -1) {
// Polygon already visited, check if we can reduce the travel cost.
gd::NavigationPoly &avp = navigation_polys[already_visited_polygon_index];
if (new_distance < avp.traveled_distance) {
avp.back_navigation_poly_id = least_cost_id;
avp.back_navigation_edge = connection.edge;
avp.back_navigation_edge_pathway_start = connection.pathway_start;
avp.back_navigation_edge_pathway_end = connection.pathway_end;
avp.traveled_distance = new_distance;
avp.entry = new_entry;
}
} else {
// Add the neighbor polygon to the reachable ones.
gd::NavigationPoly new_navigation_poly = gd::NavigationPoly(connection.polygon);
new_navigation_poly.self_id = navigation_polys.size();
new_navigation_poly.back_navigation_poly_id = least_cost_id;
new_navigation_poly.back_navigation_edge = connection.edge;
new_navigation_poly.back_navigation_edge_pathway_start = connection.pathway_start;
new_navigation_poly.back_navigation_edge_pathway_end = connection.pathway_end;
new_navigation_poly.traveled_distance = new_distance;
new_navigation_poly.entry = new_entry;
navigation_polys.push_back(new_navigation_poly);
// Add the neighbor polygon to the polygons to visit.
to_visit.push_back(navigation_polys.size() - 1);
}
}
}
// Removes the least cost polygon from the list of polygons to visit so we can advance.
to_visit.erase(least_cost_id);
// When the list of polygons to visit is empty at this point it means the End Polygon is not reachable
if (to_visit.size() == 0) {
// Thus use the further reachable polygon
ERR_BREAK_MSG(is_reachable == false, "It's not expect to not find the most reachable polygons");
is_reachable = false;
if (reachable_end == nullptr) {
// The path is not found and there is not a way out.
break;
}
// Set as end point the furthest reachable point.
end_poly = reachable_end;
end_d = 1e20;
for (size_t point_id = 2; point_id < end_poly->points.size(); point_id++) {
Face3 f(end_poly->points[0].pos, end_poly->points[point_id - 1].pos, end_poly->points[point_id].pos);
Vector3 spoint = f.get_closest_point_to(p_destination);
float dpoint = spoint.distance_to(p_destination);
if (dpoint < end_d) {
end_point = spoint;
end_d = dpoint;
}
}
// Reset open and navigation_polys
gd::NavigationPoly np = navigation_polys[0];
navigation_polys.clear();
navigation_polys.push_back(np);
to_visit.clear();
to_visit.push_back(0);
least_cost_id = 0;
prev_least_cost_id = -1;
reachable_end = nullptr;
continue;
}
// Find the polygon with the minimum cost from the list of polygons to visit.
least_cost_id = -1;
float least_cost = 1e30;
for (List<uint32_t>::Element *element = to_visit.front(); element != nullptr; element = element->next()) {
gd::NavigationPoly *np = &navigation_polys[element->get()];
float cost = np->traveled_distance;
cost += (np->entry.distance_to(end_point) * np->poly->owner->get_travel_cost());
if (cost < least_cost) {
least_cost_id = np->self_id;
least_cost = cost;
}
}
ERR_BREAK(least_cost_id == -1);
// Stores the further reachable end polygon, in case our goal is not reachable.
if (is_reachable) {
float d = navigation_polys[least_cost_id].entry.distance_to(p_destination) * navigation_polys[least_cost_id].poly->owner->get_travel_cost();
if (reachable_d > d) {
reachable_d = d;
reachable_end = navigation_polys[least_cost_id].poly;
}
}
// Check if we reached the end
if (navigation_polys[least_cost_id].poly == end_poly) {
found_route = true;
break;
}
}
// If we did not find a route, return an empty path.
if (!found_route) {
return Vector<Vector3>();
}
Vector<Vector3> path;
// Optimize the path.
if (p_optimize) {
// Set the apex poly/point to the end point
gd::NavigationPoly *apex_poly = &navigation_polys[least_cost_id];
Vector3 apex_point = end_point;
gd::NavigationPoly *left_poly = apex_poly;
Vector3 left_portal = apex_point;
gd::NavigationPoly *right_poly = apex_poly;
Vector3 right_portal = apex_point;
gd::NavigationPoly *p = apex_poly;
path.push_back(end_point);
APPEND_METADATA(end_poly);
while (p) {
// Set left and right points of the pathway between polygons.
Vector3 left = p->back_navigation_edge_pathway_start;
Vector3 right = p->back_navigation_edge_pathway_end;
if (THREE_POINTS_CROSS_PRODUCT(apex_point, left, right).dot(up) < 0) {
SWAP(left, right);
}
bool skip = false;
if (THREE_POINTS_CROSS_PRODUCT(apex_point, left_portal, left).dot(up) >= 0) {
//process
if (left_portal == apex_point || THREE_POINTS_CROSS_PRODUCT(apex_point, left, right_portal).dot(up) > 0) {
left_poly = p;
left_portal = left;
} else {
clip_path(navigation_polys, path, apex_poly, right_portal, right_poly, r_path_types, r_path_rids, r_path_owners);
apex_point = right_portal;
p = right_poly;
left_poly = p;
apex_poly = p;
left_portal = apex_point;
right_portal = apex_point;
path.push_back(apex_point);
APPEND_METADATA(apex_poly->poly);
skip = true;
}
}
if (!skip && THREE_POINTS_CROSS_PRODUCT(apex_point, right_portal, right).dot(up) <= 0) {
//process
if (right_portal == apex_point || THREE_POINTS_CROSS_PRODUCT(apex_point, right, left_portal).dot(up) < 0) {
right_poly = p;
right_portal = right;
} else {
clip_path(navigation_polys, path, apex_poly, left_portal, left_poly, r_path_types, r_path_rids, r_path_owners);
apex_point = left_portal;
p = left_poly;
right_poly = p;
apex_poly = p;
right_portal = apex_point;
left_portal = apex_point;
path.push_back(apex_point);
APPEND_METADATA(apex_poly->poly);
}
}
// Go to the previous polygon.
if (p->back_navigation_poly_id != -1) {
p = &navigation_polys[p->back_navigation_poly_id];
} else {
// The end
p = nullptr;
}
}
// If the last point is not the begin point, add it to the list.
if (path[path.size() - 1] != begin_point) {
path.push_back(begin_point);
APPEND_METADATA(begin_poly);
}
path.reverse();
if (r_path_types) {
r_path_types->reverse();
}
if (r_path_rids) {
r_path_rids->reverse();
}
if (r_path_owners) {
r_path_owners->reverse();
}
} else {
path.push_back(end_point);
APPEND_METADATA(end_poly);
// Add mid points
int np_id = least_cost_id;
while (np_id != -1 && navigation_polys[np_id].back_navigation_poly_id != -1) {
if (navigation_polys[np_id].back_navigation_edge != -1) {
int prev = navigation_polys[np_id].back_navigation_edge;
int prev_n = (navigation_polys[np_id].back_navigation_edge + 1) % navigation_polys[np_id].poly->points.size();
Vector3 point = (navigation_polys[np_id].poly->points[prev].pos + navigation_polys[np_id].poly->points[prev_n].pos) * 0.5;
path.push_back(point);
APPEND_METADATA(navigation_polys[np_id].poly);
} else {
path.push_back(navigation_polys[np_id].entry);
APPEND_METADATA(navigation_polys[np_id].poly);
}
np_id = navigation_polys[np_id].back_navigation_poly_id;
}
path.push_back(begin_point);
APPEND_METADATA(begin_poly);
path.reverse();
if (r_path_types) {
r_path_types->reverse();
}
if (r_path_rids) {
r_path_rids->reverse();
}
if (r_path_owners) {
r_path_owners->reverse();
}
}
// Ensure post conditions (path arrays MUST match in size).
CRASH_COND(r_path_types && path.size() != r_path_types->size());
CRASH_COND(r_path_rids && path.size() != r_path_rids->size());
CRASH_COND(r_path_owners && path.size() != r_path_owners->size());
return path;
}
Vector3 NavMap::get_closest_point_to_segment(const Vector3 &p_from, const Vector3 &p_to, const bool p_use_collision) const {
bool use_collision = p_use_collision;
Vector3 closest_point;
real_t closest_point_d = 1e20;
for (const gd::Polygon &p : polygons) {
// For each face check the distance to the segment
for (size_t point_id = 2; point_id < p.points.size(); point_id += 1) {
const Face3 f(p.points[0].pos, p.points[point_id - 1].pos, p.points[point_id].pos);
Vector3 inters;
if (f.intersects_segment(p_from, p_to, &inters)) {
const real_t d = closest_point_d = p_from.distance_to(inters);
if (use_collision == false) {
closest_point = inters;
use_collision = true;
closest_point_d = d;
} else if (closest_point_d > d) {
closest_point = inters;
closest_point_d = d;
}
}
}
if (use_collision == false) {
for (size_t point_id = 0; point_id < p.points.size(); point_id += 1) {
Vector3 a, b;
Geometry3D::get_closest_points_between_segments(
p_from,
p_to,
p.points[point_id].pos,
p.points[(point_id + 1) % p.points.size()].pos,
a,
b);
const real_t d = a.distance_to(b);
if (d < closest_point_d) {
closest_point_d = d;
closest_point = b;
}
}
}
}
return closest_point;
}
Vector3 NavMap::get_closest_point(const Vector3 &p_point) const {
gd::ClosestPointQueryResult cp = get_closest_point_info(p_point);
return cp.point;
}
Vector3 NavMap::get_closest_point_normal(const Vector3 &p_point) const {
gd::ClosestPointQueryResult cp = get_closest_point_info(p_point);
return cp.normal;
}
RID NavMap::get_closest_point_owner(const Vector3 &p_point) const {
gd::ClosestPointQueryResult cp = get_closest_point_info(p_point);
return cp.owner;
}
gd::ClosestPointQueryResult NavMap::get_closest_point_info(const Vector3 &p_point) const {
gd::ClosestPointQueryResult result;
real_t closest_point_ds = 1e20;
for (size_t i(0); i < polygons.size(); i++) {
const gd::Polygon &p = polygons[i];
// For each face check the distance to the point
for (size_t point_id = 2; point_id < p.points.size(); point_id += 1) {
const Face3 f(p.points[0].pos, p.points[point_id - 1].pos, p.points[point_id].pos);
const Vector3 inters = f.get_closest_point_to(p_point);
const real_t ds = inters.distance_squared_to(p_point);
if (ds < closest_point_ds) {
result.point = inters;
result.normal = f.get_plane().normal;
result.owner = p.owner->get_self();
closest_point_ds = ds;
}
}
}
return result;
}
void NavMap::add_region(NavRegion *p_region) {
regions.push_back(p_region);
regenerate_links = true;
}
void NavMap::remove_region(NavRegion *p_region) {
int64_t region_index = regions.find(p_region);
if (region_index != -1) {
regions.remove_at_unordered(region_index);
regenerate_links = true;
}
}
void NavMap::add_link(NavLink *p_link) {
links.push_back(p_link);
regenerate_links = true;
}
void NavMap::remove_link(NavLink *p_link) {
int64_t link_index = links.find(p_link);
if (link_index != -1) {
links.remove_at_unordered(link_index);
regenerate_links = true;
}
}
bool NavMap::has_agent(NavAgent *agent) const {
return (agents.find(agent) != -1);
}
void NavMap::add_agent(NavAgent *agent) {
if (!has_agent(agent)) {
agents.push_back(agent);
agents_dirty = true;
}
}
void NavMap::remove_agent(NavAgent *agent) {
remove_agent_as_controlled(agent);
int64_t agent_index = agents.find(agent);
if (agent_index != -1) {
agents.remove_at_unordered(agent_index);
agents_dirty = true;
}
}
void NavMap::set_agent_as_controlled(NavAgent *agent) {
const bool exist = (controlled_agents.find(agent) != -1);
if (!exist) {
ERR_FAIL_COND(!has_agent(agent));
controlled_agents.push_back(agent);
agents_dirty = true;
}
}
void NavMap::remove_agent_as_controlled(NavAgent *agent) {
int64_t active_avoidance_agent_index = controlled_agents.find(agent);
if (active_avoidance_agent_index != -1) {
controlled_agents.remove_at_unordered(active_avoidance_agent_index);
agents_dirty = true;
}
}
void NavMap::sync() {
// Performance Monitor
int _new_pm_region_count = regions.size();
int _new_pm_agent_count = agents.size();
int _new_pm_link_count = links.size();
int _new_pm_polygon_count = pm_polygon_count;
int _new_pm_edge_count = pm_edge_count;
int _new_pm_edge_merge_count = pm_edge_merge_count;
int _new_pm_edge_connection_count = pm_edge_connection_count;
int _new_pm_edge_free_count = pm_edge_free_count;
// Check if we need to update the links.
if (regenerate_polygons) {
for (NavRegion *region : regions) {
region->scratch_polygons();
}
regenerate_links = true;
}
for (NavRegion *region : regions) {
if (region->sync()) {
regenerate_links = true;
}
}
for (NavLink *link : links) {
if (link->check_dirty()) {
regenerate_links = true;
}
}
if (regenerate_links) {
_new_pm_polygon_count = 0;
_new_pm_edge_count = 0;
_new_pm_edge_merge_count = 0;
_new_pm_edge_connection_count = 0;
_new_pm_edge_free_count = 0;
// Remove regions connections.
for (NavRegion *region : regions) {
region->get_connections().clear();
}
// Resize the polygon count.
int count = 0;
for (const NavRegion *region : regions) {
count += region->get_polygons().size();
}
polygons.resize(count);
// Copy all region polygons in the map.
count = 0;
for (const NavRegion *region : regions) {
const LocalVector<gd::Polygon> &polygons_source = region->get_polygons();
for (uint32_t n = 0; n < polygons_source.size(); n++) {
polygons[count + n] = polygons_source[n];
}
count += region->get_polygons().size();
}
_new_pm_polygon_count = polygons.size();
// Group all edges per key.
HashMap<gd::EdgeKey, Vector<gd::Edge::Connection>, gd::EdgeKey> connections;
for (gd::Polygon &poly : polygons) {
for (uint32_t p = 0; p < poly.points.size(); p++) {
int next_point = (p + 1) % poly.points.size();
gd::EdgeKey ek(poly.points[p].key, poly.points[next_point].key);
HashMap<gd::EdgeKey, Vector<gd::Edge::Connection>, gd::EdgeKey>::Iterator connection = connections.find(ek);
if (!connection) {
connections[ek] = Vector<gd::Edge::Connection>();
_new_pm_edge_count += 1;
}
if (connections[ek].size() <= 1) {
// Add the polygon/edge tuple to this key.
gd::Edge::Connection new_connection;
new_connection.polygon = &poly;
new_connection.edge = p;
new_connection.pathway_start = poly.points[p].pos;
new_connection.pathway_end = poly.points[next_point].pos;
connections[ek].push_back(new_connection);
} else {
// The edge is already connected with another edge, skip.
ERR_PRINT_ONCE("Attempted to merge a navigation mesh triangle edge with another already-merged edge. This happens when the current `cell_size` is different from the one used to generate the navigation mesh. This will cause navigation problems.");
}
}
}
Vector<gd::Edge::Connection> free_edges;
for (KeyValue<gd::EdgeKey, Vector<gd::Edge::Connection>> &E : connections) {
if (E.value.size() == 2) {
// Connect edge that are shared in different polygons.
gd::Edge::Connection &c1 = E.value.write[0];
gd::Edge::Connection &c2 = E.value.write[1];
c1.polygon->edges[c1.edge].connections.push_back(c2);
c2.polygon->edges[c2.edge].connections.push_back(c1);
// Note: The pathway_start/end are full for those connection and do not need to be modified.
_new_pm_edge_merge_count += 1;
} else {
CRASH_COND_MSG(E.value.size() != 1, vformat("Number of connection != 1. Found: %d", E.value.size()));
free_edges.push_back(E.value[0]);
}
}
// Find the compatible near edges.
//
// Note:
// Considering that the edges must be compatible (for obvious reasons)
// to be connected, create new polygons to remove that small gap is
// not really useful and would result in wasteful computation during
// connection, integration and path finding.
_new_pm_edge_free_count = free_edges.size();
for (int i = 0; i < free_edges.size(); i++) {
const gd::Edge::Connection &free_edge = free_edges[i];
Vector3 edge_p1 = free_edge.polygon->points[free_edge.edge].pos;
Vector3 edge_p2 = free_edge.polygon->points[(free_edge.edge + 1) % free_edge.polygon->points.size()].pos;
for (int j = 0; j < free_edges.size(); j++) {
const gd::Edge::Connection &other_edge = free_edges[j];
if (i == j || free_edge.polygon->owner == other_edge.polygon->owner) {
continue;
}
Vector3 other_edge_p1 = other_edge.polygon->points[other_edge.edge].pos;
Vector3 other_edge_p2 = other_edge.polygon->points[(other_edge.edge + 1) % other_edge.polygon->points.size()].pos;
// Compute the projection of the opposite edge on the current one
Vector3 edge_vector = edge_p2 - edge_p1;
float projected_p1_ratio = edge_vector.dot(other_edge_p1 - edge_p1) / (edge_vector.length_squared());
float projected_p2_ratio = edge_vector.dot(other_edge_p2 - edge_p1) / (edge_vector.length_squared());
if ((projected_p1_ratio < 0.0 && projected_p2_ratio < 0.0) || (projected_p1_ratio > 1.0 && projected_p2_ratio > 1.0)) {
continue;
}
// Check if the two edges are close to each other enough and compute a pathway between the two regions.
Vector3 self1 = edge_vector * CLAMP(projected_p1_ratio, 0.0, 1.0) + edge_p1;
Vector3 other1;
if (projected_p1_ratio >= 0.0 && projected_p1_ratio <= 1.0) {
other1 = other_edge_p1;
} else {
other1 = other_edge_p1.lerp(other_edge_p2, (1.0 - projected_p1_ratio) / (projected_p2_ratio - projected_p1_ratio));
}
if (other1.distance_to(self1) > edge_connection_margin) {
continue;
}
Vector3 self2 = edge_vector * CLAMP(projected_p2_ratio, 0.0, 1.0) + edge_p1;
Vector3 other2;
if (projected_p2_ratio >= 0.0 && projected_p2_ratio <= 1.0) {
other2 = other_edge_p2;
} else {
other2 = other_edge_p1.lerp(other_edge_p2, (0.0 - projected_p1_ratio) / (projected_p2_ratio - projected_p1_ratio));
}
if (other2.distance_to(self2) > edge_connection_margin) {
continue;
}
// The edges can now be connected.
gd::Edge::Connection new_connection = other_edge;
new_connection.pathway_start = (self1 + other1) / 2.0;
new_connection.pathway_end = (self2 + other2) / 2.0;
free_edge.polygon->edges[free_edge.edge].connections.push_back(new_connection);
// Add the connection to the region_connection map.
((NavRegion *)free_edge.polygon->owner)->get_connections().push_back(new_connection);
_new_pm_edge_connection_count += 1;
}
}
uint32_t link_poly_idx = 0;
link_polygons.resize(links.size());
// Search for polygons within range of a nav link.
for (const NavLink *link : links) {
const Vector3 start = link->get_start_position();
const Vector3 end = link->get_end_position();
gd::Polygon *closest_start_polygon = nullptr;
real_t closest_start_distance = link_connection_radius;
Vector3 closest_start_point;
gd::Polygon *closest_end_polygon = nullptr;
real_t closest_end_distance = link_connection_radius;
Vector3 closest_end_point;
// Create link to any polygons within the search radius of the start point.
for (uint32_t start_index = 0; start_index < polygons.size(); start_index++) {
gd::Polygon &start_poly = polygons[start_index];
// For each face check the distance to the start
for (uint32_t start_point_id = 2; start_point_id < start_poly.points.size(); start_point_id += 1) {
const Face3 start_face(start_poly.points[0].pos, start_poly.points[start_point_id - 1].pos, start_poly.points[start_point_id].pos);
const Vector3 start_point = start_face.get_closest_point_to(start);
const real_t start_distance = start_point.distance_to(start);
// Pick the polygon that is within our radius and is closer than anything we've seen yet.
if (start_distance <= link_connection_radius && start_distance < closest_start_distance) {
closest_start_distance = start_distance;
closest_start_point = start_point;
closest_start_polygon = &start_poly;
}
}
}
// Find any polygons within the search radius of the end point.
for (gd::Polygon &end_poly : polygons) {
// For each face check the distance to the end
for (uint32_t end_point_id = 2; end_point_id < end_poly.points.size(); end_point_id += 1) {
const Face3 end_face(end_poly.points[0].pos, end_poly.points[end_point_id - 1].pos, end_poly.points[end_point_id].pos);
const Vector3 end_point = end_face.get_closest_point_to(end);
const real_t end_distance = end_point.distance_to(end);
// Pick the polygon that is within our radius and is closer than anything we've seen yet.
if (end_distance <= link_connection_radius && end_distance < closest_end_distance) {
closest_end_distance = end_distance;
closest_end_point = end_point;
closest_end_polygon = &end_poly;
}
}
}
// If we have both a start and end point, then create a synthetic polygon to route through.
if (closest_start_polygon && closest_end_polygon) {
gd::Polygon &new_polygon = link_polygons[link_poly_idx++];
new_polygon.owner = link;
new_polygon.edges.clear();
new_polygon.edges.resize(4);
new_polygon.points.clear();
new_polygon.points.reserve(4);
// Build a set of vertices that create a thin polygon going from the start to the end point.
new_polygon.points.push_back({ closest_start_point, get_point_key(closest_start_point) });
new_polygon.points.push_back({ closest_start_point, get_point_key(closest_start_point) });
new_polygon.points.push_back({ closest_end_point, get_point_key(closest_end_point) });
new_polygon.points.push_back({ closest_end_point, get_point_key(closest_end_point) });
Vector3 center;
for (int p = 0; p < 4; ++p) {
center += new_polygon.points[p].pos;
}
new_polygon.center = center / real_t(new_polygon.points.size());
new_polygon.clockwise = true;
// Setup connections to go forward in the link.
{
gd::Edge::Connection entry_connection;
entry_connection.polygon = &new_polygon;
entry_connection.edge = -1;
entry_connection.pathway_start = new_polygon.points[0].pos;
entry_connection.pathway_end = new_polygon.points[1].pos;
closest_start_polygon->edges[0].connections.push_back(entry_connection);
gd::Edge::Connection exit_connection;
exit_connection.polygon = closest_end_polygon;
exit_connection.edge = -1;
exit_connection.pathway_start = new_polygon.points[2].pos;
exit_connection.pathway_end = new_polygon.points[3].pos;
new_polygon.edges[2].connections.push_back(exit_connection);
}
// If the link is bi-directional, create connections from the end to the start.
if (link->is_bidirectional()) {
gd::Edge::Connection entry_connection;
entry_connection.polygon = &new_polygon;
entry_connection.edge = -1;
entry_connection.pathway_start = new_polygon.points[2].pos;
entry_connection.pathway_end = new_polygon.points[3].pos;
closest_end_polygon->edges[0].connections.push_back(entry_connection);
gd::Edge::Connection exit_connection;
exit_connection.polygon = closest_start_polygon;
exit_connection.edge = -1;
exit_connection.pathway_start = new_polygon.points[0].pos;
exit_connection.pathway_end = new_polygon.points[1].pos;
new_polygon.edges[0].connections.push_back(exit_connection);
}
}
}
// Update the update ID.
map_update_id = (map_update_id + 1) % 9999999;
}
// Update agents tree.
if (agents_dirty) {
// cannot use LocalVector here as RVO library expects std::vector to build KdTree
std::vector<RVO::Agent *> raw_agents;
raw_agents.reserve(controlled_agents.size());
for (NavAgent *controlled_agent : controlled_agents) {
raw_agents.push_back(controlled_agent->get_agent());
}
rvo.buildAgentTree(raw_agents);
}
regenerate_polygons = false;
regenerate_links = false;
agents_dirty = false;
// Performance Monitor
pm_region_count = _new_pm_region_count;
pm_agent_count = _new_pm_agent_count;
pm_link_count = _new_pm_link_count;
pm_polygon_count = _new_pm_polygon_count;
pm_edge_count = _new_pm_edge_count;
pm_edge_merge_count = _new_pm_edge_merge_count;
pm_edge_connection_count = _new_pm_edge_connection_count;
pm_edge_free_count = _new_pm_edge_free_count;
}
void NavMap::compute_single_step(uint32_t index, NavAgent **agent) {
(*(agent + index))->get_agent()->computeNeighbors(&rvo);
(*(agent + index))->get_agent()->computeNewVelocity(deltatime);
}
void NavMap::step(real_t p_deltatime) {
deltatime = p_deltatime;
if (controlled_agents.size() > 0) {
WorkerThreadPool::GroupID group_task = WorkerThreadPool::get_singleton()->add_template_group_task(this, &NavMap::compute_single_step, controlled_agents.ptr(), controlled_agents.size(), -1, true, SNAME("NavigationMapAgents"));
WorkerThreadPool::get_singleton()->wait_for_group_task_completion(group_task);
}
}
void NavMap::dispatch_callbacks() {
for (NavAgent *agent : controlled_agents) {
agent->dispatch_callback();
}
}
void NavMap::clip_path(const LocalVector<gd::NavigationPoly> &p_navigation_polys, Vector<Vector3> &path, const gd::NavigationPoly *from_poly, const Vector3 &p_to_point, const gd::NavigationPoly *p_to_poly, Vector<int32_t> *r_path_types, TypedArray<RID> *r_path_rids, Vector<int64_t> *r_path_owners) const {
Vector3 from = path[path.size() - 1];
if (from.is_equal_approx(p_to_point)) {
return;
}
Plane cut_plane;
cut_plane.normal = (from - p_to_point).cross(up);
if (cut_plane.normal == Vector3()) {
return;
}
cut_plane.normal.normalize();
cut_plane.d = cut_plane.normal.dot(from);
while (from_poly != p_to_poly) {
Vector3 pathway_start = from_poly->back_navigation_edge_pathway_start;
Vector3 pathway_end = from_poly->back_navigation_edge_pathway_end;
ERR_FAIL_COND(from_poly->back_navigation_poly_id == -1);
from_poly = &p_navigation_polys[from_poly->back_navigation_poly_id];
if (!pathway_start.is_equal_approx(pathway_end)) {
Vector3 inters;
if (cut_plane.intersects_segment(pathway_start, pathway_end, &inters)) {
if (!inters.is_equal_approx(p_to_point) && !inters.is_equal_approx(path[path.size() - 1])) {
path.push_back(inters);
APPEND_METADATA(from_poly->poly);
}
}
}
}
}
NavMap::NavMap() {
}
NavMap::~NavMap() {
}
|