summaryrefslogtreecommitdiff
path: root/modules/navigation/nav_map.cpp
blob: 344475fb377eabc6a5a4e190844d77e745711ee8 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
/*************************************************************************/
/*  nav_map.cpp                                                          */
/*************************************************************************/
/*                       This file is part of:                           */
/*                           GODOT ENGINE                                */
/*                      https://godotengine.org                          */
/*************************************************************************/
/* Copyright (c) 2007-2022 Juan Linietsky, Ariel Manzur.                 */
/* Copyright (c) 2014-2022 Godot Engine contributors (cf. AUTHORS.md).   */
/*                                                                       */
/* Permission is hereby granted, free of charge, to any person obtaining */
/* a copy of this software and associated documentation files (the       */
/* "Software"), to deal in the Software without restriction, including   */
/* without limitation the rights to use, copy, modify, merge, publish,   */
/* distribute, sublicense, and/or sell copies of the Software, and to    */
/* permit persons to whom the Software is furnished to do so, subject to */
/* the following conditions:                                             */
/*                                                                       */
/* The above copyright notice and this permission notice shall be        */
/* included in all copies or substantial portions of the Software.       */
/*                                                                       */
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,       */
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF    */
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY  */
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,  */
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE     */
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.                */
/*************************************************************************/

#include "nav_map.h"

#include "nav_region.h"
#include "rvo_agent.h"

#include <algorithm>

#define THREE_POINTS_CROSS_PRODUCT(m_a, m_b, m_c) (((m_c) - (m_a)).cross((m_b) - (m_a)))

void NavMap::set_up(Vector3 p_up) {
	up = p_up;
	regenerate_polygons = true;
}

void NavMap::set_cell_size(float p_cell_size) {
	cell_size = p_cell_size;
	regenerate_polygons = true;
}

void NavMap::set_edge_connection_margin(float p_edge_connection_margin) {
	edge_connection_margin = p_edge_connection_margin;
	regenerate_links = true;
}

gd::PointKey NavMap::get_point_key(const Vector3 &p_pos) const {
	const int x = int(Math::floor(p_pos.x / cell_size));
	const int y = int(Math::floor(p_pos.y / cell_size));
	const int z = int(Math::floor(p_pos.z / cell_size));

	gd::PointKey p;
	p.key = 0;
	p.x = x;
	p.y = y;
	p.z = z;
	return p;
}

Vector<Vector3> NavMap::get_path(Vector3 p_origin, Vector3 p_destination, bool p_optimize, uint32_t p_layers) const {
	// Find the start poly and the end poly on this map.
	const gd::Polygon *begin_poly = nullptr;
	const gd::Polygon *end_poly = nullptr;
	Vector3 begin_point;
	Vector3 end_point;
	float begin_d = 1e20;
	float end_d = 1e20;
	// Find the initial poly and the end poly on this map.
	for (size_t i(0); i < polygons.size(); i++) {
		const gd::Polygon &p = polygons[i];

		// Only consider the polygon if it in a region with compatible layers.
		if ((p_layers & p.owner->get_layers()) == 0) {
			continue;
		}

		// For each face check the distance between the origin/destination
		for (size_t point_id = 2; point_id < p.points.size(); point_id++) {
			const Face3 face(p.points[0].pos, p.points[point_id - 1].pos, p.points[point_id].pos);

			Vector3 point = face.get_closest_point_to(p_origin);
			float distance_to_point = point.distance_to(p_origin);
			if (distance_to_point < begin_d) {
				begin_d = distance_to_point;
				begin_poly = &p;
				begin_point = point;
			}

			point = face.get_closest_point_to(p_destination);
			distance_to_point = point.distance_to(p_destination);
			if (distance_to_point < end_d) {
				end_d = distance_to_point;
				end_poly = &p;
				end_point = point;
			}
		}
	}

	// Check for trivial cases
	if (!begin_poly || !end_poly) {
		return Vector<Vector3>();
	}
	if (begin_poly == end_poly) {
		Vector<Vector3> path;
		path.resize(2);
		path.write[0] = begin_point;
		path.write[1] = end_point;
		return path;
	}

	// List of all reachable navigation polys.
	std::vector<gd::NavigationPoly> navigation_polys;
	navigation_polys.reserve(polygons.size() * 0.75);

	// Add the start polygon to the reachable navigation polygons.
	gd::NavigationPoly begin_navigation_poly = gd::NavigationPoly(begin_poly);
	begin_navigation_poly.self_id = 0;
	begin_navigation_poly.entry = begin_point;
	begin_navigation_poly.back_navigation_edge_pathway_start = begin_point;
	begin_navigation_poly.back_navigation_edge_pathway_end = begin_point;
	navigation_polys.push_back(begin_navigation_poly);

	// List of polygon IDs to visit.
	List<uint32_t> to_visit;
	to_visit.push_back(0);

	// This is an implementation of the A* algorithm.
	int least_cost_id = 0;
	bool found_route = false;

	const gd::Polygon *reachable_end = nullptr;
	float reachable_d = 1e30;
	bool is_reachable = true;

	while (true) {
		// Takes the current least_cost_poly neighbors (iterating over its edges) and compute the traveled_distance.
		for (size_t i = 0; i < navigation_polys[least_cost_id].poly->edges.size(); i++) {
			gd::NavigationPoly *least_cost_poly = &navigation_polys[least_cost_id];

			const gd::Edge &edge = least_cost_poly->poly->edges[i];

			// Iterate over connections in this edge, then compute the new optimized travel distance assigned to this polygon.
			for (int connection_index = 0; connection_index < edge.connections.size(); connection_index++) {
				const gd::Edge::Connection &connection = edge.connections[connection_index];

				// Only consider the connection to another polygon if this polygon is in a region with compatible layers.
				if ((p_layers & connection.polygon->owner->get_layers()) == 0) {
					continue;
				}

				Vector3 pathway[2] = { connection.pathway_start, connection.pathway_end };
				const Vector3 new_entry = Geometry3D::get_closest_point_to_segment(least_cost_poly->entry, pathway);
				const float new_distance = least_cost_poly->entry.distance_to(new_entry) + least_cost_poly->traveled_distance;

				const std::vector<gd::NavigationPoly>::iterator it = std::find(
						navigation_polys.begin(),
						navigation_polys.end(),
						gd::NavigationPoly(connection.polygon));

				if (it != navigation_polys.end()) {
					// Polygon already visited, check if we can reduce the travel cost.
					if (new_distance < it->traveled_distance) {
						it->back_navigation_poly_id = least_cost_id;
						it->back_navigation_edge = connection.edge;
						it->back_navigation_edge_pathway_start = connection.pathway_start;
						it->back_navigation_edge_pathway_end = connection.pathway_end;
						it->traveled_distance = new_distance;
						it->entry = new_entry;
					}
				} else {
					// Add the neighbour polygon to the reachable ones.
					gd::NavigationPoly new_navigation_poly = gd::NavigationPoly(connection.polygon);
					new_navigation_poly.self_id = navigation_polys.size();
					new_navigation_poly.back_navigation_poly_id = least_cost_id;
					new_navigation_poly.back_navigation_edge = connection.edge;
					new_navigation_poly.back_navigation_edge_pathway_start = connection.pathway_start;
					new_navigation_poly.back_navigation_edge_pathway_end = connection.pathway_end;
					new_navigation_poly.traveled_distance = new_distance;
					new_navigation_poly.entry = new_entry;
					navigation_polys.push_back(new_navigation_poly);

					// Add the neighbour polygon to the polygons to visit.
					to_visit.push_back(navigation_polys.size() - 1);
				}
			}
		}

		// Removes the least cost polygon from the list of polygons to visit so we can advance.
		to_visit.erase(least_cost_id);

		// When the list of polygons to visit is empty at this point it means the End Polygon is not reachable
		if (to_visit.size() == 0) {
			// Thus use the further reachable polygon
			ERR_BREAK_MSG(is_reachable == false, "It's not expect to not find the most reachable polygons");
			is_reachable = false;
			if (reachable_end == nullptr) {
				// The path is not found and there is not a way out.
				break;
			}

			// Set as end point the furthest reachable point.
			end_poly = reachable_end;
			end_d = 1e20;
			for (size_t point_id = 2; point_id < end_poly->points.size(); point_id++) {
				Face3 f(end_poly->points[0].pos, end_poly->points[point_id - 1].pos, end_poly->points[point_id].pos);
				Vector3 spoint = f.get_closest_point_to(p_destination);
				float dpoint = spoint.distance_to(p_destination);
				if (dpoint < end_d) {
					end_point = spoint;
					end_d = dpoint;
				}
			}

			// Reset open and navigation_polys
			gd::NavigationPoly np = navigation_polys[0];
			navigation_polys.clear();
			navigation_polys.push_back(np);
			to_visit.clear();
			to_visit.push_back(0);
			least_cost_id = 0;

			reachable_end = nullptr;

			continue;
		}

		// Find the polygon with the minimum cost from the list of polygons to visit.
		least_cost_id = -1;
		float least_cost = 1e30;
		for (List<uint32_t>::Element *element = to_visit.front(); element != nullptr; element = element->next()) {
			gd::NavigationPoly *np = &navigation_polys[element->get()];
			float cost = np->traveled_distance;
			cost += np->entry.distance_to(end_point);
			if (cost < least_cost) {
				least_cost_id = np->self_id;
				least_cost = cost;
			}
		}

		ERR_BREAK(least_cost_id == -1);

		// Stores the further reachable end polygon, in case our goal is not reachable.
		if (is_reachable) {
			float d = navigation_polys[least_cost_id].entry.distance_to(p_destination);
			if (reachable_d > d) {
				reachable_d = d;
				reachable_end = navigation_polys[least_cost_id].poly;
			}
		}

		// Check if we reached the end
		if (navigation_polys[least_cost_id].poly == end_poly) {
			found_route = true;
			break;
		}
	}

	// If we did not find a route, return an empty path.
	if (!found_route) {
		return Vector<Vector3>();
	}

	Vector<Vector3> path;
	// Optimize the path.
	if (p_optimize) {
		// Set the apex poly/point to the end point
		gd::NavigationPoly *apex_poly = &navigation_polys[least_cost_id];
		Vector3 apex_point = end_point;

		gd::NavigationPoly *left_poly = apex_poly;
		Vector3 left_portal = apex_point;
		gd::NavigationPoly *right_poly = apex_poly;
		Vector3 right_portal = apex_point;

		gd::NavigationPoly *p = apex_poly;

		path.push_back(end_point);

		while (p) {
			// Set left and right points of the pathway between polygons.
			Vector3 left = p->back_navigation_edge_pathway_start;
			Vector3 right = p->back_navigation_edge_pathway_end;
			if (THREE_POINTS_CROSS_PRODUCT(apex_point, left, right).dot(up) < 0) {
				SWAP(left, right);
			}

			bool skip = false;
			if (THREE_POINTS_CROSS_PRODUCT(apex_point, left_portal, left).dot(up) >= 0) {
				//process
				if (left_portal == apex_point || THREE_POINTS_CROSS_PRODUCT(apex_point, left, right_portal).dot(up) > 0) {
					left_poly = p;
					left_portal = left;
				} else {
					clip_path(navigation_polys, path, apex_poly, right_portal, right_poly);

					apex_point = right_portal;
					p = right_poly;
					left_poly = p;
					apex_poly = p;
					left_portal = apex_point;
					right_portal = apex_point;
					path.push_back(apex_point);
					skip = true;
				}
			}

			if (!skip && THREE_POINTS_CROSS_PRODUCT(apex_point, right_portal, right).dot(up) <= 0) {
				//process
				if (right_portal == apex_point || THREE_POINTS_CROSS_PRODUCT(apex_point, right, left_portal).dot(up) < 0) {
					right_poly = p;
					right_portal = right;
				} else {
					clip_path(navigation_polys, path, apex_poly, left_portal, left_poly);

					apex_point = left_portal;
					p = left_poly;
					right_poly = p;
					apex_poly = p;
					right_portal = apex_point;
					left_portal = apex_point;
					path.push_back(apex_point);
				}
			}

			// Go to the previous polygon.
			if (p->back_navigation_poly_id != -1) {
				p = &navigation_polys[p->back_navigation_poly_id];
			} else {
				// The end
				p = nullptr;
			}
		}

		// If the last point is not the begin point, add it to the list.
		if (path[path.size() - 1] != begin_point) {
			path.push_back(begin_point);
		}

		path.reverse();

	} else {
		path.push_back(end_point);

		// Add mid points
		int np_id = least_cost_id;
		while (np_id != -1 && navigation_polys[np_id].back_navigation_poly_id != -1) {
			int prev = navigation_polys[np_id].back_navigation_edge;
			int prev_n = (navigation_polys[np_id].back_navigation_edge + 1) % navigation_polys[np_id].poly->points.size();
			Vector3 point = (navigation_polys[np_id].poly->points[prev].pos + navigation_polys[np_id].poly->points[prev_n].pos) * 0.5;
			path.push_back(point);
			np_id = navigation_polys[np_id].back_navigation_poly_id;
		}

		path.push_back(begin_point);
		path.reverse();
	}

	return path;
}

Vector3 NavMap::get_closest_point_to_segment(const Vector3 &p_from, const Vector3 &p_to, const bool p_use_collision) const {
	bool use_collision = p_use_collision;
	Vector3 closest_point;
	real_t closest_point_d = 1e20;

	for (size_t i(0); i < polygons.size(); i++) {
		const gd::Polygon &p = polygons[i];

		// For each face check the distance to the segment
		for (size_t point_id = 2; point_id < p.points.size(); point_id += 1) {
			const Face3 f(p.points[0].pos, p.points[point_id - 1].pos, p.points[point_id].pos);
			Vector3 inters;
			if (f.intersects_segment(p_from, p_to, &inters)) {
				const real_t d = closest_point_d = p_from.distance_to(inters);
				if (use_collision == false) {
					closest_point = inters;
					use_collision = true;
					closest_point_d = d;
				} else if (closest_point_d > d) {
					closest_point = inters;
					closest_point_d = d;
				}
			}
		}

		if (use_collision == false) {
			for (size_t point_id = 0; point_id < p.points.size(); point_id += 1) {
				Vector3 a, b;

				Geometry3D::get_closest_points_between_segments(
						p_from,
						p_to,
						p.points[point_id].pos,
						p.points[(point_id + 1) % p.points.size()].pos,
						a,
						b);

				const real_t d = a.distance_to(b);
				if (d < closest_point_d) {
					closest_point_d = d;
					closest_point = b;
				}
			}
		}
	}

	return closest_point;
}

Vector3 NavMap::get_closest_point(const Vector3 &p_point) const {
	gd::ClosestPointQueryResult cp = get_closest_point_info(p_point);
	return cp.point;
}

Vector3 NavMap::get_closest_point_normal(const Vector3 &p_point) const {
	gd::ClosestPointQueryResult cp = get_closest_point_info(p_point);
	return cp.normal;
}

RID NavMap::get_closest_point_owner(const Vector3 &p_point) const {
	gd::ClosestPointQueryResult cp = get_closest_point_info(p_point);
	return cp.owner;
}

gd::ClosestPointQueryResult NavMap::get_closest_point_info(const Vector3 &p_point) const {
	gd::ClosestPointQueryResult result;
	real_t closest_point_ds = 1e20;

	for (size_t i(0); i < polygons.size(); i++) {
		const gd::Polygon &p = polygons[i];

		// For each face check the distance to the point
		for (size_t point_id = 2; point_id < p.points.size(); point_id += 1) {
			const Face3 f(p.points[0].pos, p.points[point_id - 1].pos, p.points[point_id].pos);
			const Vector3 inters = f.get_closest_point_to(p_point);
			const real_t ds = inters.distance_squared_to(p_point);
			if (ds < closest_point_ds) {
				result.point = inters;
				result.normal = f.get_plane().normal;
				result.owner = p.owner->get_self();
				closest_point_ds = ds;
			}
		}
	}

	return result;
}

void NavMap::add_region(NavRegion *p_region) {
	regions.push_back(p_region);
	regenerate_links = true;
}

void NavMap::remove_region(NavRegion *p_region) {
	const std::vector<NavRegion *>::iterator it = std::find(regions.begin(), regions.end(), p_region);
	if (it != regions.end()) {
		regions.erase(it);
		regenerate_links = true;
	}
}

bool NavMap::has_agent(RvoAgent *agent) const {
	return std::find(agents.begin(), agents.end(), agent) != agents.end();
}

void NavMap::add_agent(RvoAgent *agent) {
	if (!has_agent(agent)) {
		agents.push_back(agent);
		agents_dirty = true;
	}
}

void NavMap::remove_agent(RvoAgent *agent) {
	remove_agent_as_controlled(agent);
	const std::vector<RvoAgent *>::iterator it = std::find(agents.begin(), agents.end(), agent);
	if (it != agents.end()) {
		agents.erase(it);
		agents_dirty = true;
	}
}

void NavMap::set_agent_as_controlled(RvoAgent *agent) {
	const bool exist = std::find(controlled_agents.begin(), controlled_agents.end(), agent) != controlled_agents.end();
	if (!exist) {
		ERR_FAIL_COND(!has_agent(agent));
		controlled_agents.push_back(agent);
	}
}

void NavMap::remove_agent_as_controlled(RvoAgent *agent) {
	const std::vector<RvoAgent *>::iterator it = std::find(controlled_agents.begin(), controlled_agents.end(), agent);
	if (it != controlled_agents.end()) {
		controlled_agents.erase(it);
	}
}

void NavMap::sync() {
	// Check if we need to update the links.
	if (regenerate_polygons) {
		for (size_t r(0); r < regions.size(); r++) {
			regions[r]->scratch_polygons();
		}
		regenerate_links = true;
	}

	for (size_t r(0); r < regions.size(); r++) {
		if (regions[r]->sync()) {
			regenerate_links = true;
		}
	}

	if (regenerate_links) {
		// Remove regions connections.
		for (size_t r(0); r < regions.size(); r++) {
			regions[r]->get_connections().clear();
		}

		// Resize the polygon count.
		int count = 0;
		for (size_t r(0); r < regions.size(); r++) {
			count += regions[r]->get_polygons().size();
		}
		polygons.resize(count);

		// Copy all region polygons in the map.
		count = 0;
		for (size_t r(0); r < regions.size(); r++) {
			std::copy(
					regions[r]->get_polygons().data(),
					regions[r]->get_polygons().data() + regions[r]->get_polygons().size(),
					polygons.begin() + count);
			count += regions[r]->get_polygons().size();
		}

		// Group all edges per key.
		HashMap<gd::EdgeKey, Vector<gd::Edge::Connection>, gd::EdgeKey> connections;
		for (size_t poly_id(0); poly_id < polygons.size(); poly_id++) {
			gd::Polygon &poly(polygons[poly_id]);

			for (size_t p(0); p < poly.points.size(); p++) {
				int next_point = (p + 1) % poly.points.size();
				gd::EdgeKey ek(poly.points[p].key, poly.points[next_point].key);

				HashMap<gd::EdgeKey, Vector<gd::Edge::Connection>, gd::EdgeKey>::Iterator connection = connections.find(ek);
				if (!connection) {
					connections[ek] = Vector<gd::Edge::Connection>();
				}
				if (connections[ek].size() <= 1) {
					// Add the polygon/edge tuple to this key.
					gd::Edge::Connection new_connection;
					new_connection.polygon = &poly;
					new_connection.edge = p;
					new_connection.pathway_start = poly.points[p].pos;
					new_connection.pathway_end = poly.points[next_point].pos;
					connections[ek].push_back(new_connection);
				} else {
					// The edge is already connected with another edge, skip.
					ERR_PRINT("Attempted to merge a navigation mesh triangle edge with another already-merged edge. This happens when the current `cell_size` is different from the one used to generate the navigation mesh. This will cause navigation problem.");
				}
			}
		}

		Vector<gd::Edge::Connection> free_edges;
		for (KeyValue<gd::EdgeKey, Vector<gd::Edge::Connection>> &E : connections) {
			if (E.value.size() == 2) {
				// Connect edge that are shared in different polygons.
				gd::Edge::Connection &c1 = E.value.write[0];
				gd::Edge::Connection &c2 = E.value.write[1];
				c1.polygon->edges[c1.edge].connections.push_back(c2);
				c2.polygon->edges[c2.edge].connections.push_back(c1);
				// Note: The pathway_start/end are full for those connection and do not need to be modified.
			} else {
				CRASH_COND_MSG(E.value.size() != 1, vformat("Number of connection != 1. Found: %d", E.value.size()));
				free_edges.push_back(E.value[0]);
			}
		}

		// Find the compatible near edges.
		//
		// Note:
		// Considering that the edges must be compatible (for obvious reasons)
		// to be connected, create new polygons to remove that small gap is
		// not really useful and would result in wasteful computation during
		// connection, integration and path finding.
		for (int i = 0; i < free_edges.size(); i++) {
			const gd::Edge::Connection &free_edge = free_edges[i];
			Vector3 edge_p1 = free_edge.polygon->points[free_edge.edge].pos;
			Vector3 edge_p2 = free_edge.polygon->points[(free_edge.edge + 1) % free_edge.polygon->points.size()].pos;

			for (int j = 0; j < free_edges.size(); j++) {
				const gd::Edge::Connection &other_edge = free_edges[j];
				if (i == j || free_edge.polygon->owner == other_edge.polygon->owner) {
					continue;
				}

				Vector3 other_edge_p1 = other_edge.polygon->points[other_edge.edge].pos;
				Vector3 other_edge_p2 = other_edge.polygon->points[(other_edge.edge + 1) % other_edge.polygon->points.size()].pos;

				// Compute the projection of the opposite edge on the current one
				Vector3 edge_vector = edge_p2 - edge_p1;
				float projected_p1_ratio = edge_vector.dot(other_edge_p1 - edge_p1) / (edge_vector.length_squared());
				float projected_p2_ratio = edge_vector.dot(other_edge_p2 - edge_p1) / (edge_vector.length_squared());
				if ((projected_p1_ratio < 0.0 && projected_p2_ratio < 0.0) || (projected_p1_ratio > 1.0 && projected_p2_ratio > 1.0)) {
					continue;
				}

				// Check if the two edges are close to each other enough and compute a pathway between the two regions.
				Vector3 self1 = edge_vector * CLAMP(projected_p1_ratio, 0.0, 1.0) + edge_p1;
				Vector3 other1;
				if (projected_p1_ratio >= 0.0 && projected_p1_ratio <= 1.0) {
					other1 = other_edge_p1;
				} else {
					other1 = other_edge_p1.lerp(other_edge_p2, (1.0 - projected_p1_ratio) / (projected_p2_ratio - projected_p1_ratio));
				}
				if (other1.distance_to(self1) > edge_connection_margin) {
					continue;
				}

				Vector3 self2 = edge_vector * CLAMP(projected_p2_ratio, 0.0, 1.0) + edge_p1;
				Vector3 other2;
				if (projected_p2_ratio >= 0.0 && projected_p2_ratio <= 1.0) {
					other2 = other_edge_p2;
				} else {
					other2 = other_edge_p1.lerp(other_edge_p2, (0.0 - projected_p1_ratio) / (projected_p2_ratio - projected_p1_ratio));
				}
				if (other2.distance_to(self2) > edge_connection_margin) {
					continue;
				}

				// The edges can now be connected.
				gd::Edge::Connection new_connection = other_edge;
				new_connection.pathway_start = (self1 + other1) / 2.0;
				new_connection.pathway_end = (self2 + other2) / 2.0;
				free_edge.polygon->edges[free_edge.edge].connections.push_back(new_connection);

				// Add the connection to the region_connection map.
				free_edge.polygon->owner->get_connections().push_back(new_connection);
			}
		}

		// Update the update ID.
		map_update_id = (map_update_id + 1) % 9999999;
	}

	// Update agents tree.
	if (agents_dirty) {
		std::vector<RVO::Agent *> raw_agents;
		raw_agents.reserve(agents.size());
		for (size_t i(0); i < agents.size(); i++) {
			raw_agents.push_back(agents[i]->get_agent());
		}
		rvo.buildAgentTree(raw_agents);
	}

	regenerate_polygons = false;
	regenerate_links = false;
	agents_dirty = false;
}

void NavMap::compute_single_step(uint32_t index, RvoAgent **agent) {
	(*(agent + index))->get_agent()->computeNeighbors(&rvo);
	(*(agent + index))->get_agent()->computeNewVelocity(deltatime);
}

void NavMap::step(real_t p_deltatime) {
	deltatime = p_deltatime;
	if (controlled_agents.size() > 0) {
		if (step_work_pool.get_thread_count() == 0) {
			step_work_pool.init();
		}
		step_work_pool.do_work(
				controlled_agents.size(),
				this,
				&NavMap::compute_single_step,
				controlled_agents.data());
	}
}

void NavMap::dispatch_callbacks() {
	for (int i(0); i < static_cast<int>(controlled_agents.size()); i++) {
		controlled_agents[i]->dispatch_callback();
	}
}

void NavMap::clip_path(const std::vector<gd::NavigationPoly> &p_navigation_polys, Vector<Vector3> &path, const gd::NavigationPoly *from_poly, const Vector3 &p_to_point, const gd::NavigationPoly *p_to_poly) const {
	Vector3 from = path[path.size() - 1];

	if (from.is_equal_approx(p_to_point)) {
		return;
	}
	Plane cut_plane;
	cut_plane.normal = (from - p_to_point).cross(up);
	if (cut_plane.normal == Vector3()) {
		return;
	}
	cut_plane.normal.normalize();
	cut_plane.d = cut_plane.normal.dot(from);

	while (from_poly != p_to_poly) {
		Vector3 pathway_start = from_poly->back_navigation_edge_pathway_start;
		Vector3 pathway_end = from_poly->back_navigation_edge_pathway_end;

		ERR_FAIL_COND(from_poly->back_navigation_poly_id == -1);
		from_poly = &p_navigation_polys[from_poly->back_navigation_poly_id];

		if (!pathway_start.is_equal_approx(pathway_end)) {
			Vector3 inters;
			if (cut_plane.intersects_segment(pathway_start, pathway_end, &inters)) {
				if (!inters.is_equal_approx(p_to_point) && !inters.is_equal_approx(path[path.size() - 1])) {
					path.push_back(inters);
				}
			}
		}
	}
}

NavMap::NavMap() {
}

NavMap::~NavMap() {
	step_work_pool.finish();
}