summaryrefslogtreecommitdiff
path: root/modules/mono/glue/Managed/Files/Mathf.cs
blob: ce34cd6a999a9ab527e57bb8974b5a8f59f418ff (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
using System;
#if REAL_T_IS_DOUBLE
using real_t = System.Double;
#else
using real_t = System.Single;
#endif

namespace Godot
{
    public static partial class Mathf
    {
        // Define constants with Decimal precision and cast down to double or float.

        public const real_t Tau = (real_t) 6.2831853071795864769252867666M; // 6.2831855f and 6.28318530717959
        public const real_t Pi = (real_t) 3.1415926535897932384626433833M; // 3.1415927f and 3.14159265358979
        public const real_t Inf = real_t.PositiveInfinity;
        public const real_t NaN = real_t.NaN;

        private const real_t Deg2RadConst = (real_t) 0.0174532925199432957692369077M; // 0.0174532924f and 0.0174532925199433
        private const real_t Rad2DegConst = (real_t) 57.295779513082320876798154814M; // 57.29578f and 57.2957795130823

        public static real_t Abs(real_t s)
        {
            return Math.Abs(s);
        }

        public static int Abs(int s)
        {
            return Math.Abs(s);
        }

        public static real_t Acos(real_t s)
        {
            return (real_t)Math.Acos(s);
        }

        public static real_t Asin(real_t s)
        {
            return (real_t)Math.Asin(s);
        }

        public static real_t Atan(real_t s)
        {
            return (real_t)Math.Atan(s);
        }

        public static real_t Atan2(real_t y, real_t x)
        {
            return (real_t)Math.Atan2(y, x);
        }

        public static Vector2 Cartesian2Polar(real_t x, real_t y)
        {
            return new Vector2(Sqrt(x * x + y * y), Atan2(y, x));
        }

        public static real_t Ceil(real_t s)
        {
            return (real_t)Math.Ceiling(s);
        }

        public static int Clamp(int value, int min, int max)
        {
            return value < min ? min : value > max ? max : value;
        }

        public static real_t Clamp(real_t value, real_t min, real_t max)
        {
            return value < min ? min : value > max ? max : value;
        }

        public static real_t Cos(real_t s)
        {
            return (real_t)Math.Cos(s);
        }

        public static real_t Cosh(real_t s)
        {
            return (real_t)Math.Cosh(s);
        }

        public static int StepDecimals(real_t step)
        {
            double[] sd = new double[] {
                0.9999,
                0.09999,
                0.009999,
                0.0009999,
                0.00009999,
                0.000009999,
                0.0000009999,
                0.00000009999,
                0.000000009999,
            };
            double abs = Mathf.Abs(step);
            double decs = abs - (int)abs; // Strip away integer part
            for (int i = 0; i < sd.Length; i++) {
                if (decs >= sd[i]) {
                    return i;
                }
            }
            return 0;
        }

        public static real_t Deg2Rad(real_t deg)
        {
            return deg * Deg2RadConst;
        }

        public static real_t Ease(real_t s, real_t curve)
        {
            if (s < 0f)
            {
                s = 0f;
            }
            else if (s > 1.0f)
            {
                s = 1.0f;
            }

            if (curve > 0f)
            {
                if (curve < 1.0f)
                {
                    return 1.0f - Pow(1.0f - s, 1.0f / curve);
                }

                return Pow(s, curve);
            }

            if (curve < 0f)
            {
                if (s < 0.5f)
                {
                    return Pow(s * 2.0f, -curve) * 0.5f;
                }

                return (1.0f - Pow(1.0f - (s - 0.5f) * 2.0f, -curve)) * 0.5f + 0.5f;
            }

            return 0f;
        }

        public static real_t Exp(real_t s)
        {
            return (real_t)Math.Exp(s);
        }

        public static real_t Floor(real_t s)
        {
            return (real_t)Math.Floor(s);
        }

        public static real_t InverseLerp(real_t from, real_t to, real_t weight)
        {
           return (weight - from) / (to - from);
        }

        public static bool IsEqualApprox(real_t a, real_t b)
        {
            // Check for exact equality first, required to handle "infinity" values.
            if (a == b) {
                return true;
            }
            // Then check for approximate equality.
            real_t tolerance = Epsilon * Abs(a);
            if (tolerance < Epsilon) {
                tolerance = Epsilon;
            }
            return Abs(a - b) < tolerance;
        }

        public static bool IsInf(real_t s)
        {
           return real_t.IsInfinity(s);
        }

        public static bool IsNaN(real_t s)
        {
           return real_t.IsNaN(s);
        }

        public static bool IsZeroApprox(real_t s)
        {
            return Abs(s) < Epsilon;
        }

        public static real_t Lerp(real_t from, real_t to, real_t weight)
        {
            return from + (to - from) * weight;
        }

        public static real_t LerpAngle(real_t from, real_t to, real_t weight) {
            real_t difference = (to - from) % Mathf.Tau;
            real_t distance = ((2 * difference) % Mathf.Tau) - difference;
            return from + distance * weight;
        }

        public static real_t Log(real_t s)
        {
            return (real_t)Math.Log(s);
        }

        public static int Max(int a, int b)
        {
            return a > b ? a : b;
        }

        public static real_t Max(real_t a, real_t b)
        {
            return a > b ? a : b;
        }

        public static int Min(int a, int b)
        {
            return a < b ? a : b;
        }

        public static real_t Min(real_t a, real_t b)
        {
            return a < b ? a : b;
        }

        public static real_t MoveToward(real_t from, real_t to, real_t delta)
        {
            return Abs(to - from) <= delta ? to : from + Sign(to - from) * delta;
        }

        public static int NearestPo2(int value)
        {
            value--;
            value |= value >> 1;
            value |= value >> 2;
            value |= value >> 4;
            value |= value >> 8;
            value |= value >> 16;
            value++;
            return value;
        }

        public static Vector2 Polar2Cartesian(real_t r, real_t th)
        {
            return new Vector2(r * Cos(th), r * Sin(th));
        }

        /// <summary>
        /// Performs a canonical Modulus operation, where the output is on the range [0, b).
        /// </summary>
        public static real_t PosMod(real_t a, real_t b)
        {
            real_t c = a % b;
            if ((c < 0 && b > 0) || (c > 0 && b < 0))
            {
                c += b;
            }
            return c;
        }

        /// <summary>
        /// Performs a canonical Modulus operation, where the output is on the range [0, b).
        /// </summary>
        public static int PosMod(int a, int b)
        {
            int c = a % b;
            if ((c < 0 && b > 0) || (c > 0 && b < 0))
            {
                c += b;
            }
            return c;
        }

        public static real_t Pow(real_t x, real_t y)
        {
            return (real_t)Math.Pow(x, y);
        }

        public static real_t Rad2Deg(real_t rad)
        {
            return rad * Rad2DegConst;
        }

        public static real_t Round(real_t s)
        {
            return (real_t)Math.Round(s);
        }

        public static int Sign(int s)
        {
            return s < 0 ? -1 : 1;
        }

        public static real_t Sign(real_t s)
        {
            return s < 0f ? -1f : 1f;
        }

        public static real_t Sin(real_t s)
        {
            return (real_t)Math.Sin(s);
        }

        public static real_t Sinh(real_t s)
        {
            return (real_t)Math.Sinh(s);
        }

        public static real_t SmoothStep(real_t from, real_t to, real_t weight)
        {
            if (IsEqualApprox(from, to))
            {
                return from;
            }
            real_t x = Clamp((weight - from) / (to - from), (real_t)0.0, (real_t)1.0);
            return x * x * (3 - 2 * x);
        }

        public static real_t Sqrt(real_t s)
        {
            return (real_t)Math.Sqrt(s);
        }

        public static real_t Stepify(real_t s, real_t step)
        {
            if (step != 0f)
            {
                s = Floor(s / step + 0.5f) * step;
            }

            return s;
        }

        public static real_t Tan(real_t s)
        {
            return (real_t)Math.Tan(s);
        }

        public static real_t Tanh(real_t s)
        {
            return (real_t)Math.Tanh(s);
        }

        public static int Wrap(int value, int min, int max)
        {
            int range = max - min;
            return range == 0 ? min : min + ((value - min) % range + range) % range;
        }

        public static real_t Wrap(real_t value, real_t min, real_t max)
        {
            real_t range = max - min;
            return IsZeroApprox(range) ? min : min + ((value - min) % range + range) % range;
        }
    }
}