1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
|
/*************************************************************************/
/* csg.cpp */
/*************************************************************************/
/* This file is part of: */
/* GODOT ENGINE */
/* https://godotengine.org */
/*************************************************************************/
/* Copyright (c) 2007-2018 Juan Linietsky, Ariel Manzur. */
/* Copyright (c) 2014-2018 Godot Engine contributors (cf. AUTHORS.md) */
/* */
/* Permission is hereby granted, free of charge, to any person obtaining */
/* a copy of this software and associated documentation files (the */
/* "Software"), to deal in the Software without restriction, including */
/* without limitation the rights to use, copy, modify, merge, publish, */
/* distribute, sublicense, and/or sell copies of the Software, and to */
/* permit persons to whom the Software is furnished to do so, subject to */
/* the following conditions: */
/* */
/* The above copyright notice and this permission notice shall be */
/* included in all copies or substantial portions of the Software. */
/* */
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
/*************************************************************************/
#include "csg.h"
#include "core/math/face3.h"
#include "core/math/geometry.h"
#include "core/os/os.h"
#include "core/sort.h"
#include "thirdparty/misc/triangulator.h"
void CSGBrush::clear() {
faces.clear();
}
void CSGBrush::build_from_faces(const PoolVector<Vector3> &p_vertices, const PoolVector<Vector2> &p_uvs, const PoolVector<bool> &p_smooth, const PoolVector<Ref<Material> > &p_materials, const PoolVector<bool> &p_invert_faces) {
clear();
int vc = p_vertices.size();
ERR_FAIL_COND((vc % 3) != 0)
PoolVector<Vector3>::Read rv = p_vertices.read();
int uvc = p_uvs.size();
PoolVector<Vector2>::Read ruv = p_uvs.read();
int sc = p_smooth.size();
PoolVector<bool>::Read rs = p_smooth.read();
int mc = p_materials.size();
PoolVector<Ref<Material> >::Read rm = p_materials.read();
int ic = p_invert_faces.size();
PoolVector<bool>::Read ri = p_invert_faces.read();
Map<Ref<Material>, int> material_map;
faces.resize(p_vertices.size() / 3);
for (int i = 0; i < faces.size(); i++) {
Face &f = faces.write[i];
f.vertices[0] = rv[i * 3 + 0];
f.vertices[1] = rv[i * 3 + 1];
f.vertices[2] = rv[i * 3 + 2];
if (uvc == vc) {
f.uvs[0] = ruv[i * 3 + 0];
f.uvs[1] = ruv[i * 3 + 1];
f.uvs[2] = ruv[i * 3 + 2];
}
if (sc == vc / 3) {
f.smooth = rs[i];
} else {
f.smooth = false;
}
if (ic == vc / 3) {
f.invert = ri[i];
} else {
f.invert = false;
}
if (mc == vc / 3) {
Ref<Material> mat = rm[i];
if (mat.is_valid()) {
const Map<Ref<Material>, int>::Element *E = material_map.find(mat);
if (E) {
f.material = E->get();
} else {
f.material = material_map.size();
material_map[mat] = f.material;
}
} else {
f.material = -1;
}
}
}
materials.resize(material_map.size());
for (Map<Ref<Material>, int>::Element *E = material_map.front(); E; E = E->next()) {
materials.write[E->get()] = E->key();
}
_regen_face_aabbs();
}
void CSGBrush::_regen_face_aabbs() {
for (int i = 0; i < faces.size(); i++) {
faces.write[i].aabb.position = faces[i].vertices[0];
faces.write[i].aabb.expand_to(faces[i].vertices[1]);
faces.write[i].aabb.expand_to(faces[i].vertices[2]);
faces.write[i].aabb.grow_by(faces[i].aabb.get_longest_axis_size() * 0.001); //make it a tad bigger to avoid num precision erros
}
}
void CSGBrush::copy_from(const CSGBrush &p_brush, const Transform &p_xform) {
faces = p_brush.faces;
materials = p_brush.materials;
for (int i = 0; i < faces.size(); i++) {
for (int j = 0; j < 3; j++) {
faces.write[i].vertices[j] = p_xform.xform(p_brush.faces[i].vertices[j]);
}
}
_regen_face_aabbs();
}
////////////////////////
void CSGBrushOperation::BuildPoly::create(const CSGBrush *p_brush, int p_face, MeshMerge &mesh_merge, bool p_for_B) {
//creates the initial face that will be used for clipping against the other faces
Vector3 va[3] = {
p_brush->faces[p_face].vertices[0],
p_brush->faces[p_face].vertices[1],
p_brush->faces[p_face].vertices[2],
};
plane = Plane(va[0], va[1], va[2]);
to_world.origin = va[0];
to_world.basis.set_axis(2, plane.normal);
to_world.basis.set_axis(0, (va[1] - va[2]).normalized());
to_world.basis.set_axis(1, to_world.basis.get_axis(0).cross(to_world.basis.get_axis(2)).normalized());
to_poly = to_world.affine_inverse();
face_index = p_face;
for (int i = 0; i < 3; i++) {
Point p;
Vector3 localp = to_poly.xform(va[i]);
p.point.x = localp.x;
p.point.y = localp.y;
p.uv = p_brush->faces[p_face].uvs[i];
points.push_back(p);
///edge
Edge e;
e.points[0] = i;
e.points[1] = (i + 1) % 3;
e.outer = true;
edges.push_back(e);
}
smooth = p_brush->faces[p_face].smooth;
invert = p_brush->faces[p_face].invert;
if (p_brush->faces[p_face].material != -1) {
material = p_brush->materials[p_brush->faces[p_face].material];
}
base_edges = 3;
}
static Vector2 interpolate_uv(const Vector2 &p_vertex_a, const Vector2 &p_vertex_b, const Vector2 &p_vertex_c, const Vector2 &p_uv_a, const Vector2 &p_uv_c) {
float len_a_c = (p_vertex_c - p_vertex_a).length();
if (len_a_c < CMP_EPSILON) {
return p_uv_a;
}
float len_a_b = (p_vertex_b - p_vertex_a).length();
float c = len_a_b / len_a_c;
return p_uv_a.linear_interpolate(p_uv_c, c);
}
static Vector2 interpolate_triangle_uv(const Vector2 &p_pos, const Vector2 *p_vtx, const Vector2 *p_uv) {
if (p_pos.distance_squared_to(p_vtx[0]) < CMP_EPSILON2) {
return p_uv[0];
}
if (p_pos.distance_squared_to(p_vtx[1]) < CMP_EPSILON2) {
return p_uv[1];
}
if (p_pos.distance_squared_to(p_vtx[2]) < CMP_EPSILON2) {
return p_uv[2];
}
Vector2 v0 = p_vtx[1] - p_vtx[0];
Vector2 v1 = p_vtx[2] - p_vtx[0];
Vector2 v2 = p_pos - p_vtx[0];
float d00 = v0.dot(v0);
float d01 = v0.dot(v1);
float d11 = v1.dot(v1);
float d20 = v2.dot(v0);
float d21 = v2.dot(v1);
float denom = (d00 * d11 - d01 * d01);
if (denom == 0) {
return p_uv[0];
}
float v = (d11 * d20 - d01 * d21) / denom;
float w = (d00 * d21 - d01 * d20) / denom;
float u = 1.0f - v - w;
return p_uv[0] * u + p_uv[1] * v + p_uv[2] * w;
}
void CSGBrushOperation::BuildPoly::_clip_segment(const CSGBrush *p_brush, int p_face, const Vector2 *segment, MeshMerge &mesh_merge, bool p_for_B) {
//keep track of what was inserted
Vector<int> inserted_points;
//keep track of point indices for what was inserted, allowing reuse of points.
int segment_idx[2] = { -1, -1 };
//check if edge and poly share a vertex, of so, assign it to segment_idx
for (int i = 0; i < points.size(); i++) {
for (int j = 0; j < 2; j++) {
if (segment[j].distance_to(points[i].point) < CMP_EPSILON) {
segment_idx[j] = i;
inserted_points.push_back(i);
break;
}
}
}
//check if both segment points are shared with other vertices
if (segment_idx[0] != -1 && segment_idx[1] != -1) {
if (segment_idx[0] == segment_idx[1]) {
return; //segment was too tiny, both mapped to same point
}
bool found = false;
//check if the segment already exists
for (int i = 0; i < edges.size(); i++) {
if (
(edges[i].points[0] == segment_idx[0] && edges[i].points[1] == segment_idx[1]) ||
(edges[i].points[0] == segment_idx[1] && edges[i].points[1] == segment_idx[0])) {
found = true;
break;
}
}
if (found) {
//it does already exist, do nothing
return;
}
//directly add the new segment
Edge new_edge;
new_edge.points[0] = segment_idx[0];
new_edge.points[1] = segment_idx[1];
edges.push_back(new_edge);
return;
}
//check edge by edge against the segment points to see if intersects
for (int i = 0; i < base_edges; i++) {
//if a point is shared with one of the edge points, then this edge must not be tested, as it will result in a numerical precision error.
bool edge_valid = true;
for (int j = 0; j < 2; j++) {
if (edges[i].points[0] == segment_idx[0] || edges[i].points[1] == segment_idx[1] || edges[i].points[0] == segment_idx[1] || edges[i].points[1] == segment_idx[0]) {
edge_valid = false; //segment has this point, can't check against this
break;
}
}
if (!edge_valid) //already hit a point in this edge, so don't test it
continue;
//see if either points are within the edge isntead of crossing it
Vector2 res;
bool found = false;
int assign_segment_id = -1;
for (int j = 0; j < 2; j++) {
Vector2 edgeseg[2] = { points[edges[i].points[0]].point, points[edges[i].points[1]].point };
Vector2 closest = Geometry::get_closest_point_to_segment_2d(segment[j], edgeseg);
if (closest.distance_to(segment[j]) < CMP_EPSILON) {
//point rest of this edge
res = closest;
found = true;
assign_segment_id = j;
}
}
//test if the point crosses the edge
if (!found && Geometry::segment_intersects_segment_2d(segment[0], segment[1], points[edges[i].points[0]].point, points[edges[i].points[1]].point, &res)) {
//point does cross the edge
found = true;
}
//check whether an intersection against the segment happened
if (found) {
//It did! so first, must slice the segment
Point new_point;
new_point.point = res;
//make sure to interpolate UV too
new_point.uv = interpolate_uv(points[edges[i].points[0]].point, new_point.point, points[edges[i].points[1]].point, points[edges[i].points[0]].uv, points[edges[i].points[1]].uv);
int point_idx = points.size();
points.push_back(new_point);
//split the edge in 2
Edge new_edge;
new_edge.points[0] = edges[i].points[0];
new_edge.points[1] = point_idx;
new_edge.outer = edges[i].outer;
edges.write[i].points[0] = point_idx;
edges.insert(i, new_edge);
i++; //skip newly inserted edge
base_edges++; //will need an extra one in the base triangle
if (assign_segment_id >= 0) {
//point did split a segment, so make sure to remember this
segment_idx[assign_segment_id] = point_idx;
}
inserted_points.push_back(point_idx);
}
}
//final step: after cutting the original triangle, try to see if we can still insert
//this segment
//if already inserted two points, just use them for a segment
if (inserted_points.size() >= 2) { //should never be >2 on non-manifold geometry, but cope with error
//two points were inserted, create the new edge
Edge new_edge;
new_edge.points[0] = inserted_points[0];
new_edge.points[1] = inserted_points[1];
edges.push_back(new_edge);
return;
}
// One or no points were inserted (besides splitting), so try to see if extra points can be placed inside the triangle.
// This needs to be done here, after the previous tests were exhausted
for (int i = 0; i < 2; i++) {
if (segment_idx[i] != -1)
continue; //already assigned to something, so skip
//check whether one of the segment endpoints is inside the triangle. If it is, this points needs to be inserted
if (Geometry::is_point_in_triangle(segment[i], points[0].point, points[1].point, points[2].point)) {
Point new_point;
new_point.point = segment[i];
Vector2 point3[3] = { points[0].point, points[1].point, points[2].point };
Vector2 uv3[3] = { points[0].uv, points[1].uv, points[2].uv };
new_point.uv = interpolate_triangle_uv(new_point.point, point3, uv3);
int point_idx = points.size();
points.push_back(new_point);
inserted_points.push_back(point_idx);
}
}
//check again whether two points were inserted, if so then create the new edge
if (inserted_points.size() >= 2) { //should never be >2 on non-manifold geometry, but cope with error
Edge new_edge;
new_edge.points[0] = inserted_points[0];
new_edge.points[1] = inserted_points[1];
edges.push_back(new_edge);
}
}
void CSGBrushOperation::BuildPoly::clip(const CSGBrush *p_brush, int p_face, MeshMerge &mesh_merge, bool p_for_B) {
//Clip function.. find triangle points that will be mapped to the plane and form a segment
Vector2 segment[3]; //2D
int src_points = 0;
for (int i = 0; i < 3; i++) {
Vector3 p = p_brush->faces[p_face].vertices[i];
if (plane.has_point(p)) {
Vector3 pp = plane.project(p);
pp = to_poly.xform(pp);
segment[src_points++] = Vector2(pp.x, pp.y);
} else {
Vector3 q = p_brush->faces[p_face].vertices[(i + 1) % 3];
if (plane.has_point(q))
continue; //next point is in plane, will be added eventually
if (plane.is_point_over(p) == plane.is_point_over(q))
continue; // both on same side of the plane, don't add
Vector3 res;
if (plane.intersects_segment(p, q, &res)) {
res = to_poly.xform(res);
segment[src_points++] = Vector2(res.x, res.y);
}
}
}
//all above or all below, nothing to do. Should not happen though since a precheck was done before.
if (src_points == 0)
return;
//just one point in plane is not worth doing anything
if (src_points == 1)
return;
//transform A points to 2D
if (segment[0].distance_to(segment[1]) < CMP_EPSILON)
return; //too small
_clip_segment(p_brush, p_face, segment, mesh_merge, p_for_B);
}
void CSGBrushOperation::_collision_callback(const CSGBrush *A, int p_face_a, Map<int, BuildPoly> &build_polys_a, const CSGBrush *B, int p_face_b, Map<int, BuildPoly> &build_polys_b, MeshMerge &mesh_merge) {
//construct a frame of reference for both transforms, in order to do intersection test
Vector3 va[3] = {
A->faces[p_face_a].vertices[0],
A->faces[p_face_a].vertices[1],
A->faces[p_face_a].vertices[2],
};
Vector3 vb[3] = {
B->faces[p_face_b].vertices[0],
B->faces[p_face_b].vertices[1],
B->faces[p_face_b].vertices[2],
};
{
//check if either is a degenerate
if (va[0].distance_to(va[1]) < CMP_EPSILON || va[0].distance_to(va[2]) < CMP_EPSILON || va[1].distance_to(va[2]) < CMP_EPSILON)
return;
if (vb[0].distance_to(vb[1]) < CMP_EPSILON || vb[0].distance_to(vb[2]) < CMP_EPSILON || vb[1].distance_to(vb[2]) < CMP_EPSILON)
return;
}
{
//check if points are the same
int equal_count = 0;
for (int i = 0; i < 3; i++) {
for (int j = 0; j < 3; j++) {
if (va[i].distance_to(vb[j]) < mesh_merge.vertex_snap) {
equal_count++;
break;
}
}
}
//if 2 or 3 points are the same, there is no point in doing anything. They can't
//be clipped either, so add both.
if (equal_count == 2 || equal_count == 3) {
return;
}
}
// do a quick pre-check for no-intersection using the SAT theorem
{
//b under or over a plane
int over_count = 0, in_plane_count = 0, under_count = 0;
Plane plane_a(va[0], va[1], va[2]);
if (plane_a.normal == Vector3()) {
return; //degenerate
}
for (int i = 0; i < 3; i++) {
if (plane_a.has_point(vb[i]))
in_plane_count++;
else if (plane_a.is_point_over(vb[i]))
over_count++;
else
under_count++;
}
if (over_count == 0 || under_count == 0)
return; //no intersection, something needs to be under AND over
//a under or over b plane
over_count = 0;
under_count = 0;
in_plane_count = 0;
Plane plane_b(vb[0], vb[1], vb[2]);
if (plane_b.normal == Vector3())
return; //degenerate
for (int i = 0; i < 3; i++) {
if (plane_b.has_point(va[i]))
in_plane_count++;
else if (plane_b.is_point_over(va[i]))
over_count++;
else
under_count++;
}
if (over_count == 0 || under_count == 0)
return; //no intersection, something needs to be under AND over
//edge pairs (cross product combinations), see SAT theorem
for (int i = 0; i < 3; i++) {
Vector3 axis_a = (va[i] - va[(i + 1) % 3]).normalized();
for (int j = 0; j < 3; j++) {
Vector3 axis_b = (vb[j] - vb[(j + 1) % 3]).normalized();
Vector3 sep_axis = axis_a.cross(axis_b);
if (sep_axis == Vector3())
continue; //colineal
sep_axis.normalize();
real_t min_a = 1e20, max_a = -1e20;
real_t min_b = 1e20, max_b = -1e20;
for (int k = 0; k < 3; k++) {
real_t d = sep_axis.dot(va[k]);
min_a = MIN(min_a, d);
max_a = MAX(max_a, d);
d = sep_axis.dot(vb[k]);
min_b = MIN(min_b, d);
max_b = MAX(max_b, d);
}
min_b -= (max_a - min_a) * 0.5;
max_b += (max_a - min_a) * 0.5;
real_t dmin = min_b - (min_a + max_a) * 0.5;
real_t dmax = max_b - (min_a + max_a) * 0.5;
if (dmin > CMP_EPSILON || dmax < -CMP_EPSILON) {
return; //does not contain zero, so they don't overlap
}
}
}
}
//if we are still here, it means they most likely intersect, so create BuildPolys if they don't exist
BuildPoly *poly_a = NULL;
if (!build_polys_a.has(p_face_a)) {
BuildPoly bp;
bp.create(A, p_face_a, mesh_merge, false);
build_polys_a[p_face_a] = bp;
}
poly_a = &build_polys_a[p_face_a];
BuildPoly *poly_b = NULL;
if (!build_polys_b.has(p_face_b)) {
BuildPoly bp;
bp.create(B, p_face_b, mesh_merge, true);
build_polys_b[p_face_b] = bp;
}
poly_b = &build_polys_b[p_face_b];
//clip each other, this could be improved by using vertex unique IDs (more vertices may be shared instead of using snap)
poly_a->clip(B, p_face_b, mesh_merge, false);
poly_b->clip(A, p_face_a, mesh_merge, true);
}
void CSGBrushOperation::_add_poly_points(const BuildPoly &p_poly, int p_edge, int p_from_point, int p_to_point, const Vector<Vector<int> > &vertex_process, Vector<bool> &edge_process, Vector<PolyPoints> &r_poly) {
//this function follows the polygon points counter clockwise and adds them. It creates lists of unique polygons
//every time an unused edge is found, it's pushed to a stack and continues from there.
List<EdgeSort> edge_stack;
{
EdgeSort es;
es.angle = 0; //wont be checked here
es.edge = p_edge;
es.prev_point = p_from_point;
es.edge_point = p_to_point;
edge_stack.push_back(es);
}
//attempt to empty the stack.
while (edge_stack.size()) {
EdgeSort e = edge_stack.front()->get();
edge_stack.pop_front();
if (edge_process[e.edge]) {
//nothing to do here
continue;
}
Vector<int> points;
points.push_back(e.prev_point);
int prev_point = e.prev_point;
int to_point = e.edge_point;
int current_edge = e.edge;
edge_process.write[e.edge] = true; //mark as processed
int limit = p_poly.points.size() * 4; //avoid infinite recursion
while (to_point != e.prev_point && limit) {
Vector2 segment[2] = { p_poly.points[prev_point].point, p_poly.points[to_point].point };
//construct a basis transform from the segment, which will be used to check the angle
Transform2D t2d;
t2d[0] = (segment[1] - segment[0]).normalized(); //use as Y
t2d[1] = Vector2(-t2d[0].y, t2d[0].x); // use as tangent
t2d[2] = segment[1]; //origin
if (t2d.basis_determinant() == 0)
break; //abort poly
t2d.affine_invert();
//push all edges found here, they will be sorted by minimum angle later.
Vector<EdgeSort> next_edges;
for (int i = 0; i < vertex_process[to_point].size(); i++) {
int edge = vertex_process[to_point][i];
int opposite_point = p_poly.edges[edge].points[0] == to_point ? p_poly.edges[edge].points[1] : p_poly.edges[edge].points[0];
if (opposite_point == prev_point)
continue; //not going back
EdgeSort e;
Vector2 local_vec = t2d.xform(p_poly.points[opposite_point].point);
e.angle = -local_vec.angle(); //negate so we can sort by minimum angle
e.edge = edge;
e.edge_point = opposite_point;
e.prev_point = to_point;
next_edges.push_back(e);
}
//finally, sort by minimum angle
next_edges.sort();
int next_point = -1;
int next_edge = -1;
for (int i = 0; i < next_edges.size(); i++) {
if (i == 0) {
//minimum angle found is the next point
next_point = next_edges[i].edge_point;
next_edge = next_edges[i].edge;
} else {
//the rest are pushed to the stack IF they were not processed yet.
if (!edge_process[next_edges[i].edge]) {
edge_stack.push_back(next_edges[i]);
}
}
}
if (next_edge == -1) {
//did not find anything, may be a dead-end edge (this should normally not happen)
//just flip the direction and go back
next_point = prev_point;
next_edge = current_edge;
}
points.push_back(to_point);
prev_point = to_point;
to_point = next_point;
edge_process.write[next_edge] = true; //mark this edge as processed
current_edge = next_edge;
limit--;
}
//if more than 2 points were added to the polygon, add it to the list of polygons.
if (points.size() > 2) {
PolyPoints pp;
pp.points = points;
r_poly.push_back(pp);
}
}
}
void CSGBrushOperation::_add_poly_outline(const BuildPoly &p_poly, int p_from_point, int p_to_point, const Vector<Vector<int> > &vertex_process, Vector<int> &r_outline) {
//this is the opposite of the function above. It adds polygon outlines instead.
//this is used for triangulating holes.
//no stack is used here because only the bigger outline is interesting.
r_outline.push_back(p_from_point);
int prev_point = p_from_point;
int to_point = p_to_point;
int limit = p_poly.points.size() * 4; //avoid infinite recursion
while (to_point != p_from_point && limit) {
Vector2 segment[2] = { p_poly.points[prev_point].point, p_poly.points[to_point].point };
//again create a transform to compute the angle.
Transform2D t2d;
t2d[0] = (segment[1] - segment[0]).normalized(); //use as Y
t2d[1] = Vector2(-t2d[0].y, t2d[0].x); // use as tangent
t2d[2] = segment[1]; //origin
if (t2d.basis_determinant() == 0)
break; //abort poly
t2d.affine_invert();
float max_angle = 0;
int next_point_angle = -1;
for (int i = 0; i < vertex_process[to_point].size(); i++) {
int edge = vertex_process[to_point][i];
int opposite_point = p_poly.edges[edge].points[0] == to_point ? p_poly.edges[edge].points[1] : p_poly.edges[edge].points[0];
if (opposite_point == prev_point)
continue; //not going back
float angle = -t2d.xform(p_poly.points[opposite_point].point).angle();
if (next_point_angle == -1 || angle > max_angle) { //same as before but use greater to check.
max_angle = angle;
next_point_angle = opposite_point;
}
}
if (next_point_angle == -1) {
//go back because no route found
next_point_angle = prev_point;
}
r_outline.push_back(to_point);
prev_point = to_point;
to_point = next_point_angle;
limit--;
}
}
void CSGBrushOperation::_merge_poly(MeshMerge &mesh, int p_face_idx, const BuildPoly &p_poly, bool p_from_b) {
//finally, merge the 2D polygon back to 3D
Vector<Vector<int> > vertex_process;
Vector<bool> edge_process;
vertex_process.resize(p_poly.points.size());
edge_process.resize(p_poly.edges.size());
//none processed by default
for (int i = 0; i < edge_process.size(); i++) {
edge_process.write[i] = false;
}
//put edges in points, so points can go through them
for (int i = 0; i < p_poly.edges.size(); i++) {
vertex_process.write[p_poly.edges[i].points[0]].push_back(i);
vertex_process.write[p_poly.edges[i].points[1]].push_back(i);
}
Vector<PolyPoints> polys;
//process points that were not processed
for (int i = 0; i < edge_process.size(); i++) {
if (edge_process[i])
continue; //already processed
int intersect_poly = -1;
if (i > 0) {
//this is disconnected, so it's clearly a hole. lets find where it belongs
Vector2 ref_point = p_poly.points[p_poly.edges[i].points[0]].point;
for (int j = 0; j < polys.size(); j++) {
//find a point outside poly
Vector2 out_point(-1e20, -1e20);
const PolyPoints &pp = polys[j];
for (int k = 0; k < pp.points.size(); k++) {
Vector2 p = p_poly.points[pp.points[k]].point;
out_point.x = MAX(out_point.x, p.x);
out_point.y = MAX(out_point.y, p.y);
}
out_point += Vector2(0.12341234, 0.4123412); // move to a random place to avoid direct edge-point chances
int intersections = 0;
for (int k = 0; k < pp.points.size(); k++) {
Vector2 p1 = p_poly.points[pp.points[k]].point;
Vector2 p2 = p_poly.points[pp.points[(k + 1) % pp.points.size()]].point;
if (Geometry::segment_intersects_segment_2d(ref_point, out_point, p1, p2, NULL)) {
intersections++;
}
}
if (intersections % 2 == 1) {
//hole is inside this poly
intersect_poly = j;
break;
}
}
}
if (intersect_poly != -1) {
//must add this as a hole
Vector<int> outline;
_add_poly_outline(p_poly, p_poly.edges[i].points[0], p_poly.edges[i].points[1], vertex_process, outline);
if (outline.size() > 1) {
polys.write[intersect_poly].holes.push_back(outline);
}
}
_add_poly_points(p_poly, i, p_poly.edges[i].points[0], p_poly.edges[i].points[1], vertex_process, edge_process, polys);
}
//get rid of holes, not the most optiomal way, but also not a common case at all to be inoptimal
for (int i = 0; i < polys.size(); i++) {
if (!polys[i].holes.size())
continue;
//repeat until no more holes are left to be merged
while (polys[i].holes.size()) {
//try to merge a hole with the outline
bool added_hole = false;
for (int j = 0; j < polys[i].holes.size(); j++) {
//try hole vertices
int with_outline_vertex = -1;
int from_hole_vertex = -1;
bool found = false;
for (int k = 0; k < polys[i].holes[j].size(); k++) {
int from_idx = polys[i].holes[j][k];
Vector2 from = p_poly.points[from_idx].point;
//try a segment from hole vertex to outline vertices
from_hole_vertex = k;
bool valid = true;
for (int l = 0; l < polys[i].points.size(); l++) {
int to_idx = polys[i].points[l];
Vector2 to = p_poly.points[to_idx].point;
with_outline_vertex = l;
//try against outline (other points) first
valid = true;
for (int m = 0; m < polys[i].points.size(); m++) {
int m_next = (m + 1) % polys[i].points.size();
if (m == with_outline_vertex || m_next == with_outline_vertex) //do not test with edges that share this point
continue;
if (Geometry::segment_intersects_segment_2d(from, to, p_poly.points[polys[i].points[m]].point, p_poly.points[polys[i].points[m_next]].point, NULL)) {
valid = false;
break;
}
}
if (!valid)
continue;
//try against all holes including self
for (int m = 0; m < polys[i].holes.size(); m++) {
for (int n = 0; n < polys[i].holes[m].size(); n++) {
int n_next = (n + 1) % polys[i].holes[m].size();
if (m == j && (n == from_hole_vertex || n_next == from_hole_vertex)) //contains vertex being tested from current hole, skip
continue;
if (Geometry::segment_intersects_segment_2d(from, to, p_poly.points[polys[i].holes[m][n]].point, p_poly.points[polys[i].holes[m][n_next]].point, NULL)) {
valid = false;
break;
}
}
if (!valid)
break;
}
if (valid) //all passed! exit loop
break;
else
continue; //something went wrong, go on.
}
if (valid) {
found = true; //if in the end this was valid, use it
break;
}
}
if (found) {
//hook this hole with outline, and remove from list of holes
//duplicate point
int insert_at = with_outline_vertex;
polys.write[i].points.insert(insert_at, polys[i].points[insert_at]);
insert_at++;
//insert all others, outline should be backwards (must check)
int holesize = polys[i].holes[j].size();
for (int k = 0; k <= holesize; k++) {
int idx = (from_hole_vertex + k) % holesize;
polys.write[i].points.insert(insert_at, polys[i].holes[j][idx]);
insert_at++;
}
added_hole = true;
polys.write[i].holes.remove(j);
break; //got rid of hole, break and continue
}
}
ERR_BREAK(!added_hole);
}
}
//triangulate polygons
for (int i = 0; i < polys.size(); i++) {
Vector<Vector2> vertices;
vertices.resize(polys[i].points.size());
for (int j = 0; j < vertices.size(); j++) {
vertices.write[j] = p_poly.points[polys[i].points[j]].point;
}
Vector<int> indices = Geometry::triangulate_polygon(vertices);
for (int j = 0; j < indices.size(); j += 3) {
//obtain the vertex
Vector3 face[3];
Vector2 uv[3];
float cp = Geometry::vec2_cross(p_poly.points[polys[i].points[indices[j + 0]]].point, p_poly.points[polys[i].points[indices[j + 1]]].point, p_poly.points[polys[i].points[indices[j + 2]]].point);
if (Math::abs(cp) < CMP_EPSILON)
continue;
for (int k = 0; k < 3; k++) {
Vector2 p = p_poly.points[polys[i].points[indices[j + k]]].point;
face[k] = p_poly.to_world.xform(Vector3(p.x, p.y, 0));
uv[k] = p_poly.points[polys[i].points[indices[j + k]]].uv;
}
mesh.add_face(face[0], face[1], face[2], uv[0], uv[1], uv[2], p_poly.smooth, p_poly.invert, p_poly.material, p_from_b);
}
}
}
//use a limit to speed up bvh and limit the depth
#define BVH_LIMIT 8
int CSGBrushOperation::MeshMerge::_create_bvh(BVH *p_bvh, BVH **p_bb, int p_from, int p_size, int p_depth, int &max_depth, int &max_alloc) {
if (p_depth > max_depth) {
max_depth = p_depth;
}
if (p_size <= BVH_LIMIT) {
for (int i = 0; i < p_size - 1; i++) {
p_bb[p_from + i]->next = p_bb[p_from + i + 1] - p_bvh;
}
return p_bb[p_from] - p_bvh;
} else if (p_size == 0) {
return -1;
}
AABB aabb;
aabb = p_bb[p_from]->aabb;
for (int i = 1; i < p_size; i++) {
aabb.merge_with(p_bb[p_from + i]->aabb);
}
int li = aabb.get_longest_axis_index();
switch (li) {
case Vector3::AXIS_X: {
SortArray<BVH *, BVHCmpX> sort_x;
sort_x.nth_element(0, p_size, p_size / 2, &p_bb[p_from]);
//sort_x.sort(&p_bb[p_from],p_size);
} break;
case Vector3::AXIS_Y: {
SortArray<BVH *, BVHCmpY> sort_y;
sort_y.nth_element(0, p_size, p_size / 2, &p_bb[p_from]);
//sort_y.sort(&p_bb[p_from],p_size);
} break;
case Vector3::AXIS_Z: {
SortArray<BVH *, BVHCmpZ> sort_z;
sort_z.nth_element(0, p_size, p_size / 2, &p_bb[p_from]);
//sort_z.sort(&p_bb[p_from],p_size);
} break;
}
int left = _create_bvh(p_bvh, p_bb, p_from, p_size / 2, p_depth + 1, max_depth, max_alloc);
int right = _create_bvh(p_bvh, p_bb, p_from + p_size / 2, p_size - p_size / 2, p_depth + 1, max_depth, max_alloc);
int index = max_alloc++;
BVH *_new = &p_bvh[index];
_new->aabb = aabb;
_new->center = aabb.position + aabb.size * 0.5;
_new->face = -1;
_new->left = left;
_new->right = right;
_new->next = -1;
return index;
}
int CSGBrushOperation::MeshMerge::_bvh_count_intersections(BVH *bvhptr, int p_max_depth, int p_bvh_first, const Vector3 &p_begin, const Vector3 &p_end, int p_exclude) const {
uint32_t *stack = (uint32_t *)alloca(sizeof(int) * p_max_depth);
enum {
TEST_AABB_BIT = 0,
VISIT_LEFT_BIT = 1,
VISIT_RIGHT_BIT = 2,
VISIT_DONE_BIT = 3,
VISITED_BIT_SHIFT = 29,
NODE_IDX_MASK = (1 << VISITED_BIT_SHIFT) - 1,
VISITED_BIT_MASK = ~NODE_IDX_MASK,
};
int intersections = 0;
int level = 0;
const Vector3 *vertexptr = points.ptr();
const Face *facesptr = faces.ptr();
AABB segment_aabb;
segment_aabb.position = p_begin;
segment_aabb.expand_to(p_end);
int pos = p_bvh_first;
stack[0] = pos;
while (true) {
uint32_t node = stack[level] & NODE_IDX_MASK;
const BVH &b = bvhptr[node];
bool done = false;
switch (stack[level] >> VISITED_BIT_SHIFT) {
case TEST_AABB_BIT: {
if (b.face >= 0) {
const BVH *bp = &b;
while (bp) {
bool valid = segment_aabb.intersects(bp->aabb) && bp->aabb.intersects_segment(p_begin, p_end);
if (valid && p_exclude != bp->face) {
const Face &s = facesptr[bp->face];
Face3 f3(vertexptr[s.points[0]], vertexptr[s.points[1]], vertexptr[s.points[2]]);
Vector3 res;
if (f3.intersects_segment(p_begin, p_end, &res)) {
intersections++;
}
}
if (bp->next != -1) {
bp = &bvhptr[bp->next];
} else {
bp = NULL;
}
}
stack[level] = (VISIT_DONE_BIT << VISITED_BIT_SHIFT) | node;
} else {
bool valid = segment_aabb.intersects(b.aabb) && b.aabb.intersects_segment(p_begin, p_end);
if (!valid) {
stack[level] = (VISIT_DONE_BIT << VISITED_BIT_SHIFT) | node;
} else {
stack[level] = (VISIT_LEFT_BIT << VISITED_BIT_SHIFT) | node;
}
}
continue;
}
case VISIT_LEFT_BIT: {
stack[level] = (VISIT_RIGHT_BIT << VISITED_BIT_SHIFT) | node;
stack[level + 1] = b.left | TEST_AABB_BIT;
level++;
continue;
}
case VISIT_RIGHT_BIT: {
stack[level] = (VISIT_DONE_BIT << VISITED_BIT_SHIFT) | node;
stack[level + 1] = b.right | TEST_AABB_BIT;
level++;
continue;
}
case VISIT_DONE_BIT: {
if (level == 0) {
done = true;
break;
} else
level--;
continue;
}
}
if (done)
break;
}
return intersections;
}
void CSGBrushOperation::MeshMerge::mark_inside_faces() {
// mark faces that are inside. This helps later do the boolean ops when merging.
// this approach is very brute force (with a bunch of optimizatios, such as BVH and pre AABB intersection test)
AABB aabb;
for (int i = 0; i < points.size(); i++) {
if (i == 0) {
aabb.position = points[i];
} else {
aabb.expand_to(points[i]);
}
}
float max_distance = aabb.size.length() * 1.2;
Vector<BVH> bvhvec;
bvhvec.resize(faces.size() * 3); //will never be larger than this (todo make better)
BVH *bvh = bvhvec.ptrw();
AABB faces_a;
AABB faces_b;
bool first_a = true;
bool first_b = true;
for (int i = 0; i < faces.size(); i++) {
bvh[i].left = -1;
bvh[i].right = -1;
bvh[i].face = i;
bvh[i].aabb.position = points[faces[i].points[0]];
bvh[i].aabb.expand_to(points[faces[i].points[1]]);
bvh[i].aabb.expand_to(points[faces[i].points[2]]);
bvh[i].center = bvh[i].aabb.position + bvh[i].aabb.size * 0.5;
bvh[i].next = -1;
if (faces[i].from_b) {
if (first_b) {
faces_b = bvh[i].aabb;
first_b = false;
} else {
faces_b.merge_with(bvh[i].aabb);
}
} else {
if (first_a) {
faces_a = bvh[i].aabb;
first_a = false;
} else {
faces_a.merge_with(bvh[i].aabb);
}
}
}
AABB intersection_aabb = faces_a.intersection(faces_b);
intersection_aabb.grow_by(intersection_aabb.get_longest_axis_size() * 0.01); //grow a little, avoid numerical error
if (intersection_aabb.size == Vector3()) //AABB do not intersect, so neither do shapes.
return;
Vector<BVH *> bvhtrvec;
bvhtrvec.resize(faces.size());
BVH **bvhptr = bvhtrvec.ptrw();
for (int i = 0; i < faces.size(); i++) {
bvhptr[i] = &bvh[i];
}
int max_depth = 0;
int max_alloc = faces.size();
_create_bvh(bvh, bvhptr, 0, faces.size(), 1, max_depth, max_alloc);
for (int i = 0; i < faces.size(); i++) {
if (!intersection_aabb.intersects(bvh[i].aabb))
continue; //not in AABB intersection, so not in face intersection
Vector3 center = points[faces[i].points[0]];
center += points[faces[i].points[1]];
center += points[faces[i].points[2]];
center /= 3.0;
Plane plane(points[faces[i].points[0]], points[faces[i].points[1]], points[faces[i].points[2]]);
Vector3 target = center + plane.normal * max_distance + Vector3(0.0001234, 0.000512, 0.00013423); //reduce chance of edge hits by doing a small increment
int intersections = _bvh_count_intersections(bvh, max_depth, max_alloc - 1, center, target, i);
if (intersections & 1) {
faces.write[i].inside = true;
}
}
}
void CSGBrushOperation::MeshMerge::add_face(const Vector3 &p_a, const Vector3 &p_b, const Vector3 &p_c, const Vector2 &p_uv_a, const Vector2 &p_uv_b, const Vector2 &p_uv_c, bool p_smooth, bool p_invert, const Ref<Material> &p_material, bool p_from_b) {
Vector3 src_points[3] = { p_a, p_b, p_c };
Vector2 src_uvs[3] = { p_uv_a, p_uv_b, p_uv_c };
int indices[3];
for (int i = 0; i < 3; i++) {
VertexKey vk;
vk.x = int((double(src_points[i].x) + double(vertex_snap) * 0.31234) / double(vertex_snap));
vk.y = int((double(src_points[i].y) + double(vertex_snap) * 0.31234) / double(vertex_snap));
vk.z = int((double(src_points[i].z) + double(vertex_snap) * 0.31234) / double(vertex_snap));
int res;
if (snap_cache.lookup(vk, res)) {
indices[i] = res;
} else {
indices[i] = points.size();
points.push_back(src_points[i]);
snap_cache.set(vk, indices[i]);
}
}
if (indices[0] == indices[2] || indices[0] == indices[1] || indices[1] == indices[2])
return; //not adding degenerate
MeshMerge::Face face;
face.from_b = p_from_b;
face.inside = false;
face.smooth = p_smooth;
face.invert = p_invert;
if (p_material.is_valid()) {
if (!materials.has(p_material)) {
face.material_idx = materials.size();
materials[p_material] = face.material_idx;
} else {
face.material_idx = materials[p_material];
}
} else {
face.material_idx = -1;
}
for (int k = 0; k < 3; k++) {
face.points[k] = indices[k];
face.uvs[k] = src_uvs[k];
;
}
faces.push_back(face);
}
void CSGBrushOperation::merge_brushes(Operation p_operation, const CSGBrush &p_A, const CSGBrush &p_B, CSGBrush &result, float p_snap) {
CallbackData cd;
cd.self = this;
cd.A = &p_A;
cd.B = &p_B;
MeshMerge mesh_merge;
mesh_merge.vertex_snap = p_snap;
//check intersections between faces. Use AABB to speed up precheck
//this generates list of buildpolys and clips them.
//this was originally BVH optimized, but its not really worth it.
for (int i = 0; i < p_A.faces.size(); i++) {
cd.face_a = i;
for (int j = 0; j < p_B.faces.size(); j++) {
if (p_A.faces[i].aabb.intersects(p_B.faces[j].aabb)) {
_collision_callback(&p_A, i, cd.build_polys_A, &p_B, j, cd.build_polys_B, mesh_merge);
}
}
}
//merge the already cliped polys back to 3D
for (Map<int, BuildPoly>::Element *E = cd.build_polys_A.front(); E; E = E->next()) {
_merge_poly(mesh_merge, E->key(), E->get(), false);
}
for (Map<int, BuildPoly>::Element *E = cd.build_polys_B.front(); E; E = E->next()) {
_merge_poly(mesh_merge, E->key(), E->get(), true);
}
//merge the non clipped faces back
for (int i = 0; i < p_A.faces.size(); i++) {
if (cd.build_polys_A.has(i))
continue; //made from buildpoly, skipping
Vector3 points[3];
Vector2 uvs[3];
for (int j = 0; j < 3; j++) {
points[j] = p_A.faces[i].vertices[j];
uvs[j] = p_A.faces[i].uvs[j];
}
Ref<Material> material;
if (p_A.faces[i].material != -1) {
material = p_A.materials[p_A.faces[i].material];
}
mesh_merge.add_face(points[0], points[1], points[2], uvs[0], uvs[1], uvs[2], p_A.faces[i].smooth, p_A.faces[i].invert, material, false);
}
for (int i = 0; i < p_B.faces.size(); i++) {
if (cd.build_polys_B.has(i))
continue; //made from buildpoly, skipping
Vector3 points[3];
Vector2 uvs[3];
for (int j = 0; j < 3; j++) {
points[j] = p_B.faces[i].vertices[j];
uvs[j] = p_B.faces[i].uvs[j];
}
Ref<Material> material;
if (p_B.faces[i].material != -1) {
material = p_B.materials[p_B.faces[i].material];
}
mesh_merge.add_face(points[0], points[1], points[2], uvs[0], uvs[1], uvs[2], p_B.faces[i].smooth, p_B.faces[i].invert, material, true);
}
//mark faces that ended up inside the intersection
mesh_merge.mark_inside_faces();
//regen new brush to start filling it again
result.clear();
switch (p_operation) {
case OPERATION_UNION: {
int outside_count = 0;
for (int i = 0; i < mesh_merge.faces.size(); i++) {
if (mesh_merge.faces[i].inside)
continue;
outside_count++;
}
result.faces.resize(outside_count);
outside_count = 0;
for (int i = 0; i < mesh_merge.faces.size(); i++) {
if (mesh_merge.faces[i].inside)
continue;
for (int j = 0; j < 3; j++) {
result.faces.write[outside_count].vertices[j] = mesh_merge.points[mesh_merge.faces[i].points[j]];
result.faces.write[outside_count].uvs[j] = mesh_merge.faces[i].uvs[j];
}
result.faces.write[outside_count].smooth = mesh_merge.faces[i].smooth;
result.faces.write[outside_count].invert = mesh_merge.faces[i].invert;
result.faces.write[outside_count].material = mesh_merge.faces[i].material_idx;
outside_count++;
}
result._regen_face_aabbs();
} break;
case OPERATION_INTERSECTION: {
int inside_count = 0;
for (int i = 0; i < mesh_merge.faces.size(); i++) {
if (!mesh_merge.faces[i].inside)
continue;
inside_count++;
}
result.faces.resize(inside_count);
inside_count = 0;
for (int i = 0; i < mesh_merge.faces.size(); i++) {
if (!mesh_merge.faces[i].inside)
continue;
for (int j = 0; j < 3; j++) {
result.faces.write[inside_count].vertices[j] = mesh_merge.points[mesh_merge.faces[i].points[j]];
result.faces.write[inside_count].uvs[j] = mesh_merge.faces[i].uvs[j];
}
result.faces.write[inside_count].smooth = mesh_merge.faces[i].smooth;
result.faces.write[inside_count].invert = mesh_merge.faces[i].invert;
result.faces.write[inside_count].material = mesh_merge.faces[i].material_idx;
inside_count++;
}
result._regen_face_aabbs();
} break;
case OPERATION_SUBSTRACTION: {
int face_count = 0;
for (int i = 0; i < mesh_merge.faces.size(); i++) {
if (mesh_merge.faces[i].from_b && !mesh_merge.faces[i].inside)
continue;
if (!mesh_merge.faces[i].from_b && mesh_merge.faces[i].inside)
continue;
face_count++;
}
result.faces.resize(face_count);
face_count = 0;
for (int i = 0; i < mesh_merge.faces.size(); i++) {
if (mesh_merge.faces[i].from_b && !mesh_merge.faces[i].inside)
continue;
if (!mesh_merge.faces[i].from_b && mesh_merge.faces[i].inside)
continue;
for (int j = 0; j < 3; j++) {
result.faces.write[face_count].vertices[j] = mesh_merge.points[mesh_merge.faces[i].points[j]];
result.faces.write[face_count].uvs[j] = mesh_merge.faces[i].uvs[j];
}
if (mesh_merge.faces[i].from_b) {
//invert facing of insides of B
SWAP(result.faces.write[face_count].vertices[1], result.faces.write[face_count].vertices[2]);
SWAP(result.faces.write[face_count].uvs[1], result.faces.write[face_count].uvs[2]);
}
result.faces.write[face_count].smooth = mesh_merge.faces[i].smooth;
result.faces.write[face_count].invert = mesh_merge.faces[i].invert;
result.faces.write[face_count].material = mesh_merge.faces[i].material_idx;
face_count++;
}
result._regen_face_aabbs();
} break;
}
//updatelist of materials
result.materials.resize(mesh_merge.materials.size());
for (const Map<Ref<Material>, int>::Element *E = mesh_merge.materials.front(); E; E = E->next()) {
result.materials.write[E->get()] = E->key();
}
}
|