summaryrefslogtreecommitdiff
path: root/main/main_timer_sync.cpp
blob: 94e62bea97ccaa197735fde6fc8a7ba36b32b4e8 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
/*************************************************************************/
/*  main_timer_sync.cpp                                                  */
/*************************************************************************/
/*                       This file is part of:                           */
/*                           GODOT ENGINE                                */
/*                      https://godotengine.org                          */
/*************************************************************************/
/* Copyright (c) 2007-2021 Juan Linietsky, Ariel Manzur.                 */
/* Copyright (c) 2014-2021 Godot Engine contributors (cf. AUTHORS.md).   */
/*                                                                       */
/* Permission is hereby granted, free of charge, to any person obtaining */
/* a copy of this software and associated documentation files (the       */
/* "Software"), to deal in the Software without restriction, including   */
/* without limitation the rights to use, copy, modify, merge, publish,   */
/* distribute, sublicense, and/or sell copies of the Software, and to    */
/* permit persons to whom the Software is furnished to do so, subject to */
/* the following conditions:                                             */
/*                                                                       */
/* The above copyright notice and this permission notice shall be        */
/* included in all copies or substantial portions of the Software.       */
/*                                                                       */
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,       */
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF    */
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY  */
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,  */
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE     */
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.                */
/*************************************************************************/

#include "main_timer_sync.h"

void MainFrameTime::clamp_process_step(double min_process_step, double max_process_step) {
	if (process_step < min_process_step) {
		process_step = min_process_step;
	} else if (process_step > max_process_step) {
		process_step = max_process_step;
	}
}

/////////////////////////////////

// returns the fraction of p_physics_step required for the timer to overshoot
// before advance_core considers changing the physics_steps return from
// the typical values as defined by typical_physics_steps
double MainTimerSync::get_physics_jitter_fix() {
	return Engine::get_singleton()->get_physics_jitter_fix();
}

// gets our best bet for the average number of physics steps per render frame
// return value: number of frames back this data is consistent
int MainTimerSync::get_average_physics_steps(double &p_min, double &p_max) {
	p_min = typical_physics_steps[0];
	p_max = p_min + 1;

	for (int i = 1; i < CONTROL_STEPS; ++i) {
		const double typical_lower = typical_physics_steps[i];
		const double current_min = typical_lower / (i + 1);
		if (current_min > p_max) {
			return i; // bail out of further restrictions would void the interval
		} else if (current_min > p_min) {
			p_min = current_min;
		}
		const double current_max = (typical_lower + 1) / (i + 1);
		if (current_max < p_min) {
			return i;
		} else if (current_max < p_max) {
			p_max = current_max;
		}
	}

	return CONTROL_STEPS;
}

// advance physics clock by p_process_step, return appropriate number of steps to simulate
MainFrameTime MainTimerSync::advance_core(double p_physics_step, int p_physics_fps, double p_process_step) {
	MainFrameTime ret;

	ret.process_step = p_process_step;

	// simple determination of number of physics iteration
	time_accum += ret.process_step;
	ret.physics_steps = floor(time_accum * p_physics_fps);

	int min_typical_steps = typical_physics_steps[0];
	int max_typical_steps = min_typical_steps + 1;

	// given the past recorded steps and typical steps to match, calculate bounds for this
	// step to be typical
	bool update_typical = false;

	for (int i = 0; i < CONTROL_STEPS - 1; ++i) {
		int steps_left_to_match_typical = typical_physics_steps[i + 1] - accumulated_physics_steps[i];
		if (steps_left_to_match_typical > max_typical_steps ||
				steps_left_to_match_typical + 1 < min_typical_steps) {
			update_typical = true;
			break;
		}

		if (steps_left_to_match_typical > min_typical_steps) {
			min_typical_steps = steps_left_to_match_typical;
		}
		if (steps_left_to_match_typical + 1 < max_typical_steps) {
			max_typical_steps = steps_left_to_match_typical + 1;
		}
	}

	// try to keep it consistent with previous iterations
	if (ret.physics_steps < min_typical_steps) {
		const int max_possible_steps = floor((time_accum)*p_physics_fps + get_physics_jitter_fix());
		if (max_possible_steps < min_typical_steps) {
			ret.physics_steps = max_possible_steps;
			update_typical = true;
		} else {
			ret.physics_steps = min_typical_steps;
		}
	} else if (ret.physics_steps > max_typical_steps) {
		const int min_possible_steps = floor((time_accum)*p_physics_fps - get_physics_jitter_fix());
		if (min_possible_steps > max_typical_steps) {
			ret.physics_steps = min_possible_steps;
			update_typical = true;
		} else {
			ret.physics_steps = max_typical_steps;
		}
	}

	time_accum -= ret.physics_steps * p_physics_step;

	// keep track of accumulated step counts
	for (int i = CONTROL_STEPS - 2; i >= 0; --i) {
		accumulated_physics_steps[i + 1] = accumulated_physics_steps[i] + ret.physics_steps;
	}
	accumulated_physics_steps[0] = ret.physics_steps;

	if (update_typical) {
		for (int i = CONTROL_STEPS - 1; i >= 0; --i) {
			if (typical_physics_steps[i] > accumulated_physics_steps[i]) {
				typical_physics_steps[i] = accumulated_physics_steps[i];
			} else if (typical_physics_steps[i] < accumulated_physics_steps[i] - 1) {
				typical_physics_steps[i] = accumulated_physics_steps[i] - 1;
			}
		}
	}

	return ret;
}

// calls advance_core, keeps track of deficit it adds to animaption_step, make sure the deficit sum stays close to zero
MainFrameTime MainTimerSync::advance_checked(double p_physics_step, int p_physics_fps, double p_process_step) {
	if (fixed_fps != -1) {
		p_process_step = 1.0 / fixed_fps;
	}

	// compensate for last deficit
	p_process_step += time_deficit;

	MainFrameTime ret = advance_core(p_physics_step, p_physics_fps, p_process_step);

	// we will do some clamping on ret.process_step and need to sync those changes to time_accum,
	// that's easiest if we just remember their fixed difference now
	const double process_minus_accum = ret.process_step - time_accum;

	// first, least important clamping: keep ret.process_step consistent with typical_physics_steps.
	// this smoothes out the process steps and culls small but quick variations.
	{
		double min_average_physics_steps, max_average_physics_steps;
		int consistent_steps = get_average_physics_steps(min_average_physics_steps, max_average_physics_steps);
		if (consistent_steps > 3) {
			ret.clamp_process_step(min_average_physics_steps * p_physics_step, max_average_physics_steps * p_physics_step);
		}
	}

	// second clamping: keep abs(time_deficit) < jitter_fix * frame_slise
	double max_clock_deviation = get_physics_jitter_fix() * p_physics_step;
	ret.clamp_process_step(p_process_step - max_clock_deviation, p_process_step + max_clock_deviation);

	// last clamping: make sure time_accum is between 0 and p_physics_step for consistency between physics and process
	ret.clamp_process_step(process_minus_accum, process_minus_accum + p_physics_step);

	// restore time_accum
	time_accum = ret.process_step - process_minus_accum;

	// track deficit
	time_deficit = p_process_step - ret.process_step;

	// p_physics_step is 1.0 / iterations_per_sec
	// i.e. the time in seconds taken by a physics tick
	ret.interpolation_fraction = time_accum / p_physics_step;

	return ret;
}

// determine wall clock step since last iteration
double MainTimerSync::get_cpu_process_step() {
	uint64_t cpu_ticks_elapsed = current_cpu_ticks_usec - last_cpu_ticks_usec;
	last_cpu_ticks_usec = current_cpu_ticks_usec;

	return cpu_ticks_elapsed / 1000000.0;
}

MainTimerSync::MainTimerSync() {
	for (int i = CONTROL_STEPS - 1; i >= 0; --i) {
		typical_physics_steps[i] = i;
		accumulated_physics_steps[i] = i;
	}
}

// start the clock
void MainTimerSync::init(uint64_t p_cpu_ticks_usec) {
	current_cpu_ticks_usec = last_cpu_ticks_usec = p_cpu_ticks_usec;
}

// set measured wall clock time
void MainTimerSync::set_cpu_ticks_usec(uint64_t p_cpu_ticks_usec) {
	current_cpu_ticks_usec = p_cpu_ticks_usec;
}

void MainTimerSync::set_fixed_fps(int p_fixed_fps) {
	fixed_fps = p_fixed_fps;
}

// advance one physics frame, return timesteps to take
MainFrameTime MainTimerSync::advance(double p_physics_step, int p_physics_fps) {
	double cpu_process_step = get_cpu_process_step();

	return advance_checked(p_physics_step, p_physics_fps, cpu_process_step);
}