summaryrefslogtreecommitdiff
path: root/drivers/webpold/enc/histogram.c
blob: ca838e064dc10e299e2ed29308d9ae17e86798f0 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
// Copyright 2012 Google Inc. All Rights Reserved.
//
// This code is licensed under the same terms as WebM:
//  Software License Agreement:  http://www.webmproject.org/license/software/
//  Additional IP Rights Grant:  http://www.webmproject.org/license/additional/
// -----------------------------------------------------------------------------
//
// Author: Jyrki Alakuijala (jyrki@google.com)
//
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif

#include <math.h>
#include <stdio.h>

#include "./backward_references.h"
#include "./histogram.h"
#include "../dsp/lossless.h"
#include "../utils/utils.h"

static void HistogramClear(VP8LHistogram* const p) {
  memset(p->literal_, 0, sizeof(p->literal_));
  memset(p->red_, 0, sizeof(p->red_));
  memset(p->blue_, 0, sizeof(p->blue_));
  memset(p->alpha_, 0, sizeof(p->alpha_));
  memset(p->distance_, 0, sizeof(p->distance_));
  p->bit_cost_ = 0;
}

void VP8LHistogramStoreRefs(const VP8LBackwardRefs* const refs,
                            VP8LHistogram* const histo) {
  int i;
  for (i = 0; i < refs->size; ++i) {
    VP8LHistogramAddSinglePixOrCopy(histo, &refs->refs[i]);
  }
}

void VP8LHistogramCreate(VP8LHistogram* const p,
                         const VP8LBackwardRefs* const refs,
                         int palette_code_bits) {
  if (palette_code_bits >= 0) {
    p->palette_code_bits_ = palette_code_bits;
  }
  HistogramClear(p);
  VP8LHistogramStoreRefs(refs, p);
}

void VP8LHistogramInit(VP8LHistogram* const p, int palette_code_bits) {
  p->palette_code_bits_ = palette_code_bits;
  HistogramClear(p);
}

VP8LHistogramSet* VP8LAllocateHistogramSet(int size, int cache_bits) {
  int i;
  VP8LHistogramSet* set;
  VP8LHistogram* bulk;
  const uint64_t total_size = (uint64_t)sizeof(*set)
                            + size * sizeof(*set->histograms)
                            + size * sizeof(**set->histograms);
  uint8_t* memory = (uint8_t*)WebPSafeMalloc(total_size, sizeof(*memory));
  if (memory == NULL) return NULL;

  set = (VP8LHistogramSet*)memory;
  memory += sizeof(*set);
  set->histograms = (VP8LHistogram**)memory;
  memory += size * sizeof(*set->histograms);
  bulk = (VP8LHistogram*)memory;
  set->max_size = size;
  set->size = size;
  for (i = 0; i < size; ++i) {
    set->histograms[i] = bulk + i;
    VP8LHistogramInit(set->histograms[i], cache_bits);
  }
  return set;
}

// -----------------------------------------------------------------------------

void VP8LHistogramAddSinglePixOrCopy(VP8LHistogram* const histo,
                                     const PixOrCopy* const v) {
  if (PixOrCopyIsLiteral(v)) {
    ++histo->alpha_[PixOrCopyLiteral(v, 3)];
    ++histo->red_[PixOrCopyLiteral(v, 2)];
    ++histo->literal_[PixOrCopyLiteral(v, 1)];
    ++histo->blue_[PixOrCopyLiteral(v, 0)];
  } else if (PixOrCopyIsCacheIdx(v)) {
    int literal_ix = 256 + NUM_LENGTH_CODES + PixOrCopyCacheIdx(v);
    ++histo->literal_[literal_ix];
  } else {
    int code, extra_bits_count, extra_bits_value;
    PrefixEncode(PixOrCopyLength(v),
                 &code, &extra_bits_count, &extra_bits_value);
    ++histo->literal_[256 + code];
    PrefixEncode(PixOrCopyDistance(v),
                 &code, &extra_bits_count, &extra_bits_value);
    ++histo->distance_[code];
  }
}



static double BitsEntropy(const int* const array, int n) {
  double retval = 0.;
  int sum = 0;
  int nonzeros = 0;
  int max_val = 0;
  int i;
  double mix;
  for (i = 0; i < n; ++i) {
    if (array[i] != 0) {
      sum += array[i];
      ++nonzeros;
      retval -= VP8LFastSLog2(array[i]);
      if (max_val < array[i]) {
        max_val = array[i];
      }
    }
  }
  retval += VP8LFastSLog2(sum);

  if (nonzeros < 5) {
    if (nonzeros <= 1) {
      return 0;
    }
    // Two symbols, they will be 0 and 1 in a Huffman code.
    // Let's mix in a bit of entropy to favor good clustering when
    // distributions of these are combined.
    if (nonzeros == 2) {
      return 0.99 * sum + 0.01 * retval;
    }
    // No matter what the entropy says, we cannot be better than min_limit
    // with Huffman coding. I am mixing a bit of entropy into the
    // min_limit since it produces much better (~0.5 %) compression results
    // perhaps because of better entropy clustering.
    if (nonzeros == 3) {
      mix = 0.95;
    } else {
      mix = 0.7;  // nonzeros == 4.
    }
  } else {
    mix = 0.627;
  }

  {
    double min_limit = 2 * sum - max_val;
    min_limit = mix * min_limit + (1.0 - mix) * retval;
    return (retval < min_limit) ? min_limit : retval;
  }
}

double VP8LHistogramEstimateBitsBulk(const VP8LHistogram* const p) {
  double retval = BitsEntropy(&p->literal_[0], VP8LHistogramNumCodes(p))
                + BitsEntropy(&p->red_[0], 256)
                + BitsEntropy(&p->blue_[0], 256)
                + BitsEntropy(&p->alpha_[0], 256)
                + BitsEntropy(&p->distance_[0], NUM_DISTANCE_CODES);
  // Compute the extra bits cost.
  int i;
  for (i = 2; i < NUM_LENGTH_CODES - 2; ++i) {
    retval +=
        (i >> 1) * p->literal_[256 + i + 2];
  }
  for (i = 2; i < NUM_DISTANCE_CODES - 2; ++i) {
    retval += (i >> 1) * p->distance_[i + 2];
  }
  return retval;
}


// Returns the cost encode the rle-encoded entropy code.
// The constants in this function are experimental.
static double HuffmanCost(const int* const population, int length) {
  // Small bias because Huffman code length is typically not stored in
  // full length.
  static const int kHuffmanCodeOfHuffmanCodeSize = CODE_LENGTH_CODES * 3;
  static const double kSmallBias = 9.1;
  double retval = kHuffmanCodeOfHuffmanCodeSize - kSmallBias;
  int streak = 0;
  int i = 0;
  for (; i < length - 1; ++i) {
    ++streak;
    if (population[i] == population[i + 1]) {
      continue;
    }
 last_streak_hack:
    // population[i] points now to the symbol in the streak of same values.
    if (streak > 3) {
      if (population[i] == 0) {
        retval += 1.5625 + 0.234375 * streak;
      } else {
        retval += 2.578125 + 0.703125 * streak;
      }
    } else {
      if (population[i] == 0) {
        retval += 1.796875 * streak;
      } else {
        retval += 3.28125 * streak;
      }
    }
    streak = 0;
  }
  if (i == length - 1) {
    ++streak;
    goto last_streak_hack;
  }
  return retval;
}

// Estimates the Huffman dictionary + other block overhead size.
static double HistogramEstimateBitsHeader(const VP8LHistogram* const p) {
  return HuffmanCost(&p->alpha_[0], 256) +
         HuffmanCost(&p->red_[0], 256) +
         HuffmanCost(&p->literal_[0], VP8LHistogramNumCodes(p)) +
         HuffmanCost(&p->blue_[0], 256) +
         HuffmanCost(&p->distance_[0], NUM_DISTANCE_CODES);
}

double VP8LHistogramEstimateBits(const VP8LHistogram* const p) {
  return HistogramEstimateBitsHeader(p) + VP8LHistogramEstimateBitsBulk(p);
}

static void HistogramBuildImage(int xsize, int histo_bits,
                                const VP8LBackwardRefs* const backward_refs,
                                VP8LHistogramSet* const image) {
  int i;
  int x = 0, y = 0;
  const int histo_xsize = VP8LSubSampleSize(xsize, histo_bits);
  VP8LHistogram** const histograms = image->histograms;
  assert(histo_bits > 0);
  for (i = 0; i < backward_refs->size; ++i) {
    const PixOrCopy* const v = &backward_refs->refs[i];
    const int ix = (y >> histo_bits) * histo_xsize + (x >> histo_bits);
    VP8LHistogramAddSinglePixOrCopy(histograms[ix], v);
    x += PixOrCopyLength(v);
    while (x >= xsize) {
      x -= xsize;
      ++y;
    }
  }
}

static uint32_t MyRand(uint32_t *seed) {
  *seed *= 16807U;
  if (*seed == 0) {
    *seed = 1;
  }
  return *seed;
}

static int HistogramCombine(const VP8LHistogramSet* const in,
                            VP8LHistogramSet* const out, int num_pairs) {
  int ok = 0;
  int i, iter;
  uint32_t seed = 0;
  int tries_with_no_success = 0;
  const int min_cluster_size = 2;
  int out_size = in->size;
  const int outer_iters = in->size * 3;
  VP8LHistogram* const histos = (VP8LHistogram*)malloc(2 * sizeof(*histos));
  VP8LHistogram* cur_combo = histos + 0;    // trial merged histogram
  VP8LHistogram* best_combo = histos + 1;   // best merged histogram so far
  if (histos == NULL) goto End;

  // Copy histograms from in[] to out[].
  assert(in->size <= out->size);
  for (i = 0; i < in->size; ++i) {
    in->histograms[i]->bit_cost_ = VP8LHistogramEstimateBits(in->histograms[i]);
    *out->histograms[i] = *in->histograms[i];
  }

  // Collapse similar histograms in 'out'.
  for (iter = 0; iter < outer_iters && out_size >= min_cluster_size; ++iter) {
    // We pick the best pair to be combined out of 'inner_iters' pairs.
    double best_cost_diff = 0.;
    int best_idx1 = 0, best_idx2 = 1;
    int j;
    seed += iter;
    for (j = 0; j < num_pairs; ++j) {
      double curr_cost_diff;
      // Choose two histograms at random and try to combine them.
      const uint32_t idx1 = MyRand(&seed) % out_size;
      const uint32_t tmp = ((j & 7) + 1) % (out_size - 1);
      const uint32_t diff = (tmp < 3) ? tmp : MyRand(&seed) % (out_size - 1);
      const uint32_t idx2 = (idx1 + diff + 1) % out_size;
      if (idx1 == idx2) {
        continue;
      }
      *cur_combo = *out->histograms[idx1];
      VP8LHistogramAdd(cur_combo, out->histograms[idx2]);
      cur_combo->bit_cost_ = VP8LHistogramEstimateBits(cur_combo);
      // Calculate cost reduction on combining.
      curr_cost_diff = cur_combo->bit_cost_
                     - out->histograms[idx1]->bit_cost_
                     - out->histograms[idx2]->bit_cost_;
      if (best_cost_diff > curr_cost_diff) {    // found a better pair?
        {     // swap cur/best combo histograms
          VP8LHistogram* const tmp_histo = cur_combo;
          cur_combo = best_combo;
          best_combo = tmp_histo;
        }
        best_cost_diff = curr_cost_diff;
        best_idx1 = idx1;
        best_idx2 = idx2;
      }
    }

    if (best_cost_diff < 0.0) {
      *out->histograms[best_idx1] = *best_combo;
      // swap best_idx2 slot with last one (which is now unused)
      --out_size;
      if (best_idx2 != out_size) {
        out->histograms[best_idx2] = out->histograms[out_size];
        out->histograms[out_size] = NULL;   // just for sanity check.
      }
      tries_with_no_success = 0;
    }
    if (++tries_with_no_success >= 50) {
      break;
    }
  }
  out->size = out_size;
  ok = 1;

 End:
  free(histos);
  return ok;
}

// -----------------------------------------------------------------------------
// Histogram refinement

// What is the bit cost of moving square_histogram from
// cur_symbol to candidate_symbol.
// TODO(skal): we don't really need to copy the histogram and Add(). Instead
// we just need VP8LDualHistogramEstimateBits(A, B) estimation function.
static double HistogramDistance(const VP8LHistogram* const square_histogram,
                                const VP8LHistogram* const candidate) {
  const double previous_bit_cost = candidate->bit_cost_;
  double new_bit_cost;
  VP8LHistogram modified_histo;
  modified_histo = *candidate;
  VP8LHistogramAdd(&modified_histo, square_histogram);
  new_bit_cost = VP8LHistogramEstimateBits(&modified_histo);

  return new_bit_cost - previous_bit_cost;
}

// Find the best 'out' histogram for each of the 'in' histograms.
// Note: we assume that out[]->bit_cost_ is already up-to-date.
static void HistogramRemap(const VP8LHistogramSet* const in,
                           const VP8LHistogramSet* const out,
                           uint16_t* const symbols) {
  int i;
  for (i = 0; i < in->size; ++i) {
    int best_out = 0;
    double best_bits = HistogramDistance(in->histograms[i], out->histograms[0]);
    int k;
    for (k = 1; k < out->size; ++k) {
      const double cur_bits =
          HistogramDistance(in->histograms[i], out->histograms[k]);
      if (cur_bits < best_bits) {
        best_bits = cur_bits;
        best_out = k;
      }
    }
    symbols[i] = best_out;
  }

  // Recompute each out based on raw and symbols.
  for (i = 0; i < out->size; ++i) {
    HistogramClear(out->histograms[i]);
  }
  for (i = 0; i < in->size; ++i) {
    VP8LHistogramAdd(out->histograms[symbols[i]], in->histograms[i]);
  }
}

int VP8LGetHistoImageSymbols(int xsize, int ysize,
                             const VP8LBackwardRefs* const refs,
                             int quality, int histo_bits, int cache_bits,
                             VP8LHistogramSet* const image_in,
                             uint16_t* const histogram_symbols) {
  int ok = 0;
  const int histo_xsize = histo_bits ? VP8LSubSampleSize(xsize, histo_bits) : 1;
  const int histo_ysize = histo_bits ? VP8LSubSampleSize(ysize, histo_bits) : 1;
  const int num_histo_pairs = 10 + quality / 2;  // For HistogramCombine().
  const int histo_image_raw_size = histo_xsize * histo_ysize;
  VP8LHistogramSet* const image_out =
      VP8LAllocateHistogramSet(histo_image_raw_size, cache_bits);
  if (image_out == NULL) return 0;

  // Build histogram image.
  HistogramBuildImage(xsize, histo_bits, refs, image_out);
  // Collapse similar histograms.
  if (!HistogramCombine(image_out, image_in, num_histo_pairs)) {
    goto Error;
  }
  // Find the optimal map from original histograms to the final ones.
  HistogramRemap(image_out, image_in, histogram_symbols);
  ok = 1;

Error:
  free(image_out);
  return ok;
}