1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
|
// Copyright 2014 Google Inc. All Rights Reserved.
//
// Use of this source code is governed by a BSD-style license
// that can be found in the COPYING file in the root of the source
// tree. An additional intellectual property rights grant can be found
// in the file PATENTS. All contributing project authors may
// be found in the AUTHORS file in the root of the source tree.
// -----------------------------------------------------------------------------
//
// Near-lossless image preprocessing adjusts pixel values to help
// compressibility with a guarantee of maximum deviation between original and
// resulting pixel values.
//
// Author: Jyrki Alakuijala (jyrki@google.com)
// Converted to C by Aleksander Kramarz (akramarz@google.com)
#include <stdlib.h>
#include "../dsp/lossless.h"
#include "../utils/utils.h"
#include "./vp8enci.h"
#define MIN_DIM_FOR_NEAR_LOSSLESS 64
#define MAX_LIMIT_BITS 5
// Computes quantized pixel value and distance from original value.
static void GetValAndDistance(int a, int initial, int bits,
int* const val, int* const distance) {
const int mask = ~((1 << bits) - 1);
*val = (initial & mask) | (initial >> (8 - bits));
*distance = 2 * abs(a - *val);
}
// Clamps the value to range [0, 255].
static int Clamp8b(int val) {
const int min_val = 0;
const int max_val = 0xff;
return (val < min_val) ? min_val : (val > max_val) ? max_val : val;
}
// Quantizes values {a, a+(1<<bits), a-(1<<bits)} and returns the nearest one.
static int FindClosestDiscretized(int a, int bits) {
int best_val = a, i;
int min_distance = 256;
for (i = -1; i <= 1; ++i) {
int candidate, distance;
const int val = Clamp8b(a + i * (1 << bits));
GetValAndDistance(a, val, bits, &candidate, &distance);
if (i != 0) {
++distance;
}
// Smallest distance but favor i == 0 over i == -1 and i == 1
// since that keeps the overall intensity more constant in the
// images.
if (distance < min_distance) {
min_distance = distance;
best_val = candidate;
}
}
return best_val;
}
// Applies FindClosestDiscretized to all channels of pixel.
static uint32_t ClosestDiscretizedArgb(uint32_t a, int bits) {
return
(FindClosestDiscretized(a >> 24, bits) << 24) |
(FindClosestDiscretized((a >> 16) & 0xff, bits) << 16) |
(FindClosestDiscretized((a >> 8) & 0xff, bits) << 8) |
(FindClosestDiscretized(a & 0xff, bits));
}
// Checks if distance between corresponding channel values of pixels a and b
// is within the given limit.
static int IsNear(uint32_t a, uint32_t b, int limit) {
int k;
for (k = 0; k < 4; ++k) {
const int delta =
(int)((a >> (k * 8)) & 0xff) - (int)((b >> (k * 8)) & 0xff);
if (delta >= limit || delta <= -limit) {
return 0;
}
}
return 1;
}
static int IsSmooth(const uint32_t* const prev_row,
const uint32_t* const curr_row,
const uint32_t* const next_row,
int ix, int limit) {
// Check that all pixels in 4-connected neighborhood are smooth.
return (IsNear(curr_row[ix], curr_row[ix - 1], limit) &&
IsNear(curr_row[ix], curr_row[ix + 1], limit) &&
IsNear(curr_row[ix], prev_row[ix], limit) &&
IsNear(curr_row[ix], next_row[ix], limit));
}
// Adjusts pixel values of image with given maximum error.
static void NearLossless(int xsize, int ysize, uint32_t* argb,
int limit_bits, uint32_t* copy_buffer) {
int x, y;
const int limit = 1 << limit_bits;
uint32_t* prev_row = copy_buffer;
uint32_t* curr_row = prev_row + xsize;
uint32_t* next_row = curr_row + xsize;
memcpy(copy_buffer, argb, xsize * 2 * sizeof(argb[0]));
for (y = 1; y < ysize - 1; ++y) {
uint32_t* const curr_argb_row = argb + y * xsize;
uint32_t* const next_argb_row = curr_argb_row + xsize;
memcpy(next_row, next_argb_row, xsize * sizeof(argb[0]));
for (x = 1; x < xsize - 1; ++x) {
if (!IsSmooth(prev_row, curr_row, next_row, x, limit)) {
curr_argb_row[x] = ClosestDiscretizedArgb(curr_row[x], limit_bits);
}
}
{
// Three-way swap.
uint32_t* const temp = prev_row;
prev_row = curr_row;
curr_row = next_row;
next_row = temp;
}
}
}
static int QualityToLimitBits(int quality) {
// quality mapping:
// 0..19 -> 5
// 0..39 -> 4
// 0..59 -> 3
// 0..79 -> 2
// 0..99 -> 1
// 100 -> 0
return MAX_LIMIT_BITS - quality / 20;
}
int VP8ApplyNearLossless(int xsize, int ysize, uint32_t* argb, int quality) {
int i;
uint32_t* const copy_buffer =
(uint32_t*)WebPSafeMalloc(xsize * 3, sizeof(*copy_buffer));
const int limit_bits = QualityToLimitBits(quality);
assert(argb != NULL);
assert(limit_bits >= 0);
assert(limit_bits <= MAX_LIMIT_BITS);
if (copy_buffer == NULL) {
return 0;
}
// For small icon images, don't attempt to apply near-lossless compression.
if (xsize < MIN_DIM_FOR_NEAR_LOSSLESS && ysize < MIN_DIM_FOR_NEAR_LOSSLESS) {
WebPSafeFree(copy_buffer);
return 1;
}
for (i = limit_bits; i != 0; --i) {
NearLossless(xsize, ysize, argb, i, copy_buffer);
}
WebPSafeFree(copy_buffer);
return 1;
}
|