1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
|
// Copyright 2012 Google Inc. All Rights Reserved.
//
// Use of this source code is governed by a BSD-style license
// that can be found in the COPYING file in the root of the source
// tree. An additional intellectual property rights grant can be found
// in the file PATENTS. All contributing project authors may
// be found in the AUTHORS file in the root of the source tree.
// -----------------------------------------------------------------------------
//
// Author: Jyrki Alakuijala (jyrki@google.com)
//
#ifdef HAVE_CONFIG_H
#include "webp/config.h"
#endif
#include <math.h>
#include "./backward_references.h"
#include "./histogram.h"
#include "../dsp/lossless.h"
#include "../utils/utils.h"
#define MAX_COST 1.e38
// Number of partitions for the three dominant (literal, red and blue) symbol
// costs.
#define NUM_PARTITIONS 4
// The size of the bin-hash corresponding to the three dominant costs.
#define BIN_SIZE (NUM_PARTITIONS * NUM_PARTITIONS * NUM_PARTITIONS)
// Maximum number of histograms allowed in greedy combining algorithm.
#define MAX_HISTO_GREEDY 100
static void HistogramClear(VP8LHistogram* const p) {
uint32_t* const literal = p->literal_;
const int cache_bits = p->palette_code_bits_;
const int histo_size = VP8LGetHistogramSize(cache_bits);
memset(p, 0, histo_size);
p->palette_code_bits_ = cache_bits;
p->literal_ = literal;
}
// Swap two histogram pointers.
static void HistogramSwap(VP8LHistogram** const A, VP8LHistogram** const B) {
VP8LHistogram* const tmp = *A;
*A = *B;
*B = tmp;
}
static void HistogramCopy(const VP8LHistogram* const src,
VP8LHistogram* const dst) {
uint32_t* const dst_literal = dst->literal_;
const int dst_cache_bits = dst->palette_code_bits_;
const int histo_size = VP8LGetHistogramSize(dst_cache_bits);
assert(src->palette_code_bits_ == dst_cache_bits);
memcpy(dst, src, histo_size);
dst->literal_ = dst_literal;
}
int VP8LGetHistogramSize(int cache_bits) {
const int literal_size = VP8LHistogramNumCodes(cache_bits);
const size_t total_size = sizeof(VP8LHistogram) + sizeof(int) * literal_size;
assert(total_size <= (size_t)0x7fffffff);
return (int)total_size;
}
void VP8LFreeHistogram(VP8LHistogram* const histo) {
WebPSafeFree(histo);
}
void VP8LFreeHistogramSet(VP8LHistogramSet* const histo) {
WebPSafeFree(histo);
}
void VP8LHistogramStoreRefs(const VP8LBackwardRefs* const refs,
VP8LHistogram* const histo) {
VP8LRefsCursor c = VP8LRefsCursorInit(refs);
while (VP8LRefsCursorOk(&c)) {
VP8LHistogramAddSinglePixOrCopy(histo, c.cur_pos);
VP8LRefsCursorNext(&c);
}
}
void VP8LHistogramCreate(VP8LHistogram* const p,
const VP8LBackwardRefs* const refs,
int palette_code_bits) {
if (palette_code_bits >= 0) {
p->palette_code_bits_ = palette_code_bits;
}
HistogramClear(p);
VP8LHistogramStoreRefs(refs, p);
}
void VP8LHistogramInit(VP8LHistogram* const p, int palette_code_bits) {
p->palette_code_bits_ = palette_code_bits;
HistogramClear(p);
}
VP8LHistogram* VP8LAllocateHistogram(int cache_bits) {
VP8LHistogram* histo = NULL;
const int total_size = VP8LGetHistogramSize(cache_bits);
uint8_t* const memory = (uint8_t*)WebPSafeMalloc(total_size, sizeof(*memory));
if (memory == NULL) return NULL;
histo = (VP8LHistogram*)memory;
// literal_ won't necessary be aligned.
histo->literal_ = (uint32_t*)(memory + sizeof(VP8LHistogram));
VP8LHistogramInit(histo, cache_bits);
return histo;
}
VP8LHistogramSet* VP8LAllocateHistogramSet(int size, int cache_bits) {
int i;
VP8LHistogramSet* set;
const int histo_size = VP8LGetHistogramSize(cache_bits);
const size_t total_size =
sizeof(*set) + size * (sizeof(*set->histograms) +
histo_size + WEBP_ALIGN_CST);
uint8_t* memory = (uint8_t*)WebPSafeMalloc(total_size, sizeof(*memory));
if (memory == NULL) return NULL;
set = (VP8LHistogramSet*)memory;
memory += sizeof(*set);
set->histograms = (VP8LHistogram**)memory;
memory += size * sizeof(*set->histograms);
set->max_size = size;
set->size = size;
for (i = 0; i < size; ++i) {
memory = (uint8_t*)WEBP_ALIGN(memory);
set->histograms[i] = (VP8LHistogram*)memory;
// literal_ won't necessary be aligned.
set->histograms[i]->literal_ = (uint32_t*)(memory + sizeof(VP8LHistogram));
VP8LHistogramInit(set->histograms[i], cache_bits);
memory += histo_size;
}
return set;
}
// -----------------------------------------------------------------------------
void VP8LHistogramAddSinglePixOrCopy(VP8LHistogram* const histo,
const PixOrCopy* const v) {
if (PixOrCopyIsLiteral(v)) {
++histo->alpha_[PixOrCopyLiteral(v, 3)];
++histo->red_[PixOrCopyLiteral(v, 2)];
++histo->literal_[PixOrCopyLiteral(v, 1)];
++histo->blue_[PixOrCopyLiteral(v, 0)];
} else if (PixOrCopyIsCacheIdx(v)) {
const int literal_ix =
NUM_LITERAL_CODES + NUM_LENGTH_CODES + PixOrCopyCacheIdx(v);
++histo->literal_[literal_ix];
} else {
int code, extra_bits;
VP8LPrefixEncodeBits(PixOrCopyLength(v), &code, &extra_bits);
++histo->literal_[NUM_LITERAL_CODES + code];
VP8LPrefixEncodeBits(PixOrCopyDistance(v), &code, &extra_bits);
++histo->distance_[code];
}
}
// -----------------------------------------------------------------------------
// Entropy-related functions.
static WEBP_INLINE double BitsEntropyRefine(const VP8LBitEntropy* entropy) {
double mix;
if (entropy->nonzeros < 5) {
if (entropy->nonzeros <= 1) {
return 0;
}
// Two symbols, they will be 0 and 1 in a Huffman code.
// Let's mix in a bit of entropy to favor good clustering when
// distributions of these are combined.
if (entropy->nonzeros == 2) {
return 0.99 * entropy->sum + 0.01 * entropy->entropy;
}
// No matter what the entropy says, we cannot be better than min_limit
// with Huffman coding. I am mixing a bit of entropy into the
// min_limit since it produces much better (~0.5 %) compression results
// perhaps because of better entropy clustering.
if (entropy->nonzeros == 3) {
mix = 0.95;
} else {
mix = 0.7; // nonzeros == 4.
}
} else {
mix = 0.627;
}
{
double min_limit = 2 * entropy->sum - entropy->max_val;
min_limit = mix * min_limit + (1.0 - mix) * entropy->entropy;
return (entropy->entropy < min_limit) ? min_limit : entropy->entropy;
}
}
double VP8LBitsEntropy(const uint32_t* const array, int n,
uint32_t* const trivial_symbol) {
VP8LBitEntropy entropy;
VP8LBitsEntropyUnrefined(array, n, &entropy);
if (trivial_symbol != NULL) {
*trivial_symbol =
(entropy.nonzeros == 1) ? entropy.nonzero_code : VP8L_NON_TRIVIAL_SYM;
}
return BitsEntropyRefine(&entropy);
}
static double InitialHuffmanCost(void) {
// Small bias because Huffman code length is typically not stored in
// full length.
static const int kHuffmanCodeOfHuffmanCodeSize = CODE_LENGTH_CODES * 3;
static const double kSmallBias = 9.1;
return kHuffmanCodeOfHuffmanCodeSize - kSmallBias;
}
// Finalize the Huffman cost based on streak numbers and length type (<3 or >=3)
static double FinalHuffmanCost(const VP8LStreaks* const stats) {
double retval = InitialHuffmanCost();
retval += stats->counts[0] * 1.5625 + 0.234375 * stats->streaks[0][1];
retval += stats->counts[1] * 2.578125 + 0.703125 * stats->streaks[1][1];
retval += 1.796875 * stats->streaks[0][0];
retval += 3.28125 * stats->streaks[1][0];
return retval;
}
// Get the symbol entropy for the distribution 'population'.
// Set 'trivial_sym', if there's only one symbol present in the distribution.
static double PopulationCost(const uint32_t* const population, int length,
uint32_t* const trivial_sym) {
VP8LBitEntropy bit_entropy;
VP8LStreaks stats;
VP8LGetEntropyUnrefined(population, length, &bit_entropy, &stats);
if (trivial_sym != NULL) {
*trivial_sym = (bit_entropy.nonzeros == 1) ? bit_entropy.nonzero_code
: VP8L_NON_TRIVIAL_SYM;
}
return BitsEntropyRefine(&bit_entropy) + FinalHuffmanCost(&stats);
}
static WEBP_INLINE double GetCombinedEntropy(const uint32_t* const X,
const uint32_t* const Y,
int length) {
VP8LBitEntropy bit_entropy;
VP8LStreaks stats;
VP8LGetCombinedEntropyUnrefined(X, Y, length, &bit_entropy, &stats);
return BitsEntropyRefine(&bit_entropy) + FinalHuffmanCost(&stats);
}
// Estimates the Entropy + Huffman + other block overhead size cost.
double VP8LHistogramEstimateBits(const VP8LHistogram* const p) {
return
PopulationCost(
p->literal_, VP8LHistogramNumCodes(p->palette_code_bits_), NULL)
+ PopulationCost(p->red_, NUM_LITERAL_CODES, NULL)
+ PopulationCost(p->blue_, NUM_LITERAL_CODES, NULL)
+ PopulationCost(p->alpha_, NUM_LITERAL_CODES, NULL)
+ PopulationCost(p->distance_, NUM_DISTANCE_CODES, NULL)
+ VP8LExtraCost(p->literal_ + NUM_LITERAL_CODES, NUM_LENGTH_CODES)
+ VP8LExtraCost(p->distance_, NUM_DISTANCE_CODES);
}
// -----------------------------------------------------------------------------
// Various histogram combine/cost-eval functions
static int GetCombinedHistogramEntropy(const VP8LHistogram* const a,
const VP8LHistogram* const b,
double cost_threshold,
double* cost) {
const int palette_code_bits = a->palette_code_bits_;
assert(a->palette_code_bits_ == b->palette_code_bits_);
*cost += GetCombinedEntropy(a->literal_, b->literal_,
VP8LHistogramNumCodes(palette_code_bits));
*cost += VP8LExtraCostCombined(a->literal_ + NUM_LITERAL_CODES,
b->literal_ + NUM_LITERAL_CODES,
NUM_LENGTH_CODES);
if (*cost > cost_threshold) return 0;
*cost += GetCombinedEntropy(a->red_, b->red_, NUM_LITERAL_CODES);
if (*cost > cost_threshold) return 0;
*cost += GetCombinedEntropy(a->blue_, b->blue_, NUM_LITERAL_CODES);
if (*cost > cost_threshold) return 0;
*cost += GetCombinedEntropy(a->alpha_, b->alpha_, NUM_LITERAL_CODES);
if (*cost > cost_threshold) return 0;
*cost += GetCombinedEntropy(a->distance_, b->distance_, NUM_DISTANCE_CODES);
*cost +=
VP8LExtraCostCombined(a->distance_, b->distance_, NUM_DISTANCE_CODES);
if (*cost > cost_threshold) return 0;
return 1;
}
// Performs out = a + b, computing the cost C(a+b) - C(a) - C(b) while comparing
// to the threshold value 'cost_threshold'. The score returned is
// Score = C(a+b) - C(a) - C(b), where C(a) + C(b) is known and fixed.
// Since the previous score passed is 'cost_threshold', we only need to compare
// the partial cost against 'cost_threshold + C(a) + C(b)' to possibly bail-out
// early.
static double HistogramAddEval(const VP8LHistogram* const a,
const VP8LHistogram* const b,
VP8LHistogram* const out,
double cost_threshold) {
double cost = 0;
const double sum_cost = a->bit_cost_ + b->bit_cost_;
cost_threshold += sum_cost;
if (GetCombinedHistogramEntropy(a, b, cost_threshold, &cost)) {
VP8LHistogramAdd(a, b, out);
out->bit_cost_ = cost;
out->palette_code_bits_ = a->palette_code_bits_;
out->trivial_symbol_ = (a->trivial_symbol_ == b->trivial_symbol_) ?
a->trivial_symbol_ : VP8L_NON_TRIVIAL_SYM;
}
return cost - sum_cost;
}
// Same as HistogramAddEval(), except that the resulting histogram
// is not stored. Only the cost C(a+b) - C(a) is evaluated. We omit
// the term C(b) which is constant over all the evaluations.
static double HistogramAddThresh(const VP8LHistogram* const a,
const VP8LHistogram* const b,
double cost_threshold) {
double cost = -a->bit_cost_;
GetCombinedHistogramEntropy(a, b, cost_threshold, &cost);
return cost;
}
// -----------------------------------------------------------------------------
// The structure to keep track of cost range for the three dominant entropy
// symbols.
// TODO(skal): Evaluate if float can be used here instead of double for
// representing the entropy costs.
typedef struct {
double literal_max_;
double literal_min_;
double red_max_;
double red_min_;
double blue_max_;
double blue_min_;
} DominantCostRange;
static void DominantCostRangeInit(DominantCostRange* const c) {
c->literal_max_ = 0.;
c->literal_min_ = MAX_COST;
c->red_max_ = 0.;
c->red_min_ = MAX_COST;
c->blue_max_ = 0.;
c->blue_min_ = MAX_COST;
}
static void UpdateDominantCostRange(
const VP8LHistogram* const h, DominantCostRange* const c) {
if (c->literal_max_ < h->literal_cost_) c->literal_max_ = h->literal_cost_;
if (c->literal_min_ > h->literal_cost_) c->literal_min_ = h->literal_cost_;
if (c->red_max_ < h->red_cost_) c->red_max_ = h->red_cost_;
if (c->red_min_ > h->red_cost_) c->red_min_ = h->red_cost_;
if (c->blue_max_ < h->blue_cost_) c->blue_max_ = h->blue_cost_;
if (c->blue_min_ > h->blue_cost_) c->blue_min_ = h->blue_cost_;
}
static void UpdateHistogramCost(VP8LHistogram* const h) {
uint32_t alpha_sym, red_sym, blue_sym;
const double alpha_cost =
PopulationCost(h->alpha_, NUM_LITERAL_CODES, &alpha_sym);
const double distance_cost =
PopulationCost(h->distance_, NUM_DISTANCE_CODES, NULL) +
VP8LExtraCost(h->distance_, NUM_DISTANCE_CODES);
const int num_codes = VP8LHistogramNumCodes(h->palette_code_bits_);
h->literal_cost_ = PopulationCost(h->literal_, num_codes, NULL) +
VP8LExtraCost(h->literal_ + NUM_LITERAL_CODES,
NUM_LENGTH_CODES);
h->red_cost_ = PopulationCost(h->red_, NUM_LITERAL_CODES, &red_sym);
h->blue_cost_ = PopulationCost(h->blue_, NUM_LITERAL_CODES, &blue_sym);
h->bit_cost_ = h->literal_cost_ + h->red_cost_ + h->blue_cost_ +
alpha_cost + distance_cost;
if ((alpha_sym | red_sym | blue_sym) == VP8L_NON_TRIVIAL_SYM) {
h->trivial_symbol_ = VP8L_NON_TRIVIAL_SYM;
} else {
h->trivial_symbol_ =
((uint32_t)alpha_sym << 24) | (red_sym << 16) | (blue_sym << 0);
}
}
static int GetBinIdForEntropy(double min, double max, double val) {
const double range = max - min;
if (range > 0.) {
const double delta = val - min;
return (int)((NUM_PARTITIONS - 1e-6) * delta / range);
} else {
return 0;
}
}
static int GetHistoBinIndex(const VP8LHistogram* const h,
const DominantCostRange* const c, int low_effort) {
int bin_id = GetBinIdForEntropy(c->literal_min_, c->literal_max_,
h->literal_cost_);
assert(bin_id < NUM_PARTITIONS);
if (!low_effort) {
bin_id = bin_id * NUM_PARTITIONS
+ GetBinIdForEntropy(c->red_min_, c->red_max_, h->red_cost_);
bin_id = bin_id * NUM_PARTITIONS
+ GetBinIdForEntropy(c->blue_min_, c->blue_max_, h->blue_cost_);
assert(bin_id < BIN_SIZE);
}
return bin_id;
}
// Construct the histograms from backward references.
static void HistogramBuild(
int xsize, int histo_bits, const VP8LBackwardRefs* const backward_refs,
VP8LHistogramSet* const image_histo) {
int x = 0, y = 0;
const int histo_xsize = VP8LSubSampleSize(xsize, histo_bits);
VP8LHistogram** const histograms = image_histo->histograms;
VP8LRefsCursor c = VP8LRefsCursorInit(backward_refs);
assert(histo_bits > 0);
while (VP8LRefsCursorOk(&c)) {
const PixOrCopy* const v = c.cur_pos;
const int ix = (y >> histo_bits) * histo_xsize + (x >> histo_bits);
VP8LHistogramAddSinglePixOrCopy(histograms[ix], v);
x += PixOrCopyLength(v);
while (x >= xsize) {
x -= xsize;
++y;
}
VP8LRefsCursorNext(&c);
}
}
// Copies the histograms and computes its bit_cost.
static void HistogramCopyAndAnalyze(
VP8LHistogramSet* const orig_histo, VP8LHistogramSet* const image_histo) {
int i;
const int histo_size = orig_histo->size;
VP8LHistogram** const orig_histograms = orig_histo->histograms;
VP8LHistogram** const histograms = image_histo->histograms;
for (i = 0; i < histo_size; ++i) {
VP8LHistogram* const histo = orig_histograms[i];
UpdateHistogramCost(histo);
// Copy histograms from orig_histo[] to image_histo[].
HistogramCopy(histo, histograms[i]);
}
}
// Partition histograms to different entropy bins for three dominant (literal,
// red and blue) symbol costs and compute the histogram aggregate bit_cost.
static void HistogramAnalyzeEntropyBin(VP8LHistogramSet* const image_histo,
int16_t* const bin_map, int low_effort) {
int i;
VP8LHistogram** const histograms = image_histo->histograms;
const int histo_size = image_histo->size;
const int bin_depth = histo_size + 1;
DominantCostRange cost_range;
DominantCostRangeInit(&cost_range);
// Analyze the dominant (literal, red and blue) entropy costs.
for (i = 0; i < histo_size; ++i) {
VP8LHistogram* const histo = histograms[i];
UpdateDominantCostRange(histo, &cost_range);
}
// bin-hash histograms on three of the dominant (literal, red and blue)
// symbol costs.
for (i = 0; i < histo_size; ++i) {
const VP8LHistogram* const histo = histograms[i];
const int bin_id = GetHistoBinIndex(histo, &cost_range, low_effort);
const int bin_offset = bin_id * bin_depth;
// bin_map[n][0] for every bin 'n' maintains the counter for the number of
// histograms in that bin.
// Get and increment the num_histos in that bin.
const int num_histos = ++bin_map[bin_offset];
assert(bin_offset + num_histos < bin_depth * BIN_SIZE);
// Add histogram i'th index at num_histos (last) position in the bin_map.
bin_map[bin_offset + num_histos] = i;
}
}
// Compact the histogram set by removing unused entries.
static void HistogramCompactBins(VP8LHistogramSet* const image_histo) {
VP8LHistogram** const histograms = image_histo->histograms;
int i, j;
for (i = 0, j = 0; i < image_histo->size; ++i) {
if (histograms[i] != NULL && histograms[i]->bit_cost_ != 0.) {
if (j < i) {
histograms[j] = histograms[i];
histograms[i] = NULL;
}
++j;
}
}
image_histo->size = j;
}
static VP8LHistogram* HistogramCombineEntropyBin(
VP8LHistogramSet* const image_histo,
VP8LHistogram* cur_combo,
int16_t* const bin_map, int bin_depth, int num_bins,
double combine_cost_factor, int low_effort) {
int bin_id;
VP8LHistogram** const histograms = image_histo->histograms;
for (bin_id = 0; bin_id < num_bins; ++bin_id) {
const int bin_offset = bin_id * bin_depth;
const int num_histos = bin_map[bin_offset];
const int idx1 = bin_map[bin_offset + 1];
int num_combine_failures = 0;
int n;
for (n = 2; n <= num_histos; ++n) {
const int idx2 = bin_map[bin_offset + n];
if (low_effort) {
// Merge all histograms with the same bin index, irrespective of cost of
// the merged histograms.
VP8LHistogramAdd(histograms[idx1], histograms[idx2], histograms[idx1]);
histograms[idx2]->bit_cost_ = 0.;
} else {
const double bit_cost_idx2 = histograms[idx2]->bit_cost_;
if (bit_cost_idx2 > 0.) {
const double bit_cost_thresh = -bit_cost_idx2 * combine_cost_factor;
const double curr_cost_diff =
HistogramAddEval(histograms[idx1], histograms[idx2],
cur_combo, bit_cost_thresh);
if (curr_cost_diff < bit_cost_thresh) {
// Try to merge two histograms only if the combo is a trivial one or
// the two candidate histograms are already non-trivial.
// For some images, 'try_combine' turns out to be false for a lot of
// histogram pairs. In that case, we fallback to combining
// histograms as usual to avoid increasing the header size.
const int try_combine =
(cur_combo->trivial_symbol_ != VP8L_NON_TRIVIAL_SYM) ||
((histograms[idx1]->trivial_symbol_ == VP8L_NON_TRIVIAL_SYM) &&
(histograms[idx2]->trivial_symbol_ == VP8L_NON_TRIVIAL_SYM));
const int max_combine_failures = 32;
if (try_combine || (num_combine_failures >= max_combine_failures)) {
HistogramSwap(&cur_combo, &histograms[idx1]);
histograms[idx2]->bit_cost_ = 0.;
} else {
++num_combine_failures;
}
}
}
}
}
if (low_effort) {
// Update the bit_cost for the merged histograms (per bin index).
UpdateHistogramCost(histograms[idx1]);
}
}
HistogramCompactBins(image_histo);
return cur_combo;
}
static uint32_t MyRand(uint32_t *seed) {
*seed *= 16807U;
if (*seed == 0) {
*seed = 1;
}
return *seed;
}
// -----------------------------------------------------------------------------
// Histogram pairs priority queue
// Pair of histograms. Negative idx1 value means that pair is out-of-date.
typedef struct {
int idx1;
int idx2;
double cost_diff;
double cost_combo;
} HistogramPair;
typedef struct {
HistogramPair* queue;
int size;
int max_size;
} HistoQueue;
static int HistoQueueInit(HistoQueue* const histo_queue, const int max_index) {
histo_queue->size = 0;
// max_index^2 for the queue size is safe. If you look at
// HistogramCombineGreedy, and imagine that UpdateQueueFront always pushes
// data to the queue, you insert at most:
// - max_index*(max_index-1)/2 (the first two for loops)
// - max_index - 1 in the last for loop at the first iteration of the while
// loop, max_index - 2 at the second iteration ... therefore
// max_index*(max_index-1)/2 overall too
histo_queue->max_size = max_index * max_index;
// We allocate max_size + 1 because the last element at index "size" is
// used as temporary data (and it could be up to max_size).
histo_queue->queue = WebPSafeMalloc(histo_queue->max_size + 1,
sizeof(*histo_queue->queue));
return histo_queue->queue != NULL;
}
static void HistoQueueClear(HistoQueue* const histo_queue) {
assert(histo_queue != NULL);
WebPSafeFree(histo_queue->queue);
}
static void SwapHistogramPairs(HistogramPair *p1,
HistogramPair *p2) {
const HistogramPair tmp = *p1;
*p1 = *p2;
*p2 = tmp;
}
// Given a valid priority queue in range [0, queue_size) this function checks
// whether histo_queue[queue_size] should be accepted and swaps it with the
// front if it is smaller. Otherwise, it leaves it as is.
static void UpdateQueueFront(HistoQueue* const histo_queue) {
if (histo_queue->queue[histo_queue->size].cost_diff >= 0) return;
if (histo_queue->queue[histo_queue->size].cost_diff <
histo_queue->queue[0].cost_diff) {
SwapHistogramPairs(histo_queue->queue,
histo_queue->queue + histo_queue->size);
}
++histo_queue->size;
// We cannot add more elements than the capacity.
// The allocation adds an extra element to the official capacity so that
// histo_queue->queue[histo_queue->max_size] is read/written within bound.
assert(histo_queue->size <= histo_queue->max_size);
}
// -----------------------------------------------------------------------------
static void PreparePair(VP8LHistogram** histograms, int idx1, int idx2,
HistogramPair* const pair) {
VP8LHistogram* h1;
VP8LHistogram* h2;
double sum_cost;
if (idx1 > idx2) {
const int tmp = idx2;
idx2 = idx1;
idx1 = tmp;
}
pair->idx1 = idx1;
pair->idx2 = idx2;
h1 = histograms[idx1];
h2 = histograms[idx2];
sum_cost = h1->bit_cost_ + h2->bit_cost_;
pair->cost_combo = 0.;
GetCombinedHistogramEntropy(h1, h2, sum_cost, &pair->cost_combo);
pair->cost_diff = pair->cost_combo - sum_cost;
}
// Combines histograms by continuously choosing the one with the highest cost
// reduction.
static int HistogramCombineGreedy(VP8LHistogramSet* const image_histo) {
int ok = 0;
int image_histo_size = image_histo->size;
int i, j;
VP8LHistogram** const histograms = image_histo->histograms;
// Indexes of remaining histograms.
int* const clusters = WebPSafeMalloc(image_histo_size, sizeof(*clusters));
// Priority queue of histogram pairs.
HistoQueue histo_queue;
if (!HistoQueueInit(&histo_queue, image_histo_size) || clusters == NULL) {
goto End;
}
for (i = 0; i < image_histo_size; ++i) {
// Initialize clusters indexes.
clusters[i] = i;
for (j = i + 1; j < image_histo_size; ++j) {
// Initialize positions array.
PreparePair(histograms, i, j, &histo_queue.queue[histo_queue.size]);
UpdateQueueFront(&histo_queue);
}
}
while (image_histo_size > 1 && histo_queue.size > 0) {
HistogramPair* copy_to;
const int idx1 = histo_queue.queue[0].idx1;
const int idx2 = histo_queue.queue[0].idx2;
VP8LHistogramAdd(histograms[idx2], histograms[idx1], histograms[idx1]);
histograms[idx1]->bit_cost_ = histo_queue.queue[0].cost_combo;
// Remove merged histogram.
for (i = 0; i + 1 < image_histo_size; ++i) {
if (clusters[i] >= idx2) {
clusters[i] = clusters[i + 1];
}
}
--image_histo_size;
// Remove pairs intersecting the just combined best pair. This will
// therefore pop the head of the queue.
copy_to = histo_queue.queue;
for (i = 0; i < histo_queue.size; ++i) {
HistogramPair* const p = histo_queue.queue + i;
if (p->idx1 == idx1 || p->idx2 == idx1 ||
p->idx1 == idx2 || p->idx2 == idx2) {
// Do not copy the invalid pair.
continue;
}
if (p->cost_diff < histo_queue.queue[0].cost_diff) {
// Replace the top of the queue if we found better.
SwapHistogramPairs(histo_queue.queue, p);
}
SwapHistogramPairs(copy_to, p);
++copy_to;
}
histo_queue.size = (int)(copy_to - histo_queue.queue);
// Push new pairs formed with combined histogram to the queue.
for (i = 0; i < image_histo_size; ++i) {
if (clusters[i] != idx1) {
PreparePair(histograms, idx1, clusters[i],
&histo_queue.queue[histo_queue.size]);
UpdateQueueFront(&histo_queue);
}
}
}
// Move remaining histograms to the beginning of the array.
for (i = 0; i < image_histo_size; ++i) {
if (i != clusters[i]) { // swap the two histograms
HistogramSwap(&histograms[i], &histograms[clusters[i]]);
}
}
image_histo->size = image_histo_size;
ok = 1;
End:
WebPSafeFree(clusters);
HistoQueueClear(&histo_queue);
return ok;
}
static void HistogramCombineStochastic(VP8LHistogramSet* const image_histo,
VP8LHistogram* tmp_histo,
VP8LHistogram* best_combo,
int quality, int min_cluster_size) {
int iter;
uint32_t seed = 0;
int tries_with_no_success = 0;
int image_histo_size = image_histo->size;
const int iter_mult = (quality < 25) ? 2 : 2 + (quality - 25) / 8;
const int outer_iters = image_histo_size * iter_mult;
const int num_pairs = image_histo_size / 2;
const int num_tries_no_success = outer_iters / 2;
VP8LHistogram** const histograms = image_histo->histograms;
// Collapse similar histograms in 'image_histo'.
++min_cluster_size;
for (iter = 0;
iter < outer_iters && image_histo_size >= min_cluster_size;
++iter) {
double best_cost_diff = 0.;
int best_idx1 = -1, best_idx2 = 1;
int j;
const int num_tries =
(num_pairs < image_histo_size) ? num_pairs : image_histo_size;
seed += iter;
for (j = 0; j < num_tries; ++j) {
double curr_cost_diff;
// Choose two histograms at random and try to combine them.
const uint32_t idx1 = MyRand(&seed) % image_histo_size;
const uint32_t tmp = (j & 7) + 1;
const uint32_t diff =
(tmp < 3) ? tmp : MyRand(&seed) % (image_histo_size - 1);
const uint32_t idx2 = (idx1 + diff + 1) % image_histo_size;
if (idx1 == idx2) {
continue;
}
// Calculate cost reduction on combining.
curr_cost_diff = HistogramAddEval(histograms[idx1], histograms[idx2],
tmp_histo, best_cost_diff);
if (curr_cost_diff < best_cost_diff) { // found a better pair?
HistogramSwap(&best_combo, &tmp_histo);
best_cost_diff = curr_cost_diff;
best_idx1 = idx1;
best_idx2 = idx2;
}
}
if (best_idx1 >= 0) {
HistogramSwap(&best_combo, &histograms[best_idx1]);
// swap best_idx2 slot with last one (which is now unused)
--image_histo_size;
if (best_idx2 != image_histo_size) {
HistogramSwap(&histograms[image_histo_size], &histograms[best_idx2]);
histograms[image_histo_size] = NULL;
}
tries_with_no_success = 0;
}
if (++tries_with_no_success >= num_tries_no_success) {
break;
}
}
image_histo->size = image_histo_size;
}
// -----------------------------------------------------------------------------
// Histogram refinement
// Find the best 'out' histogram for each of the 'in' histograms.
// Note: we assume that out[]->bit_cost_ is already up-to-date.
static void HistogramRemap(const VP8LHistogramSet* const in,
const VP8LHistogramSet* const out,
uint16_t* const symbols) {
int i;
VP8LHistogram** const in_histo = in->histograms;
VP8LHistogram** const out_histo = out->histograms;
const int in_size = in->size;
const int out_size = out->size;
if (out_size > 1) {
for (i = 0; i < in_size; ++i) {
int best_out = 0;
double best_bits = MAX_COST;
int k;
for (k = 0; k < out_size; ++k) {
const double cur_bits =
HistogramAddThresh(out_histo[k], in_histo[i], best_bits);
if (k == 0 || cur_bits < best_bits) {
best_bits = cur_bits;
best_out = k;
}
}
symbols[i] = best_out;
}
} else {
assert(out_size == 1);
for (i = 0; i < in_size; ++i) {
symbols[i] = 0;
}
}
// Recompute each out based on raw and symbols.
for (i = 0; i < out_size; ++i) {
HistogramClear(out_histo[i]);
}
for (i = 0; i < in_size; ++i) {
const int idx = symbols[i];
VP8LHistogramAdd(in_histo[i], out_histo[idx], out_histo[idx]);
}
}
static double GetCombineCostFactor(int histo_size, int quality) {
double combine_cost_factor = 0.16;
if (quality < 90) {
if (histo_size > 256) combine_cost_factor /= 2.;
if (histo_size > 512) combine_cost_factor /= 2.;
if (histo_size > 1024) combine_cost_factor /= 2.;
if (quality <= 50) combine_cost_factor /= 2.;
}
return combine_cost_factor;
}
int VP8LGetHistoImageSymbols(int xsize, int ysize,
const VP8LBackwardRefs* const refs,
int quality, int low_effort,
int histo_bits, int cache_bits,
VP8LHistogramSet* const image_histo,
VP8LHistogramSet* const tmp_histos,
uint16_t* const histogram_symbols) {
int ok = 0;
const int histo_xsize = histo_bits ? VP8LSubSampleSize(xsize, histo_bits) : 1;
const int histo_ysize = histo_bits ? VP8LSubSampleSize(ysize, histo_bits) : 1;
const int image_histo_raw_size = histo_xsize * histo_ysize;
const int entropy_combine_num_bins = low_effort ? NUM_PARTITIONS : BIN_SIZE;
// The bin_map for every bin follows following semantics:
// bin_map[n][0] = num_histo; // The number of histograms in that bin.
// bin_map[n][1] = index of first histogram in that bin;
// bin_map[n][num_histo] = index of last histogram in that bin;
// bin_map[n][num_histo + 1] ... bin_map[n][bin_depth - 1] = unused indices.
const int bin_depth = image_histo_raw_size + 1;
int16_t* bin_map = NULL;
VP8LHistogramSet* const orig_histo =
VP8LAllocateHistogramSet(image_histo_raw_size, cache_bits);
VP8LHistogram* cur_combo;
const int entropy_combine =
(orig_histo->size > entropy_combine_num_bins * 2) && (quality < 100);
if (orig_histo == NULL) goto Error;
// Don't attempt linear bin-partition heuristic for:
// histograms of small sizes, as bin_map will be very sparse and;
// Maximum quality (q==100), to preserve the compression gains at that level.
if (entropy_combine) {
const int bin_map_size = bin_depth * entropy_combine_num_bins;
bin_map = (int16_t*)WebPSafeCalloc(bin_map_size, sizeof(*bin_map));
if (bin_map == NULL) goto Error;
}
// Construct the histograms from backward references.
HistogramBuild(xsize, histo_bits, refs, orig_histo);
// Copies the histograms and computes its bit_cost.
HistogramCopyAndAnalyze(orig_histo, image_histo);
cur_combo = tmp_histos->histograms[1]; // pick up working slot
if (entropy_combine) {
const double combine_cost_factor =
GetCombineCostFactor(image_histo_raw_size, quality);
HistogramAnalyzeEntropyBin(orig_histo, bin_map, low_effort);
// Collapse histograms with similar entropy.
cur_combo = HistogramCombineEntropyBin(image_histo, cur_combo, bin_map,
bin_depth, entropy_combine_num_bins,
combine_cost_factor, low_effort);
}
// Don't combine the histograms using stochastic and greedy heuristics for
// low-effort compression mode.
if (!low_effort || !entropy_combine) {
const float x = quality / 100.f;
// cubic ramp between 1 and MAX_HISTO_GREEDY:
const int threshold_size = (int)(1 + (x * x * x) * (MAX_HISTO_GREEDY - 1));
HistogramCombineStochastic(image_histo, tmp_histos->histograms[0],
cur_combo, quality, threshold_size);
if ((image_histo->size <= threshold_size) &&
!HistogramCombineGreedy(image_histo)) {
goto Error;
}
}
// TODO(vikasa): Optimize HistogramRemap for low-effort compression mode also.
// Find the optimal map from original histograms to the final ones.
HistogramRemap(orig_histo, image_histo, histogram_symbols);
ok = 1;
Error:
WebPSafeFree(bin_map);
VP8LFreeHistogramSet(orig_histo);
return ok;
}
|