summaryrefslogtreecommitdiff
path: root/drivers/webp/enc/backward_references.c
blob: 136a24a8c31c810bd8b1b228f07ad2c9681de364 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
// Copyright 2012 Google Inc. All Rights Reserved.
//
// Use of this source code is governed by a BSD-style license
// that can be found in the COPYING file in the root of the source
// tree. An additional intellectual property rights grant can be found
// in the file PATENTS. All contributing project authors may
// be found in the AUTHORS file in the root of the source tree.
// -----------------------------------------------------------------------------
//
// Author: Jyrki Alakuijala (jyrki@google.com)
//

#include <assert.h>
#include <math.h>

#include "./backward_references.h"
#include "./histogram.h"
#include "../dsp/lossless.h"
#include "../dsp/dsp.h"
#include "../utils/color_cache.h"
#include "../utils/utils.h"

#define VALUES_IN_BYTE 256

#define MIN_BLOCK_SIZE 256  // minimum block size for backward references

#define MAX_ENTROPY    (1e30f)

// 1M window (4M bytes) minus 120 special codes for short distances.
#define WINDOW_SIZE_BITS 20
#define WINDOW_SIZE ((1 << WINDOW_SIZE_BITS) - 120)

// Bounds for the match length.
#define MIN_LENGTH 2
// If you change this, you need MAX_LENGTH_BITS + WINDOW_SIZE_BITS <= 32 as it
// is used in VP8LHashChain.
#define MAX_LENGTH_BITS 12
// We want the max value to be attainable and stored in MAX_LENGTH_BITS bits.
#define MAX_LENGTH ((1 << MAX_LENGTH_BITS) - 1)
#if MAX_LENGTH_BITS + WINDOW_SIZE_BITS > 32
#error "MAX_LENGTH_BITS + WINDOW_SIZE_BITS > 32"
#endif

// -----------------------------------------------------------------------------

static const uint8_t plane_to_code_lut[128] = {
 96,   73,  55,  39,  23,  13,   5,  1,  255, 255, 255, 255, 255, 255, 255, 255,
 101,  78,  58,  42,  26,  16,   8,  2,    0,   3,  9,   17,  27,  43,  59,  79,
 102,  86,  62,  46,  32,  20,  10,  6,    4,   7,  11,  21,  33,  47,  63,  87,
 105,  90,  70,  52,  37,  28,  18,  14,  12,  15,  19,  29,  38,  53,  71,  91,
 110,  99,  82,  66,  48,  35,  30,  24,  22,  25,  31,  36,  49,  67,  83, 100,
 115, 108,  94,  76,  64,  50,  44,  40,  34,  41,  45,  51,  65,  77,  95, 109,
 118, 113, 103,  92,  80,  68,  60,  56,  54,  57,  61,  69,  81,  93, 104, 114,
 119, 116, 111, 106,  97,  88,  84,  74,  72,  75,  85,  89,  98, 107, 112, 117
};

static int DistanceToPlaneCode(int xsize, int dist) {
  const int yoffset = dist / xsize;
  const int xoffset = dist - yoffset * xsize;
  if (xoffset <= 8 && yoffset < 8) {
    return plane_to_code_lut[yoffset * 16 + 8 - xoffset] + 1;
  } else if (xoffset > xsize - 8 && yoffset < 7) {
    return plane_to_code_lut[(yoffset + 1) * 16 + 8 + (xsize - xoffset)] + 1;
  }
  return dist + 120;
}

// Returns the exact index where array1 and array2 are different. For an index
// inferior or equal to best_len_match, the return value just has to be strictly
// inferior to best_len_match. The current behavior is to return 0 if this index
// is best_len_match, and the index itself otherwise.
// If no two elements are the same, it returns max_limit.
static WEBP_INLINE int FindMatchLength(const uint32_t* const array1,
                                       const uint32_t* const array2,
                                       int best_len_match, int max_limit) {
  // Before 'expensive' linear match, check if the two arrays match at the
  // current best length index.
  if (array1[best_len_match] != array2[best_len_match]) return 0;

  return VP8LVectorMismatch(array1, array2, max_limit);
}

// -----------------------------------------------------------------------------
//  VP8LBackwardRefs

struct PixOrCopyBlock {
  PixOrCopyBlock* next_;   // next block (or NULL)
  PixOrCopy* start_;       // data start
  int size_;               // currently used size
};

static void ClearBackwardRefs(VP8LBackwardRefs* const refs) {
  assert(refs != NULL);
  if (refs->tail_ != NULL) {
    *refs->tail_ = refs->free_blocks_;  // recycle all blocks at once
  }
  refs->free_blocks_ = refs->refs_;
  refs->tail_ = &refs->refs_;
  refs->last_block_ = NULL;
  refs->refs_ = NULL;
}

void VP8LBackwardRefsClear(VP8LBackwardRefs* const refs) {
  assert(refs != NULL);
  ClearBackwardRefs(refs);
  while (refs->free_blocks_ != NULL) {
    PixOrCopyBlock* const next = refs->free_blocks_->next_;
    WebPSafeFree(refs->free_blocks_);
    refs->free_blocks_ = next;
  }
}

void VP8LBackwardRefsInit(VP8LBackwardRefs* const refs, int block_size) {
  assert(refs != NULL);
  memset(refs, 0, sizeof(*refs));
  refs->tail_ = &refs->refs_;
  refs->block_size_ =
      (block_size < MIN_BLOCK_SIZE) ? MIN_BLOCK_SIZE : block_size;
}

VP8LRefsCursor VP8LRefsCursorInit(const VP8LBackwardRefs* const refs) {
  VP8LRefsCursor c;
  c.cur_block_ = refs->refs_;
  if (refs->refs_ != NULL) {
    c.cur_pos = c.cur_block_->start_;
    c.last_pos_ = c.cur_pos + c.cur_block_->size_;
  } else {
    c.cur_pos = NULL;
    c.last_pos_ = NULL;
  }
  return c;
}

void VP8LRefsCursorNextBlock(VP8LRefsCursor* const c) {
  PixOrCopyBlock* const b = c->cur_block_->next_;
  c->cur_pos = (b == NULL) ? NULL : b->start_;
  c->last_pos_ = (b == NULL) ? NULL : b->start_ + b->size_;
  c->cur_block_ = b;
}

// Create a new block, either from the free list or allocated
static PixOrCopyBlock* BackwardRefsNewBlock(VP8LBackwardRefs* const refs) {
  PixOrCopyBlock* b = refs->free_blocks_;
  if (b == NULL) {   // allocate new memory chunk
    const size_t total_size =
        sizeof(*b) + refs->block_size_ * sizeof(*b->start_);
    b = (PixOrCopyBlock*)WebPSafeMalloc(1ULL, total_size);
    if (b == NULL) {
      refs->error_ |= 1;
      return NULL;
    }
    b->start_ = (PixOrCopy*)((uint8_t*)b + sizeof(*b));  // not always aligned
  } else {  // recycle from free-list
    refs->free_blocks_ = b->next_;
  }
  *refs->tail_ = b;
  refs->tail_ = &b->next_;
  refs->last_block_ = b;
  b->next_ = NULL;
  b->size_ = 0;
  return b;
}

static WEBP_INLINE void BackwardRefsCursorAdd(VP8LBackwardRefs* const refs,
                                              const PixOrCopy v) {
  PixOrCopyBlock* b = refs->last_block_;
  if (b == NULL || b->size_ == refs->block_size_) {
    b = BackwardRefsNewBlock(refs);
    if (b == NULL) return;   // refs->error_ is set
  }
  b->start_[b->size_++] = v;
}

int VP8LBackwardRefsCopy(const VP8LBackwardRefs* const src,
                         VP8LBackwardRefs* const dst) {
  const PixOrCopyBlock* b = src->refs_;
  ClearBackwardRefs(dst);
  assert(src->block_size_ == dst->block_size_);
  while (b != NULL) {
    PixOrCopyBlock* const new_b = BackwardRefsNewBlock(dst);
    if (new_b == NULL) return 0;   // dst->error_ is set
    memcpy(new_b->start_, b->start_, b->size_ * sizeof(*b->start_));
    new_b->size_ = b->size_;
    b = b->next_;
  }
  return 1;
}

// -----------------------------------------------------------------------------
// Hash chains

int VP8LHashChainInit(VP8LHashChain* const p, int size) {
  assert(p->size_ == 0);
  assert(p->offset_length_ == NULL);
  assert(size > 0);
  p->offset_length_ =
      (uint32_t*)WebPSafeMalloc(size, sizeof(*p->offset_length_));
  if (p->offset_length_ == NULL) return 0;
  p->size_ = size;

  return 1;
}

void VP8LHashChainClear(VP8LHashChain* const p) {
  assert(p != NULL);
  WebPSafeFree(p->offset_length_);

  p->size_ = 0;
  p->offset_length_ = NULL;
}

// -----------------------------------------------------------------------------

#define HASH_MULTIPLIER_HI (0xc6a4a793U)
#define HASH_MULTIPLIER_LO (0x5bd1e996U)

static WEBP_INLINE uint32_t GetPixPairHash64(const uint32_t* const argb) {
  uint32_t key;
  key  = argb[1] * HASH_MULTIPLIER_HI;
  key += argb[0] * HASH_MULTIPLIER_LO;
  key = key >> (32 - HASH_BITS);
  return key;
}

// Returns the maximum number of hash chain lookups to do for a
// given compression quality. Return value in range [8, 86].
static int GetMaxItersForQuality(int quality) {
  return 8 + (quality * quality) / 128;
}

static int GetWindowSizeForHashChain(int quality, int xsize) {
  const int max_window_size = (quality > 75) ? WINDOW_SIZE
                            : (quality > 50) ? (xsize << 8)
                            : (quality > 25) ? (xsize << 6)
                            : (xsize << 4);
  assert(xsize > 0);
  return (max_window_size > WINDOW_SIZE) ? WINDOW_SIZE : max_window_size;
}

static WEBP_INLINE int MaxFindCopyLength(int len) {
  return (len < MAX_LENGTH) ? len : MAX_LENGTH;
}

int VP8LHashChainFill(VP8LHashChain* const p, int quality,
                      const uint32_t* const argb, int xsize, int ysize) {
  const int size = xsize * ysize;
  const int iter_max = GetMaxItersForQuality(quality);
  const int iter_min = iter_max - quality / 10;
  const uint32_t window_size = GetWindowSizeForHashChain(quality, xsize);
  int pos;
  uint32_t base_position;
  int32_t* hash_to_first_index;
  // Temporarily use the p->offset_length_ as a hash chain.
  int32_t* chain = (int32_t*)p->offset_length_;
  assert(p->size_ != 0);
  assert(p->offset_length_ != NULL);

  hash_to_first_index =
      (int32_t*)WebPSafeMalloc(HASH_SIZE, sizeof(*hash_to_first_index));
  if (hash_to_first_index == NULL) return 0;

  // Set the int32_t array to -1.
  memset(hash_to_first_index, 0xff, HASH_SIZE * sizeof(*hash_to_first_index));
  // Fill the chain linking pixels with the same hash.
  for (pos = 0; pos < size - 1; ++pos) {
    const uint32_t hash_code = GetPixPairHash64(argb + pos);
    chain[pos] = hash_to_first_index[hash_code];
    hash_to_first_index[hash_code] = pos;
  }
  WebPSafeFree(hash_to_first_index);

  // Find the best match interval at each pixel, defined by an offset to the
  // pixel and a length. The right-most pixel cannot match anything to the right
  // (hence a best length of 0) and the left-most pixel nothing to the left
  // (hence an offset of 0).
  p->offset_length_[0] = p->offset_length_[size - 1] = 0;
  for (base_position = size - 2 < 0 ? 0 : size - 2; base_position > 0;) {
    const int max_len = MaxFindCopyLength(size - 1 - base_position);
    const uint32_t* const argb_start = argb + base_position;
    int iter = iter_max;
    int best_length = 0;
    uint32_t best_distance = 0;
    const int min_pos =
        (base_position > window_size) ? base_position - window_size : 0;
    const int length_max = (max_len < 256) ? max_len : 256;
    uint32_t max_base_position;

    for (pos = chain[base_position]; pos >= min_pos; pos = chain[pos]) {
      int curr_length;
      if (--iter < 0) {
        break;
      }
      assert(base_position > (uint32_t)pos);

      curr_length =
          FindMatchLength(argb + pos, argb_start, best_length, max_len);
      if (best_length < curr_length) {
        best_length = curr_length;
        best_distance = base_position - pos;
        // Stop if we have reached the maximum length. Otherwise, make sure
        // we have executed a minimum number of iterations depending on the
        // quality.
        if ((best_length == MAX_LENGTH) ||
            (curr_length >= length_max && iter < iter_min)) {
          break;
        }
      }
    }
    // We have the best match but in case the two intervals continue matching
    // to the left, we have the best matches for the left-extended pixels.
    max_base_position = base_position;
    while (1) {
      assert(best_length <= MAX_LENGTH);
      assert(best_distance <= WINDOW_SIZE);
      p->offset_length_[base_position] =
          (best_distance << MAX_LENGTH_BITS) | (uint32_t)best_length;
      --base_position;
      // Stop if we don't have a match or if we are out of bounds.
      if (best_distance == 0 || base_position == 0) break;
      // Stop if we cannot extend the matching intervals to the left.
      if (base_position < best_distance ||
          argb[base_position - best_distance] != argb[base_position]) {
        break;
      }
      // Stop if we are matching at its limit because there could be a closer
      // matching interval with the same maximum length. Then again, if the
      // matching interval is as close as possible (best_distance == 1), we will
      // never find anything better so let's continue.
      if (best_length == MAX_LENGTH && best_distance != 1 &&
          base_position + MAX_LENGTH < max_base_position) {
        break;
      }
      if (best_length < MAX_LENGTH) {
        ++best_length;
        max_base_position = base_position;
      }
    }
  }
  return 1;
}

static WEBP_INLINE int HashChainFindOffset(const VP8LHashChain* const p,
                                           const int base_position) {
  return p->offset_length_[base_position] >> MAX_LENGTH_BITS;
}

static WEBP_INLINE int HashChainFindLength(const VP8LHashChain* const p,
                                           const int base_position) {
  return p->offset_length_[base_position] & ((1U << MAX_LENGTH_BITS) - 1);
}

static WEBP_INLINE void HashChainFindCopy(const VP8LHashChain* const p,
                                          int base_position,
                                          int* const offset_ptr,
                                          int* const length_ptr) {
  *offset_ptr = HashChainFindOffset(p, base_position);
  *length_ptr = HashChainFindLength(p, base_position);
}

static WEBP_INLINE void AddSingleLiteral(uint32_t pixel, int use_color_cache,
                                         VP8LColorCache* const hashers,
                                         VP8LBackwardRefs* const refs) {
  PixOrCopy v;
  if (use_color_cache) {
    const uint32_t key = VP8LColorCacheGetIndex(hashers, pixel);
    if (VP8LColorCacheLookup(hashers, key) == pixel) {
      v = PixOrCopyCreateCacheIdx(key);
    } else {
      v = PixOrCopyCreateLiteral(pixel);
      VP8LColorCacheSet(hashers, key, pixel);
    }
  } else {
    v = PixOrCopyCreateLiteral(pixel);
  }
  BackwardRefsCursorAdd(refs, v);
}

static int BackwardReferencesRle(int xsize, int ysize,
                                 const uint32_t* const argb,
                                 int cache_bits, VP8LBackwardRefs* const refs) {
  const int pix_count = xsize * ysize;
  int i, k;
  const int use_color_cache = (cache_bits > 0);
  VP8LColorCache hashers;

  if (use_color_cache && !VP8LColorCacheInit(&hashers, cache_bits)) {
    return 0;
  }
  ClearBackwardRefs(refs);
  // Add first pixel as literal.
  AddSingleLiteral(argb[0], use_color_cache, &hashers, refs);
  i = 1;
  while (i < pix_count) {
    const int max_len = MaxFindCopyLength(pix_count - i);
    const int kMinLength = 4;
    const int rle_len = FindMatchLength(argb + i, argb + i - 1, 0, max_len);
    const int prev_row_len = (i < xsize) ? 0 :
        FindMatchLength(argb + i, argb + i - xsize, 0, max_len);
    if (rle_len >= prev_row_len && rle_len >= kMinLength) {
      BackwardRefsCursorAdd(refs, PixOrCopyCreateCopy(1, rle_len));
      // We don't need to update the color cache here since it is always the
      // same pixel being copied, and that does not change the color cache
      // state.
      i += rle_len;
    } else if (prev_row_len >= kMinLength) {
      BackwardRefsCursorAdd(refs, PixOrCopyCreateCopy(xsize, prev_row_len));
      if (use_color_cache) {
        for (k = 0; k < prev_row_len; ++k) {
          VP8LColorCacheInsert(&hashers, argb[i + k]);
        }
      }
      i += prev_row_len;
    } else {
      AddSingleLiteral(argb[i], use_color_cache, &hashers, refs);
      i++;
    }
  }
  if (use_color_cache) VP8LColorCacheClear(&hashers);
  return !refs->error_;
}

static int BackwardReferencesLz77(int xsize, int ysize,
                                  const uint32_t* const argb, int cache_bits,
                                  const VP8LHashChain* const hash_chain,
                                  VP8LBackwardRefs* const refs) {
  int i;
  int i_last_check = -1;
  int ok = 0;
  int cc_init = 0;
  const int use_color_cache = (cache_bits > 0);
  const int pix_count = xsize * ysize;
  VP8LColorCache hashers;

  if (use_color_cache) {
    cc_init = VP8LColorCacheInit(&hashers, cache_bits);
    if (!cc_init) goto Error;
  }
  ClearBackwardRefs(refs);
  for (i = 0; i < pix_count;) {
    // Alternative#1: Code the pixels starting at 'i' using backward reference.
    int offset = 0;
    int len = 0;
    int j;
    HashChainFindCopy(hash_chain, i, &offset, &len);
    if (len > MIN_LENGTH + 1) {
      const int len_ini = len;
      int max_reach = 0;
      assert(i + len < pix_count);
      // Only start from what we have not checked already.
      i_last_check = (i > i_last_check) ? i : i_last_check;
      // We know the best match for the current pixel but we try to find the
      // best matches for the current pixel AND the next one combined.
      // The naive method would use the intervals:
      // [i,i+len) + [i+len, length of best match at i+len)
      // while we check if we can use:
      // [i,j) (where j<=i+len) + [j, length of best match at j)
      for (j = i_last_check + 1; j <= i + len_ini; ++j) {
        const int len_j = HashChainFindLength(hash_chain, j);
        const int reach =
            j + (len_j > MIN_LENGTH + 1 ? len_j : 1);  // 1 for single literal.
        if (reach > max_reach) {
          len = j - i;
          max_reach = reach;
        }
      }
    } else {
      len = 1;
    }
    // Go with literal or backward reference.
    assert(len > 0);
    if (len == 1) {
      AddSingleLiteral(argb[i], use_color_cache, &hashers, refs);
    } else {
      BackwardRefsCursorAdd(refs, PixOrCopyCreateCopy(offset, len));
      if (use_color_cache) {
        for (j = i; j < i + len; ++j) VP8LColorCacheInsert(&hashers, argb[j]);
      }
    }
    i += len;
  }

  ok = !refs->error_;
 Error:
  if (cc_init) VP8LColorCacheClear(&hashers);
  return ok;
}

// -----------------------------------------------------------------------------

typedef struct {
  double alpha_[VALUES_IN_BYTE];
  double red_[VALUES_IN_BYTE];
  double blue_[VALUES_IN_BYTE];
  double distance_[NUM_DISTANCE_CODES];
  double* literal_;
} CostModel;

static int BackwardReferencesTraceBackwards(
    int xsize, int ysize, const uint32_t* const argb, int quality,
    int cache_bits, const VP8LHashChain* const hash_chain,
    VP8LBackwardRefs* const refs);

static void ConvertPopulationCountTableToBitEstimates(
    int num_symbols, const uint32_t population_counts[], double output[]) {
  uint32_t sum = 0;
  int nonzeros = 0;
  int i;
  for (i = 0; i < num_symbols; ++i) {
    sum += population_counts[i];
    if (population_counts[i] > 0) {
      ++nonzeros;
    }
  }
  if (nonzeros <= 1) {
    memset(output, 0, num_symbols * sizeof(*output));
  } else {
    const double logsum = VP8LFastLog2(sum);
    for (i = 0; i < num_symbols; ++i) {
      output[i] = logsum - VP8LFastLog2(population_counts[i]);
    }
  }
}

static int CostModelBuild(CostModel* const m, int cache_bits,
                          VP8LBackwardRefs* const refs) {
  int ok = 0;
  VP8LHistogram* const histo = VP8LAllocateHistogram(cache_bits);
  if (histo == NULL) goto Error;

  VP8LHistogramCreate(histo, refs, cache_bits);

  ConvertPopulationCountTableToBitEstimates(
      VP8LHistogramNumCodes(histo->palette_code_bits_),
      histo->literal_, m->literal_);
  ConvertPopulationCountTableToBitEstimates(
      VALUES_IN_BYTE, histo->red_, m->red_);
  ConvertPopulationCountTableToBitEstimates(
      VALUES_IN_BYTE, histo->blue_, m->blue_);
  ConvertPopulationCountTableToBitEstimates(
      VALUES_IN_BYTE, histo->alpha_, m->alpha_);
  ConvertPopulationCountTableToBitEstimates(
      NUM_DISTANCE_CODES, histo->distance_, m->distance_);
  ok = 1;

 Error:
  VP8LFreeHistogram(histo);
  return ok;
}

static WEBP_INLINE double GetLiteralCost(const CostModel* const m, uint32_t v) {
  return m->alpha_[v >> 24] +
         m->red_[(v >> 16) & 0xff] +
         m->literal_[(v >> 8) & 0xff] +
         m->blue_[v & 0xff];
}

static WEBP_INLINE double GetCacheCost(const CostModel* const m, uint32_t idx) {
  const int literal_idx = VALUES_IN_BYTE + NUM_LENGTH_CODES + idx;
  return m->literal_[literal_idx];
}

static WEBP_INLINE double GetLengthCost(const CostModel* const m,
                                        uint32_t length) {
  int code, extra_bits;
  VP8LPrefixEncodeBits(length, &code, &extra_bits);
  return m->literal_[VALUES_IN_BYTE + code] + extra_bits;
}

static WEBP_INLINE double GetDistanceCost(const CostModel* const m,
                                          uint32_t distance) {
  int code, extra_bits;
  VP8LPrefixEncodeBits(distance, &code, &extra_bits);
  return m->distance_[code] + extra_bits;
}

static void AddSingleLiteralWithCostModel(const uint32_t* const argb,
                                          VP8LColorCache* const hashers,
                                          const CostModel* const cost_model,
                                          int idx, int use_color_cache,
                                          double prev_cost, float* const cost,
                                          uint16_t* const dist_array) {
  double cost_val = prev_cost;
  const uint32_t color = argb[0];
  if (use_color_cache && VP8LColorCacheContains(hashers, color)) {
    const double mul0 = 0.68;
    const int ix = VP8LColorCacheGetIndex(hashers, color);
    cost_val += GetCacheCost(cost_model, ix) * mul0;
  } else {
    const double mul1 = 0.82;
    if (use_color_cache) VP8LColorCacheInsert(hashers, color);
    cost_val += GetLiteralCost(cost_model, color) * mul1;
  }
  if (cost[idx] > cost_val) {
    cost[idx] = (float)cost_val;
    dist_array[idx] = 1;  // only one is inserted.
  }
}

// -----------------------------------------------------------------------------
// CostManager and interval handling

// Empirical value to avoid high memory consumption but good for performance.
#define COST_CACHE_INTERVAL_SIZE_MAX 100

// To perform backward reference every pixel at index index_ is considered and
// the cost for the MAX_LENGTH following pixels computed. Those following pixels
// at index index_ + k (k from 0 to MAX_LENGTH) have a cost of:
//     distance_cost_ at index_ + GetLengthCost(cost_model, k)
//            (named cost)            (named cached cost)
// and the minimum value is kept. GetLengthCost(cost_model, k) is cached in an
// array of size MAX_LENGTH.
// Instead of performing MAX_LENGTH comparisons per pixel, we keep track of the
// minimal values using intervals, for which lower_ and upper_ bounds are kept.
// An interval is defined by the index_ of the pixel that generated it and
// is only useful in a range of indices from start_ to end_ (exclusive), i.e.
// it contains the minimum value for pixels between start_ and end_.
// Intervals are stored in a linked list and ordered by start_. When a new
// interval has a better minimum, old intervals are split or removed.
typedef struct CostInterval CostInterval;
struct CostInterval {
  double lower_;
  double upper_;
  int start_;
  int end_;
  double distance_cost_;
  int index_;
  CostInterval* previous_;
  CostInterval* next_;
};

// The GetLengthCost(cost_model, k) part of the costs is also bounded for
// efficiency in a set of intervals of a different type.
// If those intervals are small enough, they are not used for comparison and
// written into the costs right away.
typedef struct {
  double lower_;  // Lower bound of the interval.
  double upper_;  // Upper bound of the interval.
  int start_;
  int end_;       // Exclusive.
  int do_write_;  // If !=0, the interval is saved to cost instead of being kept
                  // for comparison.
} CostCacheInterval;

// This structure is in charge of managing intervals and costs.
// It caches the different CostCacheInterval, caches the different
// GetLengthCost(cost_model, k) in cost_cache_ and the CostInterval's (whose
// count_ is limited by COST_CACHE_INTERVAL_SIZE_MAX).
#define COST_MANAGER_MAX_FREE_LIST 10
typedef struct {
  CostInterval* head_;
  int count_;  // The number of stored intervals.
  CostCacheInterval* cache_intervals_;
  size_t cache_intervals_size_;
  double cost_cache_[MAX_LENGTH];  // Contains the GetLengthCost(cost_model, k).
  double min_cost_cache_;          // The minimum value in cost_cache_[1:].
  double max_cost_cache_;          // The maximum value in cost_cache_[1:].
  float* costs_;
  uint16_t* dist_array_;
  // Most of the time, we only need few intervals -> use a free-list, to avoid
  // fragmentation with small allocs in most common cases.
  CostInterval intervals_[COST_MANAGER_MAX_FREE_LIST];
  CostInterval* free_intervals_;
  // These are regularly malloc'd remains. This list can't grow larger than than
  // size COST_CACHE_INTERVAL_SIZE_MAX - COST_MANAGER_MAX_FREE_LIST, note.
  CostInterval* recycled_intervals_;
  // Buffer used in BackwardReferencesHashChainDistanceOnly to store the ends
  // of the intervals that can have impacted the cost at a pixel.
  int* interval_ends_;
  int interval_ends_size_;
} CostManager;

static int IsCostCacheIntervalWritable(int start, int end) {
  // 100 is the length for which we consider an interval for comparison, and not
  // for writing.
  // The first intervals are very small and go in increasing size. This constant
  // helps merging them into one big interval (up to index 150/200 usually from
  // which intervals start getting much bigger).
  // This value is empirical.
  return (end - start + 1 < 100);
}

static void CostIntervalAddToFreeList(CostManager* const manager,
                                      CostInterval* const interval) {
  interval->next_ = manager->free_intervals_;
  manager->free_intervals_ = interval;
}

static int CostIntervalIsInFreeList(const CostManager* const manager,
                                    const CostInterval* const interval) {
  return (interval >= &manager->intervals_[0] &&
          interval <= &manager->intervals_[COST_MANAGER_MAX_FREE_LIST - 1]);
}

static void CostManagerInitFreeList(CostManager* const manager) {
  int i;
  manager->free_intervals_ = NULL;
  for (i = 0; i < COST_MANAGER_MAX_FREE_LIST; ++i) {
    CostIntervalAddToFreeList(manager, &manager->intervals_[i]);
  }
}

static void DeleteIntervalList(CostManager* const manager,
                               const CostInterval* interval) {
  while (interval != NULL) {
    const CostInterval* const next = interval->next_;
    if (!CostIntervalIsInFreeList(manager, interval)) {
      WebPSafeFree((void*)interval);
    }  // else: do nothing
    interval = next;
  }
}

static void CostManagerClear(CostManager* const manager) {
  if (manager == NULL) return;

  WebPSafeFree(manager->costs_);
  WebPSafeFree(manager->cache_intervals_);
  WebPSafeFree(manager->interval_ends_);

  // Clear the interval lists.
  DeleteIntervalList(manager, manager->head_);
  manager->head_ = NULL;
  DeleteIntervalList(manager, manager->recycled_intervals_);
  manager->recycled_intervals_ = NULL;

  // Reset pointers, count_ and cache_intervals_size_.
  memset(manager, 0, sizeof(*manager));
  CostManagerInitFreeList(manager);
}

static int CostManagerInit(CostManager* const manager,
                           uint16_t* const dist_array, int pix_count,
                           const CostModel* const cost_model) {
  int i;
  const int cost_cache_size = (pix_count > MAX_LENGTH) ? MAX_LENGTH : pix_count;
  // This constant is tied to the cost_model we use.
  // Empirically, differences between intervals is usually of more than 1.
  const double min_cost_diff = 0.1;

  manager->costs_ = NULL;
  manager->cache_intervals_ = NULL;
  manager->interval_ends_ = NULL;
  manager->head_ = NULL;
  manager->recycled_intervals_ = NULL;
  manager->count_ = 0;
  manager->dist_array_ = dist_array;
  CostManagerInitFreeList(manager);

  // Fill in the cost_cache_.
  manager->cache_intervals_size_ = 1;
  manager->cost_cache_[0] = 0;
  for (i = 1; i < cost_cache_size; ++i) {
    manager->cost_cache_[i] = GetLengthCost(cost_model, i);
    // Get an approximation of the number of bound intervals.
    if (fabs(manager->cost_cache_[i] - manager->cost_cache_[i - 1]) >
        min_cost_diff) {
      ++manager->cache_intervals_size_;
    }
    // Compute the minimum of cost_cache_.
    if (i == 1) {
      manager->min_cost_cache_ = manager->cost_cache_[1];
      manager->max_cost_cache_ = manager->cost_cache_[1];
    } else if (manager->cost_cache_[i] < manager->min_cost_cache_) {
      manager->min_cost_cache_ = manager->cost_cache_[i];
    } else if (manager->cost_cache_[i] > manager->max_cost_cache_) {
      manager->max_cost_cache_ = manager->cost_cache_[i];
    }
  }

  // With the current cost models, we have 15 intervals, so we are safe by
  // setting a maximum of COST_CACHE_INTERVAL_SIZE_MAX.
  if (manager->cache_intervals_size_ > COST_CACHE_INTERVAL_SIZE_MAX) {
    manager->cache_intervals_size_ = COST_CACHE_INTERVAL_SIZE_MAX;
  }
  manager->cache_intervals_ = (CostCacheInterval*)WebPSafeMalloc(
      manager->cache_intervals_size_, sizeof(*manager->cache_intervals_));
  if (manager->cache_intervals_ == NULL) {
    CostManagerClear(manager);
    return 0;
  }

  // Fill in the cache_intervals_.
  {
    double cost_prev = -1e38f;  // unprobably low initial value
    CostCacheInterval* prev = NULL;
    CostCacheInterval* cur = manager->cache_intervals_;
    const CostCacheInterval* const end =
        manager->cache_intervals_ + manager->cache_intervals_size_;

    // Consecutive values in cost_cache_ are compared and if a big enough
    // difference is found, a new interval is created and bounded.
    for (i = 0; i < cost_cache_size; ++i) {
      const double cost_val = manager->cost_cache_[i];
      if (i == 0 ||
          (fabs(cost_val - cost_prev) > min_cost_diff && cur + 1 < end)) {
        if (i > 1) {
          const int is_writable =
              IsCostCacheIntervalWritable(cur->start_, cur->end_);
          // Merge with the previous interval if both are writable.
          if (is_writable && cur != manager->cache_intervals_ &&
              prev->do_write_) {
            // Update the previous interval.
            prev->end_ = cur->end_;
            if (cur->lower_ < prev->lower_) {
              prev->lower_ = cur->lower_;
            } else if (cur->upper_ > prev->upper_) {
              prev->upper_ = cur->upper_;
            }
          } else {
            cur->do_write_ = is_writable;
            prev = cur;
            ++cur;
          }
        }
        // Initialize an interval.
        cur->start_ = i;
        cur->do_write_ = 0;
        cur->lower_ = cost_val;
        cur->upper_ = cost_val;
      } else {
        // Update the current interval bounds.
        if (cost_val < cur->lower_) {
          cur->lower_ = cost_val;
        } else if (cost_val > cur->upper_) {
          cur->upper_ = cost_val;
        }
      }
      cur->end_ = i + 1;
      cost_prev = cost_val;
    }
    manager->cache_intervals_size_ = cur + 1 - manager->cache_intervals_;
  }

  manager->costs_ = (float*)WebPSafeMalloc(pix_count, sizeof(*manager->costs_));
  if (manager->costs_ == NULL) {
    CostManagerClear(manager);
    return 0;
  }
  // Set the initial costs_ high for every pixel as we will keep the minimum.
  for (i = 0; i < pix_count; ++i) manager->costs_[i] = 1e38f;

  // The cost at pixel is influenced by the cost intervals from previous pixels.
  // Let us take the specific case where the offset is the same (which actually
  // happens a lot in case of uniform regions).
  // pixel i contributes to j>i a cost of: offset cost + cost_cache_[j-i]
  // pixel i+1 contributes to j>i a cost of: 2*offset cost + cost_cache_[j-i-1]
  // pixel i+2 contributes to j>i a cost of: 3*offset cost + cost_cache_[j-i-2]
  // and so on.
  // A pixel i influences the following length(j) < MAX_LENGTH pixels. What is
  // the value of j such that pixel i + j cannot influence any of those pixels?
  // This value is such that:
  //               max of cost_cache_ < j*offset cost + min of cost_cache_
  // (pixel i + j 's cost cannot beat the worst cost given by pixel i).
  // This value will be used to optimize the cost computation in
  // BackwardReferencesHashChainDistanceOnly.
  {
    // The offset cost is computed in GetDistanceCost and has a minimum value of
    // the minimum in cost_model->distance_. The case where the offset cost is 0
    // will be dealt with differently later so we are only interested in the
    // minimum non-zero offset cost.
    double offset_cost_min = 0.;
    int size;
    for (i = 0; i < NUM_DISTANCE_CODES; ++i) {
      if (cost_model->distance_[i] != 0) {
        if (offset_cost_min == 0.) {
          offset_cost_min = cost_model->distance_[i];
        } else if (cost_model->distance_[i] < offset_cost_min) {
          offset_cost_min = cost_model->distance_[i];
        }
      }
    }
    // In case all the cost_model->distance_ is 0, the next non-zero cost we
    // can have is from the extra bit in GetDistanceCost, hence 1.
    if (offset_cost_min < 1.) offset_cost_min = 1.;

    size = 1 + (int)ceil((manager->max_cost_cache_ - manager->min_cost_cache_) /
                         offset_cost_min);
    // Empirically, we usually end up with a value below 100.
    if (size > MAX_LENGTH) size = MAX_LENGTH;

    manager->interval_ends_ =
        (int*)WebPSafeMalloc(size, sizeof(*manager->interval_ends_));
    if (manager->interval_ends_ == NULL) {
      CostManagerClear(manager);
      return 0;
    }
    manager->interval_ends_size_ = size;
  }

  return 1;
}

// Given the distance_cost for pixel 'index', update the cost at pixel 'i' if it
// is smaller than the previously computed value.
static WEBP_INLINE void UpdateCost(CostManager* const manager, int i, int index,
                                   double distance_cost) {
  int k = i - index;
  double cost_tmp;
  assert(k >= 0 && k < MAX_LENGTH);
  cost_tmp = distance_cost + manager->cost_cache_[k];

  if (manager->costs_[i] > cost_tmp) {
    manager->costs_[i] = (float)cost_tmp;
    manager->dist_array_[i] = k + 1;
  }
}

// Given the distance_cost for pixel 'index', update the cost for all the pixels
// between 'start' and 'end' excluded.
static WEBP_INLINE void UpdateCostPerInterval(CostManager* const manager,
                                              int start, int end, int index,
                                              double distance_cost) {
  int i;
  for (i = start; i < end; ++i) UpdateCost(manager, i, index, distance_cost);
}

// Given two intervals, make 'prev' be the previous one of 'next' in 'manager'.
static WEBP_INLINE void ConnectIntervals(CostManager* const manager,
                                         CostInterval* const prev,
                                         CostInterval* const next) {
  if (prev != NULL) {
    prev->next_ = next;
  } else {
    manager->head_ = next;
  }

  if (next != NULL) next->previous_ = prev;
}

// Pop an interval in the manager.
static WEBP_INLINE void PopInterval(CostManager* const manager,
                                    CostInterval* const interval) {
  CostInterval* const next = interval->next_;

  if (interval == NULL) return;

  ConnectIntervals(manager, interval->previous_, next);
  if (CostIntervalIsInFreeList(manager, interval)) {
    CostIntervalAddToFreeList(manager, interval);
  } else {  // recycle regularly malloc'd intervals too
    interval->next_ = manager->recycled_intervals_;
    manager->recycled_intervals_ = interval;
  }
  --manager->count_;
  assert(manager->count_ >= 0);
}

// Update the cost at index i by going over all the stored intervals that
// overlap with i.
static WEBP_INLINE void UpdateCostPerIndex(CostManager* const manager, int i) {
  CostInterval* current = manager->head_;

  while (current != NULL && current->start_ <= i) {
    if (current->end_ <= i) {
      // We have an outdated interval, remove it.
      CostInterval* next = current->next_;
      PopInterval(manager, current);
      current = next;
    } else {
      UpdateCost(manager, i, current->index_, current->distance_cost_);
      current = current->next_;
    }
  }
}

// Given a current orphan interval and its previous interval, before
// it was orphaned (which can be NULL), set it at the right place in the list
// of intervals using the start_ ordering and the previous interval as a hint.
static WEBP_INLINE void PositionOrphanInterval(CostManager* const manager,
                                               CostInterval* const current,
                                               CostInterval* previous) {
  assert(current != NULL);

  if (previous == NULL) previous = manager->head_;
  while (previous != NULL && current->start_ < previous->start_) {
    previous = previous->previous_;
  }
  while (previous != NULL && previous->next_ != NULL &&
         previous->next_->start_ < current->start_) {
    previous = previous->next_;
  }

  if (previous != NULL) {
    ConnectIntervals(manager, current, previous->next_);
  } else {
    ConnectIntervals(manager, current, manager->head_);
  }
  ConnectIntervals(manager, previous, current);
}

// Insert an interval in the list contained in the manager by starting at
// interval_in as a hint. The intervals are sorted by start_ value.
static WEBP_INLINE void InsertInterval(CostManager* const manager,
                                       CostInterval* const interval_in,
                                       double distance_cost, double lower,
                                       double upper, int index, int start,
                                       int end) {
  CostInterval* interval_new;

  if (IsCostCacheIntervalWritable(start, end) ||
      manager->count_ >= COST_CACHE_INTERVAL_SIZE_MAX) {
    // Write down the interval if it is too small.
    UpdateCostPerInterval(manager, start, end, index, distance_cost);
    return;
  }
  if (manager->free_intervals_ != NULL) {
    interval_new = manager->free_intervals_;
    manager->free_intervals_ = interval_new->next_;
  } else if (manager->recycled_intervals_ != NULL) {
    interval_new = manager->recycled_intervals_;
    manager->recycled_intervals_ = interval_new->next_;
  } else {   // malloc for good
    interval_new = (CostInterval*)WebPSafeMalloc(1, sizeof(*interval_new));
    if (interval_new == NULL) {
      // Write down the interval if we cannot create it.
      UpdateCostPerInterval(manager, start, end, index, distance_cost);
      return;
    }
  }

  interval_new->distance_cost_ = distance_cost;
  interval_new->lower_ = lower;
  interval_new->upper_ = upper;
  interval_new->index_ = index;
  interval_new->start_ = start;
  interval_new->end_ = end;
  PositionOrphanInterval(manager, interval_new, interval_in);

  ++manager->count_;
}

// When an interval has its start_ or end_ modified, it needs to be
// repositioned in the linked list.
static WEBP_INLINE void RepositionInterval(CostManager* const manager,
                                           CostInterval* const interval) {
  if (IsCostCacheIntervalWritable(interval->start_, interval->end_)) {
    // Maybe interval has been resized and is small enough to be removed.
    UpdateCostPerInterval(manager, interval->start_, interval->end_,
                          interval->index_, interval->distance_cost_);
    PopInterval(manager, interval);
    return;
  }

  // Early exit if interval is at the right spot.
  if ((interval->previous_ == NULL ||
       interval->previous_->start_ <= interval->start_) &&
      (interval->next_ == NULL ||
       interval->start_ <= interval->next_->start_)) {
    return;
  }

  ConnectIntervals(manager, interval->previous_, interval->next_);
  PositionOrphanInterval(manager, interval, interval->previous_);
}

// Given a new cost interval defined by its start at index, its last value and
// distance_cost, add its contributions to the previous intervals and costs.
// If handling the interval or one of its subintervals becomes to heavy, its
// contribution is added to the costs right away.
static WEBP_INLINE void PushInterval(CostManager* const manager,
                                     double distance_cost, int index,
                                     int last) {
  size_t i;
  CostInterval* interval = manager->head_;
  CostInterval* interval_next;
  const CostCacheInterval* const cost_cache_intervals =
      manager->cache_intervals_;

  for (i = 0; i < manager->cache_intervals_size_ &&
              cost_cache_intervals[i].start_ < last;
       ++i) {
    // Define the intersection of the ith interval with the new one.
    int start = index + cost_cache_intervals[i].start_;
    const int end = index + (cost_cache_intervals[i].end_ > last
                                 ? last
                                 : cost_cache_intervals[i].end_);
    const double lower_in = cost_cache_intervals[i].lower_;
    const double upper_in = cost_cache_intervals[i].upper_;
    const double lower_full_in = distance_cost + lower_in;
    const double upper_full_in = distance_cost + upper_in;

    if (cost_cache_intervals[i].do_write_) {
      UpdateCostPerInterval(manager, start, end, index, distance_cost);
      continue;
    }

    for (; interval != NULL && interval->start_ < end && start < end;
         interval = interval_next) {
      const double lower_full_interval =
          interval->distance_cost_ + interval->lower_;
      const double upper_full_interval =
          interval->distance_cost_ + interval->upper_;

      interval_next = interval->next_;

      // Make sure we have some overlap
      if (start >= interval->end_) continue;

      if (lower_full_in >= upper_full_interval) {
        // When intervals are represented, the lower, the better.
        // [**********************************************************]
        // start                                                    end
        //                   [----------------------------------]
        //                   interval->start_       interval->end_
        // If we are worse than what we already have, add whatever we have so
        // far up to interval.
        const int start_new = interval->end_;
        InsertInterval(manager, interval, distance_cost, lower_in, upper_in,
                       index, start, interval->start_);
        start = start_new;
        continue;
      }

      // We know the two intervals intersect.
      if (upper_full_in >= lower_full_interval) {
        // There is no clear cut on which is best, so let's keep both.
        // [*********[*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*]***********]
        // start     interval->start_     interval->end_         end
        // OR
        // [*********[*-*-*-*-*-*-*-*-*-*-*-]----------------------]
        // start     interval->start_     end          interval->end_
        const int end_new = (interval->end_ <= end) ? interval->end_ : end;
        InsertInterval(manager, interval, distance_cost, lower_in, upper_in,
                       index, start, end_new);
        start = end_new;
      } else if (start <= interval->start_ && interval->end_ <= end) {
        //                   [----------------------------------]
        //                   interval->start_       interval->end_
        // [**************************************************************]
        // start                                                        end
        // We can safely remove the old interval as it is fully included.
        PopInterval(manager, interval);
      } else {
        if (interval->start_ <= start && end <= interval->end_) {
          // [--------------------------------------------------------------]
          // interval->start_                                  interval->end_
          //                     [*****************************]
          //                     start                       end
          // We have to split the old interval as it fully contains the new one.
          const int end_original = interval->end_;
          interval->end_ = start;
          InsertInterval(manager, interval, interval->distance_cost_,
                         interval->lower_, interval->upper_, interval->index_,
                         end, end_original);
        } else if (interval->start_ < start) {
          // [------------------------------------]
          // interval->start_        interval->end_
          //                     [*****************************]
          //                     start                       end
          interval->end_ = start;
        } else {
          //              [------------------------------------]
          //              interval->start_        interval->end_
          // [*****************************]
          // start                       end
          interval->start_ = end;
        }

        // The interval has been modified, we need to reposition it or write it.
        RepositionInterval(manager, interval);
      }
    }
    // Insert the remaining interval from start to end.
    InsertInterval(manager, interval, distance_cost, lower_in, upper_in, index,
                   start, end);
  }
}

static int BackwardReferencesHashChainDistanceOnly(
    int xsize, int ysize, const uint32_t* const argb, int quality,
    int cache_bits, const VP8LHashChain* const hash_chain,
    VP8LBackwardRefs* const refs, uint16_t* const dist_array) {
  int i;
  int ok = 0;
  int cc_init = 0;
  const int pix_count = xsize * ysize;
  const int use_color_cache = (cache_bits > 0);
  const size_t literal_array_size = sizeof(double) *
      (NUM_LITERAL_CODES + NUM_LENGTH_CODES +
       ((cache_bits > 0) ? (1 << cache_bits) : 0));
  const size_t cost_model_size = sizeof(CostModel) + literal_array_size;
  CostModel* const cost_model =
      (CostModel*)WebPSafeCalloc(1ULL, cost_model_size);
  VP8LColorCache hashers;
  const int skip_length = 32 + quality;
  const int skip_min_distance_code = 2;
  CostManager* cost_manager =
      (CostManager*)WebPSafeMalloc(1ULL, sizeof(*cost_manager));

  if (cost_model == NULL || cost_manager == NULL) goto Error;

  cost_model->literal_ = (double*)(cost_model + 1);
  if (use_color_cache) {
    cc_init = VP8LColorCacheInit(&hashers, cache_bits);
    if (!cc_init) goto Error;
  }

  if (!CostModelBuild(cost_model, cache_bits, refs)) {
    goto Error;
  }

  if (!CostManagerInit(cost_manager, dist_array, pix_count, cost_model)) {
    goto Error;
  }

  // We loop one pixel at a time, but store all currently best points to
  // non-processed locations from this point.
  dist_array[0] = 0;
  // Add first pixel as literal.
  AddSingleLiteralWithCostModel(argb + 0, &hashers, cost_model, 0,
                                use_color_cache, 0.0, cost_manager->costs_,
                                dist_array);

  for (i = 1; i < pix_count - 1; ++i) {
    int offset = 0, len = 0;
    double prev_cost = cost_manager->costs_[i - 1];
    HashChainFindCopy(hash_chain, i, &offset, &len);
    if (len >= MIN_LENGTH) {
      const int code = DistanceToPlaneCode(xsize, offset);
      const double offset_cost = GetDistanceCost(cost_model, code);
      const int first_i = i;
      int j_max = 0, interval_ends_index = 0;
      const int is_offset_zero = (offset_cost == 0.);

      if (!is_offset_zero) {
        j_max = (int)ceil(
            (cost_manager->max_cost_cache_ - cost_manager->min_cost_cache_) /
            offset_cost);
        if (j_max < 1) {
          j_max = 1;
        } else if (j_max > cost_manager->interval_ends_size_ - 1) {
          // This could only happen in the case of MAX_LENGTH.
          j_max = cost_manager->interval_ends_size_ - 1;
        }
      }  // else j_max is unused anyway.

      // Instead of considering all contributions from a pixel i by calling:
      //         PushInterval(cost_manager, prev_cost + offset_cost, i, len);
      // we optimize these contributions in case offset_cost stays the same for
      // consecutive pixels. This describes a set of pixels similar to a
      // previous set (e.g. constant color regions).
      for (; i < pix_count - 1; ++i) {
        int offset_next, len_next;
        prev_cost = cost_manager->costs_[i - 1];

        if (is_offset_zero) {
          // No optimization can be made so we just push all of the
          // contributions from i.
          PushInterval(cost_manager, prev_cost, i, len);
        } else {
          // j_max is chosen as the smallest j such that:
          //       max of cost_cache_ < j*offset cost + min of cost_cache_
          // Therefore, the pixel influenced by i-j_max, cannot be influenced
          // by i. Only the costs after the end of what i contributed need to be
          // updated. cost_manager->interval_ends_ is a circular buffer that
          // stores those ends.
          const double distance_cost = prev_cost + offset_cost;
          int j = cost_manager->interval_ends_[interval_ends_index];
          if (i - first_i <= j_max ||
              !IsCostCacheIntervalWritable(j, i + len)) {
            PushInterval(cost_manager, distance_cost, i, len);
          } else {
            for (; j < i + len; ++j) {
              UpdateCost(cost_manager, j, i, distance_cost);
            }
          }
          // Store the new end in the circular buffer.
          assert(interval_ends_index < cost_manager->interval_ends_size_);
          cost_manager->interval_ends_[interval_ends_index] = i + len;
          if (++interval_ends_index > j_max) interval_ends_index = 0;
        }

        // Check whether i is the last pixel to consider, as it is handled
        // differently.
        if (i + 1 >= pix_count - 1) break;
        HashChainFindCopy(hash_chain, i + 1, &offset_next, &len_next);
        if (offset_next != offset) break;
        len = len_next;
        UpdateCostPerIndex(cost_manager, i);
        AddSingleLiteralWithCostModel(argb + i, &hashers, cost_model, i,
                                      use_color_cache, prev_cost,
                                      cost_manager->costs_, dist_array);
      }
      // Submit the last pixel.
      UpdateCostPerIndex(cost_manager, i + 1);

      // This if is for speedup only. It roughly doubles the speed, and
      // makes compression worse by .1 %.
      if (len >= skip_length && code <= skip_min_distance_code) {
        // Long copy for short distances, let's skip the middle
        // lookups for better copies.
        // 1) insert the hashes.
        if (use_color_cache) {
          int k;
          for (k = 0; k < len; ++k) {
            VP8LColorCacheInsert(&hashers, argb[i + k]);
          }
        }
        // 2) jump.
        {
          const int i_next = i + len - 1;  // for loop does ++i, thus -1 here.
          for (; i <= i_next; ++i) UpdateCostPerIndex(cost_manager, i + 1);
          i = i_next;
        }
        goto next_symbol;
      }
      if (len > MIN_LENGTH) {
        int code_min_length;
        double cost_total;
        offset = HashChainFindOffset(hash_chain, i);
        code_min_length = DistanceToPlaneCode(xsize, offset);
        cost_total = prev_cost +
            GetDistanceCost(cost_model, code_min_length) +
            GetLengthCost(cost_model, 1);
        if (cost_manager->costs_[i + 1] > cost_total) {
          cost_manager->costs_[i + 1] = (float)cost_total;
          dist_array[i + 1] = 2;
        }
      }
    } else {    // len < MIN_LENGTH
      UpdateCostPerIndex(cost_manager, i + 1);
    }

    AddSingleLiteralWithCostModel(argb + i, &hashers, cost_model, i,
                                  use_color_cache, prev_cost,
                                  cost_manager->costs_, dist_array);

 next_symbol: ;
  }
  // Handle the last pixel.
  if (i == (pix_count - 1)) {
    AddSingleLiteralWithCostModel(
        argb + i, &hashers, cost_model, i, use_color_cache,
        cost_manager->costs_[pix_count - 2], cost_manager->costs_, dist_array);
  }

  ok = !refs->error_;
 Error:
  if (cc_init) VP8LColorCacheClear(&hashers);
  CostManagerClear(cost_manager);
  WebPSafeFree(cost_model);
  WebPSafeFree(cost_manager);
  return ok;
}

// We pack the path at the end of *dist_array and return
// a pointer to this part of the array. Example:
// dist_array = [1x2xx3x2] => packed [1x2x1232], chosen_path = [1232]
static void TraceBackwards(uint16_t* const dist_array,
                           int dist_array_size,
                           uint16_t** const chosen_path,
                           int* const chosen_path_size) {
  uint16_t* path = dist_array + dist_array_size;
  uint16_t* cur = dist_array + dist_array_size - 1;
  while (cur >= dist_array) {
    const int k = *cur;
    --path;
    *path = k;
    cur -= k;
  }
  *chosen_path = path;
  *chosen_path_size = (int)(dist_array + dist_array_size - path);
}

static int BackwardReferencesHashChainFollowChosenPath(
    const uint32_t* const argb, int cache_bits,
    const uint16_t* const chosen_path, int chosen_path_size,
    const VP8LHashChain* const hash_chain, VP8LBackwardRefs* const refs) {
  const int use_color_cache = (cache_bits > 0);
  int ix;
  int i = 0;
  int ok = 0;
  int cc_init = 0;
  VP8LColorCache hashers;

  if (use_color_cache) {
    cc_init = VP8LColorCacheInit(&hashers, cache_bits);
    if (!cc_init) goto Error;
  }

  ClearBackwardRefs(refs);
  for (ix = 0; ix < chosen_path_size; ++ix) {
    const int len = chosen_path[ix];
    if (len != 1) {
      int k;
      const int offset = HashChainFindOffset(hash_chain, i);
      BackwardRefsCursorAdd(refs, PixOrCopyCreateCopy(offset, len));
      if (use_color_cache) {
        for (k = 0; k < len; ++k) {
          VP8LColorCacheInsert(&hashers, argb[i + k]);
        }
      }
      i += len;
    } else {
      PixOrCopy v;
      if (use_color_cache && VP8LColorCacheContains(&hashers, argb[i])) {
        // push pixel as a color cache index
        const int idx = VP8LColorCacheGetIndex(&hashers, argb[i]);
        v = PixOrCopyCreateCacheIdx(idx);
      } else {
        if (use_color_cache) VP8LColorCacheInsert(&hashers, argb[i]);
        v = PixOrCopyCreateLiteral(argb[i]);
      }
      BackwardRefsCursorAdd(refs, v);
      ++i;
    }
  }
  ok = !refs->error_;
 Error:
  if (cc_init) VP8LColorCacheClear(&hashers);
  return ok;
}

// Returns 1 on success.
static int BackwardReferencesTraceBackwards(
    int xsize, int ysize, const uint32_t* const argb, int quality,
    int cache_bits, const VP8LHashChain* const hash_chain,
    VP8LBackwardRefs* const refs) {
  int ok = 0;
  const int dist_array_size = xsize * ysize;
  uint16_t* chosen_path = NULL;
  int chosen_path_size = 0;
  uint16_t* dist_array =
      (uint16_t*)WebPSafeMalloc(dist_array_size, sizeof(*dist_array));

  if (dist_array == NULL) goto Error;

  if (!BackwardReferencesHashChainDistanceOnly(
      xsize, ysize, argb, quality, cache_bits, hash_chain,
      refs, dist_array)) {
    goto Error;
  }
  TraceBackwards(dist_array, dist_array_size, &chosen_path, &chosen_path_size);
  if (!BackwardReferencesHashChainFollowChosenPath(
          argb, cache_bits, chosen_path, chosen_path_size, hash_chain, refs)) {
    goto Error;
  }
  ok = 1;
 Error:
  WebPSafeFree(dist_array);
  return ok;
}

static void BackwardReferences2DLocality(int xsize,
                                         const VP8LBackwardRefs* const refs) {
  VP8LRefsCursor c = VP8LRefsCursorInit(refs);
  while (VP8LRefsCursorOk(&c)) {
    if (PixOrCopyIsCopy(c.cur_pos)) {
      const int dist = c.cur_pos->argb_or_distance;
      const int transformed_dist = DistanceToPlaneCode(xsize, dist);
      c.cur_pos->argb_or_distance = transformed_dist;
    }
    VP8LRefsCursorNext(&c);
  }
}

// Returns entropy for the given cache bits.
static double ComputeCacheEntropy(const uint32_t* argb,
                                  const VP8LBackwardRefs* const refs,
                                  int cache_bits) {
  const int use_color_cache = (cache_bits > 0);
  int cc_init = 0;
  double entropy = MAX_ENTROPY;
  const double kSmallPenaltyForLargeCache = 4.0;
  VP8LColorCache hashers;
  VP8LRefsCursor c = VP8LRefsCursorInit(refs);
  VP8LHistogram* histo = VP8LAllocateHistogram(cache_bits);
  if (histo == NULL) goto Error;

  if (use_color_cache) {
    cc_init = VP8LColorCacheInit(&hashers, cache_bits);
    if (!cc_init) goto Error;
  }
  if (!use_color_cache) {
    while (VP8LRefsCursorOk(&c)) {
      VP8LHistogramAddSinglePixOrCopy(histo, c.cur_pos);
      VP8LRefsCursorNext(&c);
    }
  } else {
    while (VP8LRefsCursorOk(&c)) {
      const PixOrCopy* const v = c.cur_pos;
      if (PixOrCopyIsLiteral(v)) {
        const uint32_t pix = *argb++;
        const uint32_t key = VP8LColorCacheGetIndex(&hashers, pix);
        if (VP8LColorCacheLookup(&hashers, key) == pix) {
          ++histo->literal_[NUM_LITERAL_CODES + NUM_LENGTH_CODES + key];
        } else {
          VP8LColorCacheSet(&hashers, key, pix);
          ++histo->blue_[pix & 0xff];
          ++histo->literal_[(pix >> 8) & 0xff];
          ++histo->red_[(pix >> 16) & 0xff];
          ++histo->alpha_[pix >> 24];
        }
      } else {
        int len = PixOrCopyLength(v);
        int code, extra_bits;
        VP8LPrefixEncodeBits(len, &code, &extra_bits);
        ++histo->literal_[NUM_LITERAL_CODES + code];
        VP8LPrefixEncodeBits(PixOrCopyDistance(v), &code, &extra_bits);
        ++histo->distance_[code];
        do {
          VP8LColorCacheInsert(&hashers, *argb++);
        } while(--len != 0);
      }
      VP8LRefsCursorNext(&c);
    }
  }
  entropy = VP8LHistogramEstimateBits(histo) +
      kSmallPenaltyForLargeCache * cache_bits;
 Error:
  if (cc_init) VP8LColorCacheClear(&hashers);
  VP8LFreeHistogram(histo);
  return entropy;
}

// Evaluate optimal cache bits for the local color cache.
// The input *best_cache_bits sets the maximum cache bits to use (passing 0
// implies disabling the local color cache). The local color cache is also
// disabled for the lower (<= 25) quality.
// Returns 0 in case of memory error.
static int CalculateBestCacheSize(const uint32_t* const argb,
                                  int xsize, int ysize, int quality,
                                  const VP8LHashChain* const hash_chain,
                                  VP8LBackwardRefs* const refs,
                                  int* const lz77_computed,
                                  int* const best_cache_bits) {
  int eval_low = 1;
  int eval_high = 1;
  double entropy_low = MAX_ENTROPY;
  double entropy_high = MAX_ENTROPY;
  const double cost_mul = 5e-4;
  int cache_bits_low = 0;
  int cache_bits_high = (quality <= 25) ? 0 : *best_cache_bits;

  assert(cache_bits_high <= MAX_COLOR_CACHE_BITS);

  *lz77_computed = 0;
  if (cache_bits_high == 0) {
    *best_cache_bits = 0;
    // Local color cache is disabled.
    return 1;
  }
  if (!BackwardReferencesLz77(xsize, ysize, argb, cache_bits_low, hash_chain,
                              refs)) {
    return 0;
  }
  // Do a binary search to find the optimal entropy for cache_bits.
  while (eval_low || eval_high) {
    if (eval_low) {
      entropy_low = ComputeCacheEntropy(argb, refs, cache_bits_low);
      entropy_low += entropy_low * cache_bits_low * cost_mul;
      eval_low = 0;
    }
    if (eval_high) {
      entropy_high = ComputeCacheEntropy(argb, refs, cache_bits_high);
      entropy_high += entropy_high * cache_bits_high * cost_mul;
      eval_high = 0;
    }
    if (entropy_high < entropy_low) {
      const int prev_cache_bits_low = cache_bits_low;
      *best_cache_bits = cache_bits_high;
      cache_bits_low = (cache_bits_low + cache_bits_high) / 2;
      if (cache_bits_low != prev_cache_bits_low) eval_low = 1;
    } else {
      *best_cache_bits = cache_bits_low;
      cache_bits_high = (cache_bits_low + cache_bits_high) / 2;
      if (cache_bits_high != cache_bits_low) eval_high = 1;
    }
  }
  *lz77_computed = 1;
  return 1;
}

// Update (in-place) backward references for specified cache_bits.
static int BackwardRefsWithLocalCache(const uint32_t* const argb,
                                      int cache_bits,
                                      VP8LBackwardRefs* const refs) {
  int pixel_index = 0;
  VP8LColorCache hashers;
  VP8LRefsCursor c = VP8LRefsCursorInit(refs);
  if (!VP8LColorCacheInit(&hashers, cache_bits)) return 0;

  while (VP8LRefsCursorOk(&c)) {
    PixOrCopy* const v = c.cur_pos;
    if (PixOrCopyIsLiteral(v)) {
      const uint32_t argb_literal = v->argb_or_distance;
      if (VP8LColorCacheContains(&hashers, argb_literal)) {
        const int ix = VP8LColorCacheGetIndex(&hashers, argb_literal);
        *v = PixOrCopyCreateCacheIdx(ix);
      } else {
        VP8LColorCacheInsert(&hashers, argb_literal);
      }
      ++pixel_index;
    } else {
      // refs was created without local cache, so it can not have cache indexes.
      int k;
      assert(PixOrCopyIsCopy(v));
      for (k = 0; k < v->len; ++k) {
        VP8LColorCacheInsert(&hashers, argb[pixel_index++]);
      }
    }
    VP8LRefsCursorNext(&c);
  }
  VP8LColorCacheClear(&hashers);
  return 1;
}

static VP8LBackwardRefs* GetBackwardReferencesLowEffort(
    int width, int height, const uint32_t* const argb,
    int* const cache_bits, const VP8LHashChain* const hash_chain,
    VP8LBackwardRefs refs_array[2]) {
  VP8LBackwardRefs* refs_lz77 = &refs_array[0];
  *cache_bits = 0;
  if (!BackwardReferencesLz77(width, height, argb, 0, hash_chain, refs_lz77)) {
    return NULL;
  }
  BackwardReferences2DLocality(width, refs_lz77);
  return refs_lz77;
}

static VP8LBackwardRefs* GetBackwardReferences(
    int width, int height, const uint32_t* const argb, int quality,
    int* const cache_bits, const VP8LHashChain* const hash_chain,
    VP8LBackwardRefs refs_array[2]) {
  int lz77_is_useful;
  int lz77_computed;
  double bit_cost_lz77, bit_cost_rle;
  VP8LBackwardRefs* best = NULL;
  VP8LBackwardRefs* refs_lz77 = &refs_array[0];
  VP8LBackwardRefs* refs_rle = &refs_array[1];
  VP8LHistogram* histo = NULL;

  if (!CalculateBestCacheSize(argb, width, height, quality, hash_chain,
                              refs_lz77, &lz77_computed, cache_bits)) {
    goto Error;
  }

  if (lz77_computed) {
    // Transform refs_lz77 for the optimized cache_bits.
    if (*cache_bits > 0) {
      if (!BackwardRefsWithLocalCache(argb, *cache_bits, refs_lz77)) {
        goto Error;
      }
    }
  } else {
    if (!BackwardReferencesLz77(width, height, argb, *cache_bits, hash_chain,
                                refs_lz77)) {
      goto Error;
    }
  }

  if (!BackwardReferencesRle(width, height, argb, *cache_bits, refs_rle)) {
    goto Error;
  }

  histo = VP8LAllocateHistogram(*cache_bits);
  if (histo == NULL) goto Error;

  {
    // Evaluate LZ77 coding.
    VP8LHistogramCreate(histo, refs_lz77, *cache_bits);
    bit_cost_lz77 = VP8LHistogramEstimateBits(histo);
    // Evaluate RLE coding.
    VP8LHistogramCreate(histo, refs_rle, *cache_bits);
    bit_cost_rle = VP8LHistogramEstimateBits(histo);
    // Decide if LZ77 is useful.
    lz77_is_useful = (bit_cost_lz77 < bit_cost_rle);
  }

  // Choose appropriate backward reference.
  if (lz77_is_useful) {
    // TraceBackwards is costly. Don't execute it at lower quality.
    const int try_lz77_trace_backwards = (quality >= 25);
    best = refs_lz77;   // default guess: lz77 is better
    if (try_lz77_trace_backwards) {
      VP8LBackwardRefs* const refs_trace = refs_rle;
      if (!VP8LBackwardRefsCopy(refs_lz77, refs_trace)) {
        best = NULL;
        goto Error;
      }
      if (BackwardReferencesTraceBackwards(width, height, argb, quality,
                                           *cache_bits, hash_chain,
                                           refs_trace)) {
        double bit_cost_trace;
        // Evaluate LZ77 coding.
        VP8LHistogramCreate(histo, refs_trace, *cache_bits);
        bit_cost_trace = VP8LHistogramEstimateBits(histo);
        if (bit_cost_trace < bit_cost_lz77) {
          best = refs_trace;
        }
      }
    }
  } else {
    best = refs_rle;
  }

  BackwardReferences2DLocality(width, best);

 Error:
  VP8LFreeHistogram(histo);
  return best;
}

VP8LBackwardRefs* VP8LGetBackwardReferences(
    int width, int height, const uint32_t* const argb, int quality,
    int low_effort, int* const cache_bits,
    const VP8LHashChain* const hash_chain, VP8LBackwardRefs refs_array[2]) {
  if (low_effort) {
    return GetBackwardReferencesLowEffort(width, height, argb, cache_bits,
                                          hash_chain, refs_array);
  } else {
    return GetBackwardReferences(width, height, argb, quality, cache_bits,
                                 hash_chain, refs_array);
  }
}