1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
|
// Copyright 2011 Google Inc. All Rights Reserved.
//
// Use of this source code is governed by a BSD-style license
// that can be found in the COPYING file in the root of the source
// tree. An additional intellectual property rights grant can be found
// in the file PATENTS. All contributing project authors may
// be found in the AUTHORS file in the root of the source tree.
// -----------------------------------------------------------------------------
//
// Alpha-plane compression.
//
// Author: Skal (pascal.massimino@gmail.com)
#include <assert.h>
#include <stdlib.h>
#include "./vp8enci.h"
#include "../utils/filters.h"
#include "../utils/quant_levels.h"
#include "../webp/format_constants.h"
// -----------------------------------------------------------------------------
// Encodes the given alpha data via specified compression method 'method'.
// The pre-processing (quantization) is performed if 'quality' is less than 100.
// For such cases, the encoding is lossy. The valid range is [0, 100] for
// 'quality' and [0, 1] for 'method':
// 'method = 0' - No compression;
// 'method = 1' - Use lossless coder on the alpha plane only
// 'filter' values [0, 4] correspond to prediction modes none, horizontal,
// vertical & gradient filters. The prediction mode 4 will try all the
// prediction modes 0 to 3 and pick the best one.
// 'effort_level': specifies how much effort must be spent to try and reduce
// the compressed output size. In range 0 (quick) to 6 (slow).
//
// 'output' corresponds to the buffer containing compressed alpha data.
// This buffer is allocated by this method and caller should call
// free(*output) when done.
// 'output_size' corresponds to size of this compressed alpha buffer.
//
// Returns 1 on successfully encoding the alpha and
// 0 if either:
// invalid quality or method, or
// memory allocation for the compressed data fails.
#include "../enc/vp8li.h"
static int EncodeLossless(const uint8_t* const data, int width, int height,
int effort_level, // in [0..6] range
VP8BitWriter* const bw,
WebPAuxStats* const stats) {
int ok = 0;
WebPConfig config;
WebPPicture picture;
VP8LBitWriter tmp_bw;
WebPPictureInit(&picture);
picture.width = width;
picture.height = height;
picture.use_argb = 1;
picture.stats = stats;
if (!WebPPictureAlloc(&picture)) return 0;
// Transfer the alpha values to the green channel.
{
int i, j;
uint32_t* dst = picture.argb;
const uint8_t* src = data;
for (j = 0; j < picture.height; ++j) {
for (i = 0; i < picture.width; ++i) {
dst[i] = src[i] << 8; // we leave A/R/B channels zero'd.
}
src += width;
dst += picture.argb_stride;
}
}
WebPConfigInit(&config);
config.lossless = 1;
config.method = effort_level; // impact is very small
// Set a low default quality for encoding alpha. Ensure that Alpha quality at
// lower methods (3 and below) is less than the threshold for triggering
// costly 'BackwardReferencesTraceBackwards'.
config.quality = 8.f * effort_level;
assert(config.quality >= 0 && config.quality <= 100.f);
ok = VP8LBitWriterInit(&tmp_bw, (width * height) >> 3);
ok = ok && (VP8LEncodeStream(&config, &picture, &tmp_bw) == VP8_ENC_OK);
WebPPictureFree(&picture);
if (ok) {
const uint8_t* const buffer = VP8LBitWriterFinish(&tmp_bw);
const size_t buffer_size = VP8LBitWriterNumBytes(&tmp_bw);
VP8BitWriterAppend(bw, buffer, buffer_size);
}
VP8LBitWriterDestroy(&tmp_bw);
return ok && !bw->error_;
}
// -----------------------------------------------------------------------------
// Small struct to hold the result of a filter mode compression attempt.
typedef struct {
size_t score;
VP8BitWriter bw;
WebPAuxStats stats;
} FilterTrial;
// This function always returns an initialized 'bw' object, even upon error.
static int EncodeAlphaInternal(const uint8_t* const data, int width, int height,
int method, int filter, int reduce_levels,
int effort_level, // in [0..6] range
uint8_t* const tmp_alpha,
FilterTrial* result) {
int ok = 0;
const uint8_t* alpha_src;
WebPFilterFunc filter_func;
uint8_t header;
size_t expected_size;
const size_t data_size = width * height;
assert((uint64_t)data_size == (uint64_t)width * height); // as per spec
assert(filter >= 0 && filter < WEBP_FILTER_LAST);
assert(method >= ALPHA_NO_COMPRESSION);
assert(method <= ALPHA_LOSSLESS_COMPRESSION);
assert(sizeof(header) == ALPHA_HEADER_LEN);
// TODO(skal): have a common function and #define's to validate alpha params.
expected_size =
(method == ALPHA_NO_COMPRESSION) ? (ALPHA_HEADER_LEN + data_size)
: (data_size >> 5);
header = method | (filter << 2);
if (reduce_levels) header |= ALPHA_PREPROCESSED_LEVELS << 4;
VP8BitWriterInit(&result->bw, expected_size);
VP8BitWriterAppend(&result->bw, &header, ALPHA_HEADER_LEN);
filter_func = WebPFilters[filter];
if (filter_func != NULL) {
filter_func(data, width, height, width, tmp_alpha);
alpha_src = tmp_alpha;
} else {
alpha_src = data;
}
if (method == ALPHA_NO_COMPRESSION) {
ok = VP8BitWriterAppend(&result->bw, alpha_src, width * height);
ok = ok && !result->bw.error_;
} else {
ok = EncodeLossless(alpha_src, width, height, effort_level,
&result->bw, &result->stats);
VP8BitWriterFinish(&result->bw);
}
result->score = VP8BitWriterSize(&result->bw);
return ok;
}
// -----------------------------------------------------------------------------
// TODO(skal): move to dsp/ ?
static void CopyPlane(const uint8_t* src, int src_stride,
uint8_t* dst, int dst_stride, int width, int height) {
while (height-- > 0) {
memcpy(dst, src, width);
src += src_stride;
dst += dst_stride;
}
}
static int GetNumColors(const uint8_t* data, int width, int height,
int stride) {
int j;
int colors = 0;
uint8_t color[256] = { 0 };
for (j = 0; j < height; ++j) {
int i;
const uint8_t* const p = data + j * stride;
for (i = 0; i < width; ++i) {
color[p[i]] = 1;
}
}
for (j = 0; j < 256; ++j) {
if (color[j] > 0) ++colors;
}
return colors;
}
#define FILTER_TRY_NONE (1 << WEBP_FILTER_NONE)
#define FILTER_TRY_ALL ((1 << WEBP_FILTER_LAST) - 1)
// Given the input 'filter' option, return an OR'd bit-set of filters to try.
static uint32_t GetFilterMap(const uint8_t* alpha, int width, int height,
int filter, int effort_level) {
uint32_t bit_map = 0U;
if (filter == WEBP_FILTER_FAST) {
// Quick estimate of the best candidate.
int try_filter_none = (effort_level > 3);
const int kMinColorsForFilterNone = 16;
const int kMaxColorsForFilterNone = 192;
const int num_colors = GetNumColors(alpha, width, height, width);
// For low number of colors, NONE yields better compression.
filter = (num_colors <= kMinColorsForFilterNone) ? WEBP_FILTER_NONE :
EstimateBestFilter(alpha, width, height, width);
bit_map |= 1 << filter;
// For large number of colors, try FILTER_NONE in addition to the best
// filter as well.
if (try_filter_none || num_colors > kMaxColorsForFilterNone) {
bit_map |= FILTER_TRY_NONE;
}
} else if (filter == WEBP_FILTER_NONE) {
bit_map = FILTER_TRY_NONE;
} else { // WEBP_FILTER_BEST -> try all
bit_map = FILTER_TRY_ALL;
}
return bit_map;
}
static void InitFilterTrial(FilterTrial* const score) {
score->score = (size_t)~0U;
VP8BitWriterInit(&score->bw, 0);
}
static int ApplyFiltersAndEncode(const uint8_t* alpha, int width, int height,
size_t data_size, int method, int filter,
int reduce_levels, int effort_level,
uint8_t** const output,
size_t* const output_size,
WebPAuxStats* const stats) {
int ok = 1;
FilterTrial best;
uint32_t try_map =
GetFilterMap(alpha, width, height, filter, effort_level);
InitFilterTrial(&best);
if (try_map != FILTER_TRY_NONE) {
uint8_t* filtered_alpha = (uint8_t*)malloc(data_size);
if (filtered_alpha == NULL) return 0;
for (filter = WEBP_FILTER_NONE; ok && try_map; ++filter, try_map >>= 1) {
if (try_map & 1) {
FilterTrial trial;
ok = EncodeAlphaInternal(alpha, width, height, method, filter,
reduce_levels, effort_level, filtered_alpha,
&trial);
if (ok && trial.score < best.score) {
VP8BitWriterWipeOut(&best.bw);
best = trial;
} else {
VP8BitWriterWipeOut(&trial.bw);
}
}
}
free(filtered_alpha);
} else {
ok = EncodeAlphaInternal(alpha, width, height, method, WEBP_FILTER_NONE,
reduce_levels, effort_level, NULL, &best);
}
if (ok) {
if (stats != NULL) *stats = best.stats;
*output_size = VP8BitWriterSize(&best.bw);
*output = VP8BitWriterBuf(&best.bw);
} else {
VP8BitWriterWipeOut(&best.bw);
}
return ok;
}
static int EncodeAlpha(VP8Encoder* const enc,
int quality, int method, int filter,
int effort_level,
uint8_t** const output, size_t* const output_size) {
const WebPPicture* const pic = enc->pic_;
const int width = pic->width;
const int height = pic->height;
uint8_t* quant_alpha = NULL;
const size_t data_size = width * height;
uint64_t sse = 0;
int ok = 1;
const int reduce_levels = (quality < 100);
// quick sanity checks
assert((uint64_t)data_size == (uint64_t)width * height); // as per spec
assert(enc != NULL && pic != NULL && pic->a != NULL);
assert(output != NULL && output_size != NULL);
assert(width > 0 && height > 0);
assert(pic->a_stride >= width);
assert(filter >= WEBP_FILTER_NONE && filter <= WEBP_FILTER_FAST);
if (quality < 0 || quality > 100) {
return 0;
}
if (method < ALPHA_NO_COMPRESSION || method > ALPHA_LOSSLESS_COMPRESSION) {
return 0;
}
if (method == ALPHA_NO_COMPRESSION) {
// Don't filter, as filtering will make no impact on compressed size.
filter = WEBP_FILTER_NONE;
}
quant_alpha = (uint8_t*)malloc(data_size);
if (quant_alpha == NULL) {
return 0;
}
// Extract alpha data (width x height) from raw_data (stride x height).
CopyPlane(pic->a, pic->a_stride, quant_alpha, width, width, height);
if (reduce_levels) { // No Quantization required for 'quality = 100'.
// 16 alpha levels gives quite a low MSE w.r.t original alpha plane hence
// mapped to moderate quality 70. Hence Quality:[0, 70] -> Levels:[2, 16]
// and Quality:]70, 100] -> Levels:]16, 256].
const int alpha_levels = (quality <= 70) ? (2 + quality / 5)
: (16 + (quality - 70) * 8);
ok = QuantizeLevels(quant_alpha, width, height, alpha_levels, &sse);
}
if (ok) {
ok = ApplyFiltersAndEncode(quant_alpha, width, height, data_size, method,
filter, reduce_levels, effort_level, output,
output_size, pic->stats);
if (pic->stats != NULL) { // need stats?
pic->stats->coded_size += (int)(*output_size);
enc->sse_[3] = sse;
}
}
free(quant_alpha);
return ok;
}
//------------------------------------------------------------------------------
// Main calls
static int CompressAlphaJob(VP8Encoder* const enc, void* dummy) {
const WebPConfig* config = enc->config_;
uint8_t* alpha_data = NULL;
size_t alpha_size = 0;
const int effort_level = config->method; // maps to [0..6]
const WEBP_FILTER_TYPE filter =
(config->alpha_filtering == 0) ? WEBP_FILTER_NONE :
(config->alpha_filtering == 1) ? WEBP_FILTER_FAST :
WEBP_FILTER_BEST;
if (!EncodeAlpha(enc, config->alpha_quality, config->alpha_compression,
filter, effort_level, &alpha_data, &alpha_size)) {
return 0;
}
if (alpha_size != (uint32_t)alpha_size) { // Sanity check.
free(alpha_data);
return 0;
}
enc->alpha_data_size_ = (uint32_t)alpha_size;
enc->alpha_data_ = alpha_data;
(void)dummy;
return 1;
}
void VP8EncInitAlpha(VP8Encoder* const enc) {
enc->has_alpha_ = WebPPictureHasTransparency(enc->pic_);
enc->alpha_data_ = NULL;
enc->alpha_data_size_ = 0;
if (enc->thread_level_ > 0) {
WebPWorker* const worker = &enc->alpha_worker_;
WebPWorkerInit(worker);
worker->data1 = enc;
worker->data2 = NULL;
worker->hook = (WebPWorkerHook)CompressAlphaJob;
}
}
int VP8EncStartAlpha(VP8Encoder* const enc) {
if (enc->has_alpha_) {
if (enc->thread_level_ > 0) {
WebPWorker* const worker = &enc->alpha_worker_;
if (!WebPWorkerReset(worker)) { // Makes sure worker is good to go.
return 0;
}
WebPWorkerLaunch(worker);
return 1;
} else {
return CompressAlphaJob(enc, NULL); // just do the job right away
}
}
return 1;
}
int VP8EncFinishAlpha(VP8Encoder* const enc) {
if (enc->has_alpha_) {
if (enc->thread_level_ > 0) {
WebPWorker* const worker = &enc->alpha_worker_;
if (!WebPWorkerSync(worker)) return 0; // error
}
}
return WebPReportProgress(enc->pic_, enc->percent_ + 20, &enc->percent_);
}
int VP8EncDeleteAlpha(VP8Encoder* const enc) {
int ok = 1;
if (enc->thread_level_ > 0) {
WebPWorker* const worker = &enc->alpha_worker_;
ok = WebPWorkerSync(worker); // finish anything left in flight
WebPWorkerEnd(worker); // still need to end the worker, even if !ok
}
free(enc->alpha_data_);
enc->alpha_data_ = NULL;
enc->alpha_data_size_ = 0;
enc->has_alpha_ = 0;
return ok;
}
|