summaryrefslogtreecommitdiff
path: root/drivers/webp/dsp/yuv_sse2.c
blob: 283b3af228dab0d9251959bff1ef418b60879ca0 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
// Copyright 2014 Google Inc. All Rights Reserved.
//
// Use of this source code is governed by a BSD-style license
// that can be found in the COPYING file in the root of the source
// tree. An additional intellectual property rights grant can be found
// in the file PATENTS. All contributing project authors may
// be found in the AUTHORS file in the root of the source tree.
// -----------------------------------------------------------------------------
//
// YUV->RGB conversion functions
//
// Author: Skal (pascal.massimino@gmail.com)

#include "./yuv.h"

#if defined(WEBP_USE_SSE2)

#include <emmintrin.h>
#include <string.h>   // for memcpy

typedef union {   // handy struct for converting SSE2 registers
  int32_t i32[4];
  uint8_t u8[16];
  __m128i m;
} VP8kCstSSE2;

#if defined(WEBP_YUV_USE_SSE2_TABLES)

#include "./yuv_tables_sse2.h"

WEBP_TSAN_IGNORE_FUNCTION void VP8YUVInitSSE2(void) {}

#else

static int done_sse2 = 0;
static VP8kCstSSE2 VP8kUtoRGBA[256], VP8kVtoRGBA[256], VP8kYtoRGBA[256];

WEBP_TSAN_IGNORE_FUNCTION void VP8YUVInitSSE2(void) {
  if (!done_sse2) {
    int i;
    for (i = 0; i < 256; ++i) {
      VP8kYtoRGBA[i].i32[0] =
        VP8kYtoRGBA[i].i32[1] =
        VP8kYtoRGBA[i].i32[2] = (i - 16) * kYScale + YUV_HALF2;
      VP8kYtoRGBA[i].i32[3] = 0xff << YUV_FIX2;

      VP8kUtoRGBA[i].i32[0] = 0;
      VP8kUtoRGBA[i].i32[1] = -kUToG * (i - 128);
      VP8kUtoRGBA[i].i32[2] =  kUToB * (i - 128);
      VP8kUtoRGBA[i].i32[3] = 0;

      VP8kVtoRGBA[i].i32[0] =  kVToR * (i - 128);
      VP8kVtoRGBA[i].i32[1] = -kVToG * (i - 128);
      VP8kVtoRGBA[i].i32[2] = 0;
      VP8kVtoRGBA[i].i32[3] = 0;
    }
    done_sse2 = 1;

#if 0   // code used to generate 'yuv_tables_sse2.h'
    printf("static const VP8kCstSSE2 VP8kYtoRGBA[256] = {\n");
    for (i = 0; i < 256; ++i) {
      printf("  {{0x%.8x, 0x%.8x, 0x%.8x, 0x%.8x}},\n",
             VP8kYtoRGBA[i].i32[0], VP8kYtoRGBA[i].i32[1],
             VP8kYtoRGBA[i].i32[2], VP8kYtoRGBA[i].i32[3]);
    }
    printf("};\n\n");
    printf("static const VP8kCstSSE2 VP8kUtoRGBA[256] = {\n");
    for (i = 0; i < 256; ++i) {
      printf("  {{0, 0x%.8x, 0x%.8x, 0}},\n",
             VP8kUtoRGBA[i].i32[1], VP8kUtoRGBA[i].i32[2]);
    }
    printf("};\n\n");
    printf("static VP8kCstSSE2 VP8kVtoRGBA[256] = {\n");
    for (i = 0; i < 256; ++i) {
      printf("  {{0x%.8x, 0x%.8x, 0, 0}},\n",
             VP8kVtoRGBA[i].i32[0], VP8kVtoRGBA[i].i32[1]);
    }
    printf("};\n\n");
#endif
  }
}

#endif  // WEBP_YUV_USE_SSE2_TABLES

//-----------------------------------------------------------------------------

static WEBP_INLINE __m128i LoadUVPart(int u, int v) {
  const __m128i u_part = _mm_loadu_si128(&VP8kUtoRGBA[u].m);
  const __m128i v_part = _mm_loadu_si128(&VP8kVtoRGBA[v].m);
  const __m128i uv_part = _mm_add_epi32(u_part, v_part);
  return uv_part;
}

static WEBP_INLINE __m128i GetRGBA32bWithUV(int y, const __m128i uv_part) {
  const __m128i y_part = _mm_loadu_si128(&VP8kYtoRGBA[y].m);
  const __m128i rgba1 = _mm_add_epi32(y_part, uv_part);
  const __m128i rgba2 = _mm_srai_epi32(rgba1, YUV_FIX2);
  return rgba2;
}

static WEBP_INLINE __m128i GetRGBA32b(int y, int u, int v) {
  const __m128i uv_part = LoadUVPart(u, v);
  return GetRGBA32bWithUV(y, uv_part);
}

static WEBP_INLINE void YuvToRgbSSE2(uint8_t y, uint8_t u, uint8_t v,
                                     uint8_t* const rgb) {
  const __m128i tmp0 = GetRGBA32b(y, u, v);
  const __m128i tmp1 = _mm_packs_epi32(tmp0, tmp0);
  const __m128i tmp2 = _mm_packus_epi16(tmp1, tmp1);
  // Note: we store 8 bytes at a time, not 3 bytes! -> memory stomp
  _mm_storel_epi64((__m128i*)rgb, tmp2);
}

static WEBP_INLINE void YuvToBgrSSE2(uint8_t y, uint8_t u, uint8_t v,
                                     uint8_t* const bgr) {
  const __m128i tmp0 = GetRGBA32b(y, u, v);
  const __m128i tmp1 = _mm_shuffle_epi32(tmp0, _MM_SHUFFLE(3, 0, 1, 2));
  const __m128i tmp2 = _mm_packs_epi32(tmp1, tmp1);
  const __m128i tmp3 = _mm_packus_epi16(tmp2, tmp2);
  // Note: we store 8 bytes at a time, not 3 bytes! -> memory stomp
  _mm_storel_epi64((__m128i*)bgr, tmp3);
}

//-----------------------------------------------------------------------------
// Convert spans of 32 pixels to various RGB formats for the fancy upsampler.

void VP8YuvToRgba32(const uint8_t* y, const uint8_t* u, const uint8_t* v,
                    uint8_t* dst) {
  int n;
  for (n = 0; n < 32; n += 4) {
    const __m128i tmp0_1 = GetRGBA32b(y[n + 0], u[n + 0], v[n + 0]);
    const __m128i tmp0_2 = GetRGBA32b(y[n + 1], u[n + 1], v[n + 1]);
    const __m128i tmp0_3 = GetRGBA32b(y[n + 2], u[n + 2], v[n + 2]);
    const __m128i tmp0_4 = GetRGBA32b(y[n + 3], u[n + 3], v[n + 3]);
    const __m128i tmp1_1 = _mm_packs_epi32(tmp0_1, tmp0_2);
    const __m128i tmp1_2 = _mm_packs_epi32(tmp0_3, tmp0_4);
    const __m128i tmp2 = _mm_packus_epi16(tmp1_1, tmp1_2);
    _mm_storeu_si128((__m128i*)dst, tmp2);
    dst += 4 * 4;
  }
}

void VP8YuvToBgra32(const uint8_t* y, const uint8_t* u, const uint8_t* v,
                    uint8_t* dst) {
  int n;
  for (n = 0; n < 32; n += 2) {
    const __m128i tmp0_1 = GetRGBA32b(y[n + 0], u[n + 0], v[n + 0]);
    const __m128i tmp0_2 = GetRGBA32b(y[n + 1], u[n + 1], v[n + 1]);
    const __m128i tmp1_1 = _mm_shuffle_epi32(tmp0_1, _MM_SHUFFLE(3, 0, 1, 2));
    const __m128i tmp1_2 = _mm_shuffle_epi32(tmp0_2, _MM_SHUFFLE(3, 0, 1, 2));
    const __m128i tmp2_1 = _mm_packs_epi32(tmp1_1, tmp1_2);
    const __m128i tmp3 = _mm_packus_epi16(tmp2_1, tmp2_1);
    _mm_storel_epi64((__m128i*)dst, tmp3);
    dst += 4 * 2;
  }
}

void VP8YuvToRgb32(const uint8_t* y, const uint8_t* u, const uint8_t* v,
                   uint8_t* dst) {
  int n;
  uint8_t tmp0[2 * 3 + 5 + 15];
  uint8_t* const tmp = (uint8_t*)((uintptr_t)(tmp0 + 15) & ~15);  // align
  for (n = 0; n < 30; ++n) {   // we directly stomp the *dst memory
    YuvToRgbSSE2(y[n], u[n], v[n], dst + n * 3);
  }
  // Last two pixels are special: we write in a tmp buffer before sending
  // to dst.
  YuvToRgbSSE2(y[n + 0], u[n + 0], v[n + 0], tmp + 0);
  YuvToRgbSSE2(y[n + 1], u[n + 1], v[n + 1], tmp + 3);
  memcpy(dst + n * 3, tmp, 2 * 3);
}

void VP8YuvToBgr32(const uint8_t* y, const uint8_t* u, const uint8_t* v,
                   uint8_t* dst) {
  int n;
  uint8_t tmp0[2 * 3 + 5 + 15];
  uint8_t* const tmp = (uint8_t*)((uintptr_t)(tmp0 + 15) & ~15);  // align
  for (n = 0; n < 30; ++n) {
    YuvToBgrSSE2(y[n], u[n], v[n], dst + n * 3);
  }
  YuvToBgrSSE2(y[n + 0], u[n + 0], v[n + 0], tmp + 0);
  YuvToBgrSSE2(y[n + 1], u[n + 1], v[n + 1], tmp + 3);
  memcpy(dst + n * 3, tmp, 2 * 3);
}

//-----------------------------------------------------------------------------
// Arbitrary-length row conversion functions

static void YuvToRgbaRow(const uint8_t* y, const uint8_t* u, const uint8_t* v,
                         uint8_t* dst, int len) {
  int n;
  for (n = 0; n + 4 <= len; n += 4) {
    const __m128i uv_0 = LoadUVPart(u[0], v[0]);
    const __m128i uv_1 = LoadUVPart(u[1], v[1]);
    const __m128i tmp0_1 = GetRGBA32bWithUV(y[0], uv_0);
    const __m128i tmp0_2 = GetRGBA32bWithUV(y[1], uv_0);
    const __m128i tmp0_3 = GetRGBA32bWithUV(y[2], uv_1);
    const __m128i tmp0_4 = GetRGBA32bWithUV(y[3], uv_1);
    const __m128i tmp1_1 = _mm_packs_epi32(tmp0_1, tmp0_2);
    const __m128i tmp1_2 = _mm_packs_epi32(tmp0_3, tmp0_4);
    const __m128i tmp2 = _mm_packus_epi16(tmp1_1, tmp1_2);
    _mm_storeu_si128((__m128i*)dst, tmp2);
    dst += 4 * 4;
    y += 4;
    u += 2;
    v += 2;
  }
  // Finish off
  while (n < len) {
    VP8YuvToRgba(y[0], u[0], v[0], dst);
    dst += 4;
    ++y;
    u += (n & 1);
    v += (n & 1);
    ++n;
  }
}

static void YuvToBgraRow(const uint8_t* y, const uint8_t* u, const uint8_t* v,
                         uint8_t* dst, int len) {
  int n;
  for (n = 0; n + 2 <= len; n += 2) {
    const __m128i uv_0 = LoadUVPart(u[0], v[0]);
    const __m128i tmp0_1 = GetRGBA32bWithUV(y[0], uv_0);
    const __m128i tmp0_2 = GetRGBA32bWithUV(y[1], uv_0);
    const __m128i tmp1_1 = _mm_shuffle_epi32(tmp0_1, _MM_SHUFFLE(3, 0, 1, 2));
    const __m128i tmp1_2 = _mm_shuffle_epi32(tmp0_2, _MM_SHUFFLE(3, 0, 1, 2));
    const __m128i tmp2_1 = _mm_packs_epi32(tmp1_1, tmp1_2);
    const __m128i tmp3 = _mm_packus_epi16(tmp2_1, tmp2_1);
    _mm_storel_epi64((__m128i*)dst, tmp3);
    dst += 4 * 2;
    y += 2;
    ++u;
    ++v;
  }
  // Finish off
  if (len & 1) {
    VP8YuvToBgra(y[0], u[0], v[0], dst);
  }
}

static void YuvToArgbRow(const uint8_t* y, const uint8_t* u, const uint8_t* v,
                         uint8_t* dst, int len) {
  int n;
  for (n = 0; n + 2 <= len; n += 2) {
    const __m128i uv_0 = LoadUVPart(u[0], v[0]);
    const __m128i tmp0_1 = GetRGBA32bWithUV(y[0], uv_0);
    const __m128i tmp0_2 = GetRGBA32bWithUV(y[1], uv_0);
    const __m128i tmp1_1 = _mm_shuffle_epi32(tmp0_1, _MM_SHUFFLE(2, 1, 0, 3));
    const __m128i tmp1_2 = _mm_shuffle_epi32(tmp0_2, _MM_SHUFFLE(2, 1, 0, 3));
    const __m128i tmp2_1 = _mm_packs_epi32(tmp1_1, tmp1_2);
    const __m128i tmp3 = _mm_packus_epi16(tmp2_1, tmp2_1);
    _mm_storel_epi64((__m128i*)dst, tmp3);
    dst += 4 * 2;
    y += 2;
    ++u;
    ++v;
  }
  // Finish off
  if (len & 1) {
    VP8YuvToArgb(y[0], u[0], v[0], dst);
  }
}

static void YuvToRgbRow(const uint8_t* y, const uint8_t* u, const uint8_t* v,
                        uint8_t* dst, int len) {
  int n;
  for (n = 0; n + 2 < len; ++n) {   // we directly stomp the *dst memory
    YuvToRgbSSE2(y[0], u[0], v[0], dst);  // stomps 8 bytes
    dst += 3;
    ++y;
    u += (n & 1);
    v += (n & 1);
  }
  VP8YuvToRgb(y[0], u[0], v[0], dst);
  if (len > 1) {
    VP8YuvToRgb(y[1], u[n & 1], v[n & 1], dst + 3);
  }
}

static void YuvToBgrRow(const uint8_t* y, const uint8_t* u, const uint8_t* v,
                        uint8_t* dst, int len) {
  int n;
  for (n = 0; n + 2 < len; ++n) {   // we directly stomp the *dst memory
    YuvToBgrSSE2(y[0], u[0], v[0], dst);  // stomps 8 bytes
    dst += 3;
    ++y;
    u += (n & 1);
    v += (n & 1);
  }
  VP8YuvToBgr(y[0], u[0], v[0], dst + 0);
  if (len > 1) {
    VP8YuvToBgr(y[1], u[n & 1], v[n & 1], dst + 3);
  }
}

//------------------------------------------------------------------------------
// Entry point

extern void WebPInitSamplersSSE2(void);

WEBP_TSAN_IGNORE_FUNCTION void WebPInitSamplersSSE2(void) {
  WebPSamplers[MODE_RGB]  = YuvToRgbRow;
  WebPSamplers[MODE_RGBA] = YuvToRgbaRow;
  WebPSamplers[MODE_BGR]  = YuvToBgrRow;
  WebPSamplers[MODE_BGRA] = YuvToBgraRow;
  WebPSamplers[MODE_ARGB] = YuvToArgbRow;
}

//------------------------------------------------------------------------------
// RGB24/32 -> YUV converters

// Load eight 16b-words from *src.
#define LOAD_16(src) _mm_loadu_si128((const __m128i*)(src))
// Store either 16b-words into *dst
#define STORE_16(V, dst) _mm_storeu_si128((__m128i*)(dst), (V))

// Convert 8 packed RGB or BGR samples to r[], g[], b[]
static WEBP_INLINE void RGB24PackedToPlanar(const uint8_t* const rgb,
                                            __m128i* const r,
                                            __m128i* const g,
                                            __m128i* const b,
                                            int input_is_bgr) {
  const __m128i zero = _mm_setzero_si128();
  // in0: r0 g0 b0 r1 | g1 b1 r2 g2 | b2 r3 g3 b3 | r4 g4 b4 r5
  // in1: b2 r3 g3 b3 | r4 g4 b4 r5 | g5 b5 r6 g6 | b6 r7 g7 b7
  const __m128i in0 = LOAD_16(rgb + 0);
  const __m128i in1 = LOAD_16(rgb + 8);
  // A0: | r2 g2 b2 r3 | g3 b3 r4 g4 | b4 r5 ...
  // A1:                   ... b2 r3 | g3 b3 r4 g4 | b4 r5 g5 b5 |
  const __m128i A0 = _mm_srli_si128(in0, 6);
  const __m128i A1 = _mm_slli_si128(in1, 6);
  // B0: r0 r2 g0 g2 | b0 b2 r1 r3 | g1 g3 b1 b3 | r2 r4 b2 b4
  // B1: g3 g5 b3 b5 | r4 r6 g4 g6 | b4 b6 r5 r7 | g5 g7 b5 b7
  const __m128i B0 = _mm_unpacklo_epi8(in0, A0);
  const __m128i B1 = _mm_unpackhi_epi8(A1, in1);
  // C0: r1 r3 g1 g3 | b1 b3 r2 r4 | b2 b4 ...
  // C1:                 ... g3 g5 | b3 b5 r4 r6 | g4 g6 b4 b6
  const __m128i C0 = _mm_srli_si128(B0, 6);
  const __m128i C1 = _mm_slli_si128(B1, 6);
  // D0: r0 r1 r2 r3 | g0 g1 g2 g3 | b0 b1 b2 b3 | r1 r2 r3 r4
  // D1: b3 b4 b5 b6 | r4 r5 r6 r7 | g4 g5 g6 g7 | b4 b5 b6 b7 |
  const __m128i D0 = _mm_unpacklo_epi8(B0, C0);
  const __m128i D1 = _mm_unpackhi_epi8(C1, B1);
  // r4 r5 r6 r7 | g4 g5 g6 g7 | b4 b5 b6 b7 | 0
  const __m128i D2 = _mm_srli_si128(D1, 4);
  // r0 r1 r2 r3 | r4 r5 r6 r7 | g0 g1 g2 g3 | g4 g5 g6 g7
  const __m128i E0 = _mm_unpacklo_epi32(D0, D2);
  // b0 b1 b2 b3 | b4 b5 b6 b7 | r1 r2 r3 r4 | 0
  const __m128i E1 = _mm_unpackhi_epi32(D0, D2);
  // g0 g1 g2 g3 | g4 g5 g6 g7 | 0
  const __m128i E2 = _mm_srli_si128(E0, 8);
  const __m128i F0 = _mm_unpacklo_epi8(E0, zero);  // -> R
  const __m128i F1 = _mm_unpacklo_epi8(E1, zero);  // -> B
  const __m128i F2 = _mm_unpacklo_epi8(E2, zero);  // -> G
  *g = F2;
  if (input_is_bgr) {
    *r = F1;
    *b = F0;
  } else {
    *r = F0;
    *b = F1;
  }
}

// Convert 8 packed ARGB to r[], g[], b[]
static WEBP_INLINE void RGB32PackedToPlanar(const uint32_t* const argb,
                                            __m128i* const r,
                                            __m128i* const g,
                                            __m128i* const b) {
  const __m128i zero = _mm_setzero_si128();
  const __m128i in0 = LOAD_16(argb + 0);    // argb3 | argb2 | argb1 | argb0
  const __m128i in1 = LOAD_16(argb + 4);    // argb7 | argb6 | argb5 | argb4
  // column-wise transpose
  const __m128i A0 = _mm_unpacklo_epi8(in0, in1);
  const __m128i A1 = _mm_unpackhi_epi8(in0, in1);
  const __m128i B0 = _mm_unpacklo_epi8(A0, A1);
  const __m128i B1 = _mm_unpackhi_epi8(A0, A1);
  // C0 = g7 g6 ... g1 g0 | b7 b6 ... b1 b0
  // C1 = a7 a6 ... a1 a0 | r7 r6 ... r1 r0
  const __m128i C0 = _mm_unpacklo_epi8(B0, B1);
  const __m128i C1 = _mm_unpackhi_epi8(B0, B1);
  // store 16b
  *r = _mm_unpacklo_epi8(C1, zero);
  *g = _mm_unpackhi_epi8(C0, zero);
  *b = _mm_unpacklo_epi8(C0, zero);
}

// This macro computes (RG * MULT_RG + GB * MULT_GB + ROUNDER) >> DESCALE_FIX
// It's a macro and not a function because we need to use immediate values with
// srai_epi32, e.g.
#define TRANSFORM(RG_LO, RG_HI, GB_LO, GB_HI, MULT_RG, MULT_GB, \
                  ROUNDER, DESCALE_FIX, OUT) do {               \
  const __m128i V0_lo = _mm_madd_epi16(RG_LO, MULT_RG);         \
  const __m128i V0_hi = _mm_madd_epi16(RG_HI, MULT_RG);         \
  const __m128i V1_lo = _mm_madd_epi16(GB_LO, MULT_GB);         \
  const __m128i V1_hi = _mm_madd_epi16(GB_HI, MULT_GB);         \
  const __m128i V2_lo = _mm_add_epi32(V0_lo, V1_lo);            \
  const __m128i V2_hi = _mm_add_epi32(V0_hi, V1_hi);            \
  const __m128i V3_lo = _mm_add_epi32(V2_lo, ROUNDER);          \
  const __m128i V3_hi = _mm_add_epi32(V2_hi, ROUNDER);          \
  const __m128i V5_lo = _mm_srai_epi32(V3_lo, DESCALE_FIX);     \
  const __m128i V5_hi = _mm_srai_epi32(V3_hi, DESCALE_FIX);     \
  (OUT) = _mm_packs_epi32(V5_lo, V5_hi);                        \
} while (0)

#define MK_CST_16(A, B) _mm_set_epi16((B), (A), (B), (A), (B), (A), (B), (A))
static WEBP_INLINE void ConvertRGBToY(const __m128i* const R,
                                      const __m128i* const G,
                                      const __m128i* const B,
                                      __m128i* const Y) {
  const __m128i kRG_y = MK_CST_16(16839, 33059 - 16384);
  const __m128i kGB_y = MK_CST_16(16384, 6420);
  const __m128i kHALF_Y = _mm_set1_epi32((16 << YUV_FIX) + YUV_HALF);

  const __m128i RG_lo = _mm_unpacklo_epi16(*R, *G);
  const __m128i RG_hi = _mm_unpackhi_epi16(*R, *G);
  const __m128i GB_lo = _mm_unpacklo_epi16(*G, *B);
  const __m128i GB_hi = _mm_unpackhi_epi16(*G, *B);
  TRANSFORM(RG_lo, RG_hi, GB_lo, GB_hi, kRG_y, kGB_y, kHALF_Y, YUV_FIX, *Y);
}

static WEBP_INLINE void ConvertRGBToUV(const __m128i* const R,
                                       const __m128i* const G,
                                       const __m128i* const B,
                                       __m128i* const U, __m128i* const V) {
  const __m128i kRG_u = MK_CST_16(-9719, -19081);
  const __m128i kGB_u = MK_CST_16(0, 28800);
  const __m128i kRG_v = MK_CST_16(28800, 0);
  const __m128i kGB_v = MK_CST_16(-24116, -4684);
  const __m128i kHALF_UV = _mm_set1_epi32(((128 << YUV_FIX) + YUV_HALF) << 2);

  const __m128i RG_lo = _mm_unpacklo_epi16(*R, *G);
  const __m128i RG_hi = _mm_unpackhi_epi16(*R, *G);
  const __m128i GB_lo = _mm_unpacklo_epi16(*G, *B);
  const __m128i GB_hi = _mm_unpackhi_epi16(*G, *B);
  TRANSFORM(RG_lo, RG_hi, GB_lo, GB_hi, kRG_u, kGB_u,
            kHALF_UV, YUV_FIX + 2, *U);
  TRANSFORM(RG_lo, RG_hi, GB_lo, GB_hi, kRG_v, kGB_v,
            kHALF_UV, YUV_FIX + 2, *V);
}

#undef MK_CST_16
#undef TRANSFORM

static void ConvertRGB24ToY(const uint8_t* rgb, uint8_t* y, int width) {
  const int max_width = width & ~15;
  int i;
  for (i = 0; i < max_width; i += 16, rgb += 3 * 16) {
    __m128i r, g, b, Y0, Y1;
    RGB24PackedToPlanar(rgb + 0 * 8, &r, &g, &b, 0);
    ConvertRGBToY(&r, &g, &b, &Y0);
    RGB24PackedToPlanar(rgb + 3 * 8, &r, &g, &b, 0);
    ConvertRGBToY(&r, &g, &b, &Y1);
    STORE_16(_mm_packus_epi16(Y0, Y1), y + i);
  }
  for (; i < width; ++i, rgb += 3) {   // left-over
    y[i] = VP8RGBToY(rgb[0], rgb[1], rgb[2], YUV_HALF);
  }
}

static void ConvertBGR24ToY(const uint8_t* bgr, uint8_t* y, int width) {
  int i;
  const int max_width = width & ~15;
  for (i = 0; i < max_width; i += 16, bgr += 3 * 16) {
    __m128i r, g, b, Y0, Y1;
    RGB24PackedToPlanar(bgr + 0 * 8, &r, &g, &b, 1);
    ConvertRGBToY(&r, &g, &b, &Y0);
    RGB24PackedToPlanar(bgr + 3 * 8, &r, &g, &b, 1);
    ConvertRGBToY(&r, &g, &b, &Y1);
    STORE_16(_mm_packus_epi16(Y0, Y1), y + i);
  }
  for (; i < width; ++i, bgr += 3) {  // left-over
    y[i] = VP8RGBToY(bgr[2], bgr[1], bgr[0], YUV_HALF);
  }
}

static void ConvertARGBToY(const uint32_t* argb, uint8_t* y, int width) {
  const int max_width = width & ~15;
  int i;
  for (i = 0; i < max_width; i += 16) {
    __m128i r, g, b, Y0, Y1;
    RGB32PackedToPlanar(&argb[i + 0], &r, &g, &b);
    ConvertRGBToY(&r, &g, &b, &Y0);
    RGB32PackedToPlanar(&argb[i + 8], &r, &g, &b);
    ConvertRGBToY(&r, &g, &b, &Y1);
    STORE_16(_mm_packus_epi16(Y0, Y1), y + i);
  }
  for (; i < width; ++i) {   // left-over
    const uint32_t p = argb[i];
    y[i] = VP8RGBToY((p >> 16) & 0xff, (p >> 8) & 0xff, (p >>  0) & 0xff,
                     YUV_HALF);
  }
}

// Horizontal add (doubled) of two 16b values, result is 16b.
// in: A | B | C | D | ... -> out: 2*(A+B) | 2*(C+D) | ...
static void HorizontalAddPack(const __m128i* const A, const __m128i* const B,
                              __m128i* const out) {
  const __m128i k2 = _mm_set1_epi16(2);
  const __m128i C = _mm_madd_epi16(*A, k2);
  const __m128i D = _mm_madd_epi16(*B, k2);
  *out = _mm_packs_epi32(C, D);
}

static void ConvertARGBToUV(const uint32_t* argb, uint8_t* u, uint8_t* v,
                            int src_width, int do_store) {
  const int max_width = src_width & ~31;
  int i;
  for (i = 0; i < max_width; i += 32, u += 16, v += 16) {
    __m128i r0, g0, b0, r1, g1, b1, U0, V0, U1, V1;
    RGB32PackedToPlanar(&argb[i +  0], &r0, &g0, &b0);
    RGB32PackedToPlanar(&argb[i +  8], &r1, &g1, &b1);
    HorizontalAddPack(&r0, &r1, &r0);
    HorizontalAddPack(&g0, &g1, &g0);
    HorizontalAddPack(&b0, &b1, &b0);
    ConvertRGBToUV(&r0, &g0, &b0, &U0, &V0);

    RGB32PackedToPlanar(&argb[i + 16], &r0, &g0, &b0);
    RGB32PackedToPlanar(&argb[i + 24], &r1, &g1, &b1);
    HorizontalAddPack(&r0, &r1, &r0);
    HorizontalAddPack(&g0, &g1, &g0);
    HorizontalAddPack(&b0, &b1, &b0);
    ConvertRGBToUV(&r0, &g0, &b0, &U1, &V1);

    U0 = _mm_packus_epi16(U0, U1);
    V0 = _mm_packus_epi16(V0, V1);
    if (!do_store) {
      const __m128i prev_u = LOAD_16(u);
      const __m128i prev_v = LOAD_16(v);
      U0 = _mm_avg_epu8(U0, prev_u);
      V0 = _mm_avg_epu8(V0, prev_v);
    }
    STORE_16(U0, u);
    STORE_16(V0, v);
  }
  if (i < src_width) {  // left-over
    WebPConvertARGBToUV_C(argb + i, u, v, src_width - i, do_store);
  }
}

// Convert 16 packed ARGB 16b-values to r[], g[], b[]
static WEBP_INLINE void RGBA32PackedToPlanar_16b(const uint16_t* const rgbx,
                                                 __m128i* const r,
                                                 __m128i* const g,
                                                 __m128i* const b) {
  const __m128i in0 = LOAD_16(rgbx +  0);  // r0 | g0 | b0 |x| r1 | g1 | b1 |x
  const __m128i in1 = LOAD_16(rgbx +  8);  // r2 | g2 | b2 |x| r3 | g3 | b3 |x
  const __m128i in2 = LOAD_16(rgbx + 16);  // r4 | ...
  const __m128i in3 = LOAD_16(rgbx + 24);  // r6 | ...
  // column-wise transpose
  const __m128i A0 = _mm_unpacklo_epi16(in0, in1);
  const __m128i A1 = _mm_unpackhi_epi16(in0, in1);
  const __m128i A2 = _mm_unpacklo_epi16(in2, in3);
  const __m128i A3 = _mm_unpackhi_epi16(in2, in3);
  const __m128i B0 = _mm_unpacklo_epi16(A0, A1);  // r0 r1 r2 r3 | g0 g1 ..
  const __m128i B1 = _mm_unpackhi_epi16(A0, A1);  // b0 b1 b2 b3 | x x x x
  const __m128i B2 = _mm_unpacklo_epi16(A2, A3);  // r4 r5 r6 r7 | g4 g5 ..
  const __m128i B3 = _mm_unpackhi_epi16(A2, A3);  // b4 b5 b6 b7 | x x x x
  *r = _mm_unpacklo_epi64(B0, B2);
  *g = _mm_unpackhi_epi64(B0, B2);
  *b = _mm_unpacklo_epi64(B1, B3);
}

static void ConvertRGBA32ToUV(const uint16_t* rgb,
                              uint8_t* u, uint8_t* v, int width) {
  const int max_width = width & ~15;
  const uint16_t* const last_rgb = rgb + 4 * max_width;
  while (rgb < last_rgb) {
    __m128i r, g, b, U0, V0, U1, V1;
    RGBA32PackedToPlanar_16b(rgb +  0, &r, &g, &b);
    ConvertRGBToUV(&r, &g, &b, &U0, &V0);
    RGBA32PackedToPlanar_16b(rgb + 32, &r, &g, &b);
    ConvertRGBToUV(&r, &g, &b, &U1, &V1);
    STORE_16(_mm_packus_epi16(U0, U1), u);
    STORE_16(_mm_packus_epi16(V0, V1), v);
    u += 16;
    v += 16;
    rgb += 2 * 32;
  }
  if (max_width < width) {  // left-over
    WebPConvertRGBA32ToUV_C(rgb, u, v, width - max_width);
  }
}

//------------------------------------------------------------------------------

extern void WebPInitConvertARGBToYUVSSE2(void);

WEBP_TSAN_IGNORE_FUNCTION void WebPInitConvertARGBToYUVSSE2(void) {
  WebPConvertARGBToY = ConvertARGBToY;
  WebPConvertARGBToUV = ConvertARGBToUV;

  WebPConvertRGB24ToY = ConvertRGB24ToY;
  WebPConvertBGR24ToY = ConvertBGR24ToY;

  WebPConvertRGBA32ToUV = ConvertRGBA32ToUV;
}

#else  // !WEBP_USE_SSE2

WEBP_DSP_INIT_STUB(WebPInitSamplersSSE2)
WEBP_DSP_INIT_STUB(WebPInitConvertARGBToYUVSSE2)

#endif  // WEBP_USE_SSE2