summaryrefslogtreecommitdiff
path: root/drivers/webp/dsp/yuv.h
blob: af435a5b3ec4b606d6b912b0c6bdd7f833269049 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
// Copyright 2010 Google Inc. All Rights Reserved.
//
// Use of this source code is governed by a BSD-style license
// that can be found in the COPYING file in the root of the source
// tree. An additional intellectual property rights grant can be found
// in the file PATENTS. All contributing project authors may
// be found in the AUTHORS file in the root of the source tree.
// -----------------------------------------------------------------------------
//
// inline YUV<->RGB conversion function
//
// The exact naming is Y'CbCr, following the ITU-R BT.601 standard.
// More information at: http://en.wikipedia.org/wiki/YCbCr
// Y = 0.2569 * R + 0.5044 * G + 0.0979 * B + 16
// U = -0.1483 * R - 0.2911 * G + 0.4394 * B + 128
// V = 0.4394 * R - 0.3679 * G - 0.0715 * B + 128
// We use 16bit fixed point operations for RGB->YUV conversion (YUV_FIX).
//
// For the Y'CbCr to RGB conversion, the BT.601 specification reads:
//   R = 1.164 * (Y-16) + 1.596 * (V-128)
//   G = 1.164 * (Y-16) - 0.813 * (V-128) - 0.391 * (U-128)
//   B = 1.164 * (Y-16)                   + 2.018 * (U-128)
// where Y is in the [16,235] range, and U/V in the [16,240] range.
// In the table-lookup version (WEBP_YUV_USE_TABLE), the common factor
// "1.164 * (Y-16)" can be handled as an offset in the VP8kClip[] table.
// So in this case the formulae should read:
//   R = 1.164 * [Y + 1.371 * (V-128)                  ] - 18.624
//   G = 1.164 * [Y - 0.698 * (V-128) - 0.336 * (U-128)] - 18.624
//   B = 1.164 * [Y                   + 1.733 * (U-128)] - 18.624
// once factorized.
// For YUV->RGB conversion, only 14bit fixed precision is used (YUV_FIX2).
// That's the maximum possible for a convenient ARM implementation.
//
// Author: Skal (pascal.massimino@gmail.com)

#ifndef WEBP_DSP_YUV_H_
#define WEBP_DSP_YUV_H_

#include "./dsp.h"
#include "../dec/decode_vp8.h"

// Define the following to use the LUT-based code:
// #define WEBP_YUV_USE_TABLE

#if defined(WEBP_EXPERIMENTAL_FEATURES)
// Do NOT activate this feature for real compression. This is only experimental!
// This flag is for comparison purpose against JPEG's "YUVj" natural colorspace.
// This colorspace is close to Rec.601's Y'CbCr model with the notable
// difference of allowing larger range for luma/chroma.
// See http://en.wikipedia.org/wiki/YCbCr#JPEG_conversion paragraph, and its
// difference with http://en.wikipedia.org/wiki/YCbCr#ITU-R_BT.601_conversion
// #define USE_YUVj
#endif

//------------------------------------------------------------------------------
// YUV -> RGB conversion

#ifdef __cplusplus
extern "C" {
#endif

enum {
  YUV_FIX = 16,                    // fixed-point precision for RGB->YUV
  YUV_HALF = 1 << (YUV_FIX - 1),
  YUV_MASK = (256 << YUV_FIX) - 1,
  YUV_RANGE_MIN = -227,            // min value of r/g/b output
  YUV_RANGE_MAX = 256 + 226,       // max value of r/g/b output

  YUV_FIX2 = 14,                   // fixed-point precision for YUV->RGB
  YUV_HALF2 = 1 << (YUV_FIX2 - 1),
  YUV_MASK2 = (256 << YUV_FIX2) - 1
};

// These constants are 14b fixed-point version of ITU-R BT.601 constants.
#define kYScale 19077    // 1.164 = 255 / 219
#define kVToR   26149    // 1.596 = 255 / 112 * 0.701
#define kUToG   6419     // 0.391 = 255 / 112 * 0.886 * 0.114 / 0.587
#define kVToG   13320    // 0.813 = 255 / 112 * 0.701 * 0.299 / 0.587
#define kUToB   33050    // 2.018 = 255 / 112 * 0.886
#define kRCst (-kYScale * 16 - kVToR * 128 + YUV_HALF2)
#define kGCst (-kYScale * 16 + kUToG * 128 + kVToG * 128 + YUV_HALF2)
#define kBCst (-kYScale * 16 - kUToB * 128 + YUV_HALF2)

//------------------------------------------------------------------------------

#if !defined(WEBP_YUV_USE_TABLE)

// slower on x86 by ~7-8%, but bit-exact with the SSE2 version

static WEBP_INLINE int VP8Clip8(int v) {
  return ((v & ~YUV_MASK2) == 0) ? (v >> YUV_FIX2) : (v < 0) ? 0 : 255;
}

static WEBP_INLINE int VP8YUVToR(int y, int v) {
  return VP8Clip8(kYScale * y + kVToR * v + kRCst);
}

static WEBP_INLINE int VP8YUVToG(int y, int u, int v) {
  return VP8Clip8(kYScale * y - kUToG * u - kVToG * v + kGCst);
}

static WEBP_INLINE int VP8YUVToB(int y, int u) {
  return VP8Clip8(kYScale * y + kUToB * u + kBCst);
}

static WEBP_INLINE void VP8YuvToRgb(int y, int u, int v,
                                    uint8_t* const rgb) {
  rgb[0] = VP8YUVToR(y, v);
  rgb[1] = VP8YUVToG(y, u, v);
  rgb[2] = VP8YUVToB(y, u);
}

static WEBP_INLINE void VP8YuvToBgr(int y, int u, int v,
                                    uint8_t* const bgr) {
  bgr[0] = VP8YUVToB(y, u);
  bgr[1] = VP8YUVToG(y, u, v);
  bgr[2] = VP8YUVToR(y, v);
}

static WEBP_INLINE void VP8YuvToRgb565(int y, int u, int v,
                                       uint8_t* const rgb) {
  const int r = VP8YUVToR(y, v);      // 5 usable bits
  const int g = VP8YUVToG(y, u, v);   // 6 usable bits
  const int b = VP8YUVToB(y, u);      // 5 usable bits
  const int rg = (r & 0xf8) | (g >> 5);
  const int gb = ((g << 3) & 0xe0) | (b >> 3);
#ifdef WEBP_SWAP_16BIT_CSP
  rgb[0] = gb;
  rgb[1] = rg;
#else
  rgb[0] = rg;
  rgb[1] = gb;
#endif
}

static WEBP_INLINE void VP8YuvToRgba4444(int y, int u, int v,
                                         uint8_t* const argb) {
  const int r = VP8YUVToR(y, v);        // 4 usable bits
  const int g = VP8YUVToG(y, u, v);     // 4 usable bits
  const int b = VP8YUVToB(y, u);        // 4 usable bits
  const int rg = (r & 0xf0) | (g >> 4);
  const int ba = (b & 0xf0) | 0x0f;     // overwrite the lower 4 bits
#ifdef WEBP_SWAP_16BIT_CSP
  argb[0] = ba;
  argb[1] = rg;
#else
  argb[0] = rg;
  argb[1] = ba;
#endif
}

#else

// Table-based version, not totally equivalent to the SSE2 version.
// Rounding diff is only +/-1 though.

extern int16_t VP8kVToR[256], VP8kUToB[256];
extern int32_t VP8kVToG[256], VP8kUToG[256];
extern uint8_t VP8kClip[YUV_RANGE_MAX - YUV_RANGE_MIN];
extern uint8_t VP8kClip4Bits[YUV_RANGE_MAX - YUV_RANGE_MIN];

static WEBP_INLINE void VP8YuvToRgb(int y, int u, int v,
                                    uint8_t* const rgb) {
  const int r_off = VP8kVToR[v];
  const int g_off = (VP8kVToG[v] + VP8kUToG[u]) >> YUV_FIX;
  const int b_off = VP8kUToB[u];
  rgb[0] = VP8kClip[y + r_off - YUV_RANGE_MIN];
  rgb[1] = VP8kClip[y + g_off - YUV_RANGE_MIN];
  rgb[2] = VP8kClip[y + b_off - YUV_RANGE_MIN];
}

static WEBP_INLINE void VP8YuvToBgr(int y, int u, int v,
                                    uint8_t* const bgr) {
  const int r_off = VP8kVToR[v];
  const int g_off = (VP8kVToG[v] + VP8kUToG[u]) >> YUV_FIX;
  const int b_off = VP8kUToB[u];
  bgr[0] = VP8kClip[y + b_off - YUV_RANGE_MIN];
  bgr[1] = VP8kClip[y + g_off - YUV_RANGE_MIN];
  bgr[2] = VP8kClip[y + r_off - YUV_RANGE_MIN];
}

static WEBP_INLINE void VP8YuvToRgb565(int y, int u, int v,
                                       uint8_t* const rgb) {
  const int r_off = VP8kVToR[v];
  const int g_off = (VP8kVToG[v] + VP8kUToG[u]) >> YUV_FIX;
  const int b_off = VP8kUToB[u];
  const int rg = ((VP8kClip[y + r_off - YUV_RANGE_MIN] & 0xf8) |
                  (VP8kClip[y + g_off - YUV_RANGE_MIN] >> 5));
  const int gb = (((VP8kClip[y + g_off - YUV_RANGE_MIN] << 3) & 0xe0) |
                   (VP8kClip[y + b_off - YUV_RANGE_MIN] >> 3));
#ifdef WEBP_SWAP_16BIT_CSP
  rgb[0] = gb;
  rgb[1] = rg;
#else
  rgb[0] = rg;
  rgb[1] = gb;
#endif
}

static WEBP_INLINE void VP8YuvToRgba4444(int y, int u, int v,
                                         uint8_t* const argb) {
  const int r_off = VP8kVToR[v];
  const int g_off = (VP8kVToG[v] + VP8kUToG[u]) >> YUV_FIX;
  const int b_off = VP8kUToB[u];
  const int rg = ((VP8kClip4Bits[y + r_off - YUV_RANGE_MIN] << 4) |
                   VP8kClip4Bits[y + g_off - YUV_RANGE_MIN]);
  const int ba = (VP8kClip4Bits[y + b_off - YUV_RANGE_MIN] << 4) | 0x0f;
#ifdef WEBP_SWAP_16BIT_CSP
  argb[0] = ba;
  argb[1] = rg;
#else
  argb[0] = rg;
  argb[1] = ba;
#endif
}

#endif  // WEBP_YUV_USE_TABLE

//-----------------------------------------------------------------------------
// Alpha handling variants

static WEBP_INLINE void VP8YuvToArgb(uint8_t y, uint8_t u, uint8_t v,
                                     uint8_t* const argb) {
  argb[0] = 0xff;
  VP8YuvToRgb(y, u, v, argb + 1);
}

static WEBP_INLINE void VP8YuvToBgra(uint8_t y, uint8_t u, uint8_t v,
                                     uint8_t* const bgra) {
  VP8YuvToBgr(y, u, v, bgra);
  bgra[3] = 0xff;
}

static WEBP_INLINE void VP8YuvToRgba(uint8_t y, uint8_t u, uint8_t v,
                                     uint8_t* const rgba) {
  VP8YuvToRgb(y, u, v, rgba);
  rgba[3] = 0xff;
}

// Must be called before everything, to initialize the tables.
void VP8YUVInit(void);

//-----------------------------------------------------------------------------
// SSE2 extra functions (mostly for upsampling_sse2.c)

#if defined(WEBP_USE_SSE2)

// When the following is defined, tables are initialized statically, adding ~12k
// to the binary size. Otherwise, they are initialized at run-time (small cost).
#define WEBP_YUV_USE_SSE2_TABLES

// Process 32 pixels and store the result (24b or 32b per pixel) in *dst.
void VP8YuvToRgba32(const uint8_t* y, const uint8_t* u, const uint8_t* v,
                    uint8_t* dst);
void VP8YuvToRgb32(const uint8_t* y, const uint8_t* u, const uint8_t* v,
                   uint8_t* dst);
void VP8YuvToBgra32(const uint8_t* y, const uint8_t* u, const uint8_t* v,
                    uint8_t* dst);
void VP8YuvToBgr32(const uint8_t* y, const uint8_t* u, const uint8_t* v,
                   uint8_t* dst);

// Must be called to initialize tables before using the functions.
void VP8YUVInitSSE2(void);

#endif    // WEBP_USE_SSE2

//------------------------------------------------------------------------------
// RGB -> YUV conversion

// Stub functions that can be called with various rounding values:
static WEBP_INLINE int VP8ClipUV(int uv, int rounding) {
  uv = (uv + rounding + (128 << (YUV_FIX + 2))) >> (YUV_FIX + 2);
  return ((uv & ~0xff) == 0) ? uv : (uv < 0) ? 0 : 255;
}

#ifndef USE_YUVj

static WEBP_INLINE int VP8RGBToY(int r, int g, int b, int rounding) {
  const int luma = 16839 * r + 33059 * g + 6420 * b;
  return (luma + rounding + (16 << YUV_FIX)) >> YUV_FIX;  // no need to clip
}

static WEBP_INLINE int VP8RGBToU(int r, int g, int b, int rounding) {
  const int u = -9719 * r - 19081 * g + 28800 * b;
  return VP8ClipUV(u, rounding);
}

static WEBP_INLINE int VP8RGBToV(int r, int g, int b, int rounding) {
  const int v = +28800 * r - 24116 * g - 4684 * b;
  return VP8ClipUV(v, rounding);
}

#else

// This JPEG-YUV colorspace, only for comparison!
// These are also 16bit precision coefficients from Rec.601, but with full
// [0..255] output range.
static WEBP_INLINE int VP8RGBToY(int r, int g, int b, int rounding) {
  const int luma = 19595 * r + 38470 * g + 7471 * b;
  return (luma + rounding) >> YUV_FIX;  // no need to clip
}

static WEBP_INLINE int VP8RGBToU(int r, int g, int b, int rounding) {
  const int u = -11058 * r - 21710 * g + 32768 * b;
  return VP8ClipUV(u, rounding);
}

static WEBP_INLINE int VP8RGBToV(int r, int g, int b, int rounding) {
  const int v = 32768 * r - 27439 * g - 5329 * b;
  return VP8ClipUV(v, rounding);
}

#endif    // USE_YUVj

#ifdef __cplusplus
}    // extern "C"
#endif

#endif  /* WEBP_DSP_YUV_H_ */