1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
|
// Copyright 2010 Google Inc. All Rights Reserved.
//
// Use of this source code is governed by a BSD-style license
// that can be found in the COPYING file in the root of the source
// tree. An additional intellectual property rights grant can be found
// in the file PATENTS. All contributing project authors may
// be found in the AUTHORS file in the root of the source tree.
// -----------------------------------------------------------------------------
//
// YUV->RGB conversion function
//
// Author: Skal (pascal.massimino@gmail.com)
#include "./yuv.h"
#if defined(WEBP_YUV_USE_TABLE)
static int done = 0;
static WEBP_INLINE uint8_t clip(int v, int max_value) {
return v < 0 ? 0 : v > max_value ? max_value : v;
}
int16_t VP8kVToR[256], VP8kUToB[256];
int32_t VP8kVToG[256], VP8kUToG[256];
uint8_t VP8kClip[YUV_RANGE_MAX - YUV_RANGE_MIN];
uint8_t VP8kClip4Bits[YUV_RANGE_MAX - YUV_RANGE_MIN];
void VP8YUVInit(void) {
int i;
if (done) {
return;
}
#ifndef USE_YUVj
for (i = 0; i < 256; ++i) {
VP8kVToR[i] = (89858 * (i - 128) + YUV_HALF) >> YUV_FIX;
VP8kUToG[i] = -22014 * (i - 128) + YUV_HALF;
VP8kVToG[i] = -45773 * (i - 128);
VP8kUToB[i] = (113618 * (i - 128) + YUV_HALF) >> YUV_FIX;
}
for (i = YUV_RANGE_MIN; i < YUV_RANGE_MAX; ++i) {
const int k = ((i - 16) * 76283 + YUV_HALF) >> YUV_FIX;
VP8kClip[i - YUV_RANGE_MIN] = clip(k, 255);
VP8kClip4Bits[i - YUV_RANGE_MIN] = clip((k + 8) >> 4, 15);
}
#else
for (i = 0; i < 256; ++i) {
VP8kVToR[i] = (91881 * (i - 128) + YUV_HALF) >> YUV_FIX;
VP8kUToG[i] = -22554 * (i - 128) + YUV_HALF;
VP8kVToG[i] = -46802 * (i - 128);
VP8kUToB[i] = (116130 * (i - 128) + YUV_HALF) >> YUV_FIX;
}
for (i = YUV_RANGE_MIN; i < YUV_RANGE_MAX; ++i) {
const int k = i;
VP8kClip[i - YUV_RANGE_MIN] = clip(k, 255);
VP8kClip4Bits[i - YUV_RANGE_MIN] = clip((k + 8) >> 4, 15);
}
#endif
done = 1;
}
#else
void VP8YUVInit(void) {}
#endif // WEBP_YUV_USE_TABLE
//-----------------------------------------------------------------------------
// SSE2 extras
#if defined(WEBP_USE_SSE2)
#ifdef FANCY_UPSAMPLING
#include <emmintrin.h>
#include <string.h> // for memcpy
typedef union { // handy struct for converting SSE2 registers
int32_t i32[4];
uint8_t u8[16];
__m128i m;
} VP8kCstSSE2;
static int done_sse2 = 0;
static VP8kCstSSE2 VP8kUtoRGBA[256], VP8kVtoRGBA[256], VP8kYtoRGBA[256];
void VP8YUVInitSSE2(void) {
if (!done_sse2) {
int i;
for (i = 0; i < 256; ++i) {
VP8kYtoRGBA[i].i32[0] =
VP8kYtoRGBA[i].i32[1] =
VP8kYtoRGBA[i].i32[2] = (i - 16) * kYScale + YUV_HALF2;
VP8kYtoRGBA[i].i32[3] = 0xff << YUV_FIX2;
VP8kUtoRGBA[i].i32[0] = 0;
VP8kUtoRGBA[i].i32[1] = -kUToG * (i - 128);
VP8kUtoRGBA[i].i32[2] = kUToB * (i - 128);
VP8kUtoRGBA[i].i32[3] = 0;
VP8kVtoRGBA[i].i32[0] = kVToR * (i - 128);
VP8kVtoRGBA[i].i32[1] = -kVToG * (i - 128);
VP8kVtoRGBA[i].i32[2] = 0;
VP8kVtoRGBA[i].i32[3] = 0;
}
done_sse2 = 1;
}
}
static WEBP_INLINE __m128i VP8GetRGBA32b(int y, int u, int v) {
const __m128i u_part = _mm_loadu_si128(&VP8kUtoRGBA[u].m);
const __m128i v_part = _mm_loadu_si128(&VP8kVtoRGBA[v].m);
const __m128i y_part = _mm_loadu_si128(&VP8kYtoRGBA[y].m);
const __m128i uv_part = _mm_add_epi32(u_part, v_part);
const __m128i rgba1 = _mm_add_epi32(y_part, uv_part);
const __m128i rgba2 = _mm_srai_epi32(rgba1, YUV_FIX2);
return rgba2;
}
static WEBP_INLINE void VP8YuvToRgbSSE2(uint8_t y, uint8_t u, uint8_t v,
uint8_t* const rgb) {
const __m128i tmp0 = VP8GetRGBA32b(y, u, v);
const __m128i tmp1 = _mm_packs_epi32(tmp0, tmp0);
const __m128i tmp2 = _mm_packus_epi16(tmp1, tmp1);
// Note: we store 8 bytes at a time, not 3 bytes! -> memory stomp
_mm_storel_epi64((__m128i*)rgb, tmp2);
}
static WEBP_INLINE void VP8YuvToBgrSSE2(uint8_t y, uint8_t u, uint8_t v,
uint8_t* const bgr) {
const __m128i tmp0 = VP8GetRGBA32b(y, u, v);
const __m128i tmp1 = _mm_shuffle_epi32(tmp0, _MM_SHUFFLE(3, 0, 1, 2));
const __m128i tmp2 = _mm_packs_epi32(tmp1, tmp1);
const __m128i tmp3 = _mm_packus_epi16(tmp2, tmp2);
// Note: we store 8 bytes at a time, not 3 bytes! -> memory stomp
_mm_storel_epi64((__m128i*)bgr, tmp3);
}
void VP8YuvToRgba32(const uint8_t* y, const uint8_t* u, const uint8_t* v,
uint8_t* dst) {
int n;
for (n = 0; n < 32; n += 4) {
const __m128i tmp0_1 = VP8GetRGBA32b(y[n + 0], u[n + 0], v[n + 0]);
const __m128i tmp0_2 = VP8GetRGBA32b(y[n + 1], u[n + 1], v[n + 1]);
const __m128i tmp0_3 = VP8GetRGBA32b(y[n + 2], u[n + 2], v[n + 2]);
const __m128i tmp0_4 = VP8GetRGBA32b(y[n + 3], u[n + 3], v[n + 3]);
const __m128i tmp1_1 = _mm_packs_epi32(tmp0_1, tmp0_2);
const __m128i tmp1_2 = _mm_packs_epi32(tmp0_3, tmp0_4);
const __m128i tmp2 = _mm_packus_epi16(tmp1_1, tmp1_2);
_mm_storeu_si128((__m128i*)dst, tmp2);
dst += 4 * 4;
}
}
void VP8YuvToBgra32(const uint8_t* y, const uint8_t* u, const uint8_t* v,
uint8_t* dst) {
int n;
for (n = 0; n < 32; n += 2) {
const __m128i tmp0_1 = VP8GetRGBA32b(y[n + 0], u[n + 0], v[n + 0]);
const __m128i tmp0_2 = VP8GetRGBA32b(y[n + 1], u[n + 1], v[n + 1]);
const __m128i tmp1_1 = _mm_shuffle_epi32(tmp0_1, _MM_SHUFFLE(3, 0, 1, 2));
const __m128i tmp1_2 = _mm_shuffle_epi32(tmp0_2, _MM_SHUFFLE(3, 0, 1, 2));
const __m128i tmp2_1 = _mm_packs_epi32(tmp1_1, tmp1_2);
const __m128i tmp3 = _mm_packus_epi16(tmp2_1, tmp2_1);
_mm_storel_epi64((__m128i*)dst, tmp3);
dst += 4 * 2;
}
}
void VP8YuvToRgb32(const uint8_t* y, const uint8_t* u, const uint8_t* v,
uint8_t* dst) {
int n;
uint8_t tmp0[2 * 3 + 5 + 15];
uint8_t* const tmp = (uint8_t*)((uintptr_t)(tmp0 + 15) & ~15); // align
for (n = 0; n < 30; ++n) { // we directly stomp the *dst memory
VP8YuvToRgbSSE2(y[n], u[n], v[n], dst + n * 3);
}
// Last two pixels are special: we write in a tmp buffer before sending
// to dst.
VP8YuvToRgbSSE2(y[n + 0], u[n + 0], v[n + 0], tmp + 0);
VP8YuvToRgbSSE2(y[n + 1], u[n + 1], v[n + 1], tmp + 3);
memcpy(dst + n * 3, tmp, 2 * 3);
}
void VP8YuvToBgr32(const uint8_t* y, const uint8_t* u, const uint8_t* v,
uint8_t* dst) {
int n;
uint8_t tmp0[2 * 3 + 5 + 15];
uint8_t* const tmp = (uint8_t*)((uintptr_t)(tmp0 + 15) & ~15); // align
for (n = 0; n < 30; ++n) {
VP8YuvToBgrSSE2(y[n], u[n], v[n], dst + n * 3);
}
VP8YuvToBgrSSE2(y[n + 0], u[n + 0], v[n + 0], tmp + 0);
VP8YuvToBgrSSE2(y[n + 1], u[n + 1], v[n + 1], tmp + 3);
memcpy(dst + n * 3, tmp, 2 * 3);
}
#else
void VP8YUVInitSSE2(void) {}
#endif // FANCY_UPSAMPLING
#endif // WEBP_USE_SSE2
|