summaryrefslogtreecommitdiff
path: root/drivers/webp/dsp/lossless_enc.c
blob: b3036f5384735d5f48826496f08012ef8b8d2e54 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
// Copyright 2015 Google Inc. All Rights Reserved.
//
// Use of this source code is governed by a BSD-style license
// that can be found in the COPYING file in the root of the source
// tree. An additional intellectual property rights grant can be found
// in the file PATENTS. All contributing project authors may
// be found in the AUTHORS file in the root of the source tree.
// -----------------------------------------------------------------------------
//
// Image transform methods for lossless encoder.
//
// Authors: Vikas Arora (vikaas.arora@gmail.com)
//          Jyrki Alakuijala (jyrki@google.com)
//          Urvang Joshi (urvang@google.com)

#include "./dsp.h"

#include <math.h>
#include <stdlib.h>
#include "../dec/vp8li.h"
#include "../utils/endian_inl.h"
#include "./lossless.h"
#include "./yuv.h"

#define MAX_DIFF_COST (1e30f)

// lookup table for small values of log2(int)
const float kLog2Table[LOG_LOOKUP_IDX_MAX] = {
  0.0000000000000000f, 0.0000000000000000f,
  1.0000000000000000f, 1.5849625007211560f,
  2.0000000000000000f, 2.3219280948873621f,
  2.5849625007211560f, 2.8073549220576041f,
  3.0000000000000000f, 3.1699250014423121f,
  3.3219280948873621f, 3.4594316186372973f,
  3.5849625007211560f, 3.7004397181410921f,
  3.8073549220576041f, 3.9068905956085187f,
  4.0000000000000000f, 4.0874628412503390f,
  4.1699250014423121f, 4.2479275134435852f,
  4.3219280948873626f, 4.3923174227787606f,
  4.4594316186372973f, 4.5235619560570130f,
  4.5849625007211560f, 4.6438561897747243f,
  4.7004397181410917f, 4.7548875021634682f,
  4.8073549220576037f, 4.8579809951275718f,
  4.9068905956085187f, 4.9541963103868749f,
  5.0000000000000000f, 5.0443941193584533f,
  5.0874628412503390f, 5.1292830169449663f,
  5.1699250014423121f, 5.2094533656289501f,
  5.2479275134435852f, 5.2854022188622487f,
  5.3219280948873626f, 5.3575520046180837f,
  5.3923174227787606f, 5.4262647547020979f,
  5.4594316186372973f, 5.4918530963296747f,
  5.5235619560570130f, 5.5545888516776376f,
  5.5849625007211560f, 5.6147098441152083f,
  5.6438561897747243f, 5.6724253419714951f,
  5.7004397181410917f, 5.7279204545631987f,
  5.7548875021634682f, 5.7813597135246599f,
  5.8073549220576037f, 5.8328900141647412f,
  5.8579809951275718f, 5.8826430493618415f,
  5.9068905956085187f, 5.9307373375628866f,
  5.9541963103868749f, 5.9772799234999167f,
  6.0000000000000000f, 6.0223678130284543f,
  6.0443941193584533f, 6.0660891904577720f,
  6.0874628412503390f, 6.1085244567781691f,
  6.1292830169449663f, 6.1497471195046822f,
  6.1699250014423121f, 6.1898245588800175f,
  6.2094533656289501f, 6.2288186904958804f,
  6.2479275134435852f, 6.2667865406949010f,
  6.2854022188622487f, 6.3037807481771030f,
  6.3219280948873626f, 6.3398500028846243f,
  6.3575520046180837f, 6.3750394313469245f,
  6.3923174227787606f, 6.4093909361377017f,
  6.4262647547020979f, 6.4429434958487279f,
  6.4594316186372973f, 6.4757334309663976f,
  6.4918530963296747f, 6.5077946401986963f,
  6.5235619560570130f, 6.5391588111080309f,
  6.5545888516776376f, 6.5698556083309478f,
  6.5849625007211560f, 6.5999128421871278f,
  6.6147098441152083f, 6.6293566200796094f,
  6.6438561897747243f, 6.6582114827517946f,
  6.6724253419714951f, 6.6865005271832185f,
  6.7004397181410917f, 6.7142455176661224f,
  6.7279204545631987f, 6.7414669864011464f,
  6.7548875021634682f, 6.7681843247769259f,
  6.7813597135246599f, 6.7944158663501061f,
  6.8073549220576037f, 6.8201789624151878f,
  6.8328900141647412f, 6.8454900509443747f,
  6.8579809951275718f, 6.8703647195834047f,
  6.8826430493618415f, 6.8948177633079437f,
  6.9068905956085187f, 6.9188632372745946f,
  6.9307373375628866f, 6.9425145053392398f,
  6.9541963103868749f, 6.9657842846620869f,
  6.9772799234999167f, 6.9886846867721654f,
  7.0000000000000000f, 7.0112272554232539f,
  7.0223678130284543f, 7.0334230015374501f,
  7.0443941193584533f, 7.0552824355011898f,
  7.0660891904577720f, 7.0768155970508308f,
  7.0874628412503390f, 7.0980320829605263f,
  7.1085244567781691f, 7.1189410727235076f,
  7.1292830169449663f, 7.1395513523987936f,
  7.1497471195046822f, 7.1598713367783890f,
  7.1699250014423121f, 7.1799090900149344f,
  7.1898245588800175f, 7.1996723448363644f,
  7.2094533656289501f, 7.2191685204621611f,
  7.2288186904958804f, 7.2384047393250785f,
  7.2479275134435852f, 7.2573878426926521f,
  7.2667865406949010f, 7.2761244052742375f,
  7.2854022188622487f, 7.2946207488916270f,
  7.3037807481771030f, 7.3128829552843557f,
  7.3219280948873626f, 7.3309168781146167f,
  7.3398500028846243f, 7.3487281542310771f,
  7.3575520046180837f, 7.3663222142458160f,
  7.3750394313469245f, 7.3837042924740519f,
  7.3923174227787606f, 7.4008794362821843f,
  7.4093909361377017f, 7.4178525148858982f,
  7.4262647547020979f, 7.4346282276367245f,
  7.4429434958487279f, 7.4512111118323289f,
  7.4594316186372973f, 7.4676055500829976f,
  7.4757334309663976f, 7.4838157772642563f,
  7.4918530963296747f, 7.4998458870832056f,
  7.5077946401986963f, 7.5156998382840427f,
  7.5235619560570130f, 7.5313814605163118f,
  7.5391588111080309f, 7.5468944598876364f,
  7.5545888516776376f, 7.5622424242210728f,
  7.5698556083309478f, 7.5774288280357486f,
  7.5849625007211560f, 7.5924570372680806f,
  7.5999128421871278f, 7.6073303137496104f,
  7.6147098441152083f, 7.6220518194563764f,
  7.6293566200796094f, 7.6366246205436487f,
  7.6438561897747243f, 7.6510516911789281f,
  7.6582114827517946f, 7.6653359171851764f,
  7.6724253419714951f, 7.6794800995054464f,
  7.6865005271832185f, 7.6934869574993252f,
  7.7004397181410917f, 7.7073591320808825f,
  7.7142455176661224f, 7.7210991887071855f,
  7.7279204545631987f, 7.7347096202258383f,
  7.7414669864011464f, 7.7481928495894605f,
  7.7548875021634682f, 7.7615512324444795f,
  7.7681843247769259f, 7.7747870596011736f,
  7.7813597135246599f, 7.7879025593914317f,
  7.7944158663501061f, 7.8008998999203047f,
  7.8073549220576037f, 7.8137811912170374f,
  7.8201789624151878f, 7.8265484872909150f,
  7.8328900141647412f, 7.8392037880969436f,
  7.8454900509443747f, 7.8517490414160571f,
  7.8579809951275718f, 7.8641861446542797f,
  7.8703647195834047f, 7.8765169465649993f,
  7.8826430493618415f, 7.8887432488982591f,
  7.8948177633079437f, 7.9008668079807486f,
  7.9068905956085187f, 7.9128893362299619f,
  7.9188632372745946f, 7.9248125036057812f,
  7.9307373375628866f, 7.9366379390025709f,
  7.9425145053392398f, 7.9483672315846778f,
  7.9541963103868749f, 7.9600019320680805f,
  7.9657842846620869f, 7.9715435539507719f,
  7.9772799234999167f, 7.9829935746943103f,
  7.9886846867721654f, 7.9943534368588577f
};

const float kSLog2Table[LOG_LOOKUP_IDX_MAX] = {
  0.00000000f,    0.00000000f,  2.00000000f,   4.75488750f,
  8.00000000f,   11.60964047f,  15.50977500f,  19.65148445f,
  24.00000000f,  28.52932501f,  33.21928095f,  38.05374781f,
  43.01955001f,  48.10571634f,  53.30296891f,  58.60335893f,
  64.00000000f,  69.48686830f,  75.05865003f,  80.71062276f,
  86.43856190f,  92.23866588f,  98.10749561f,  104.04192499f,
  110.03910002f, 116.09640474f, 122.21143267f, 128.38196256f,
  134.60593782f, 140.88144886f, 147.20671787f, 153.58008562f,
  160.00000000f, 166.46500594f, 172.97373660f, 179.52490559f,
  186.11730005f, 192.74977453f, 199.42124551f, 206.13068654f,
  212.87712380f, 219.65963219f, 226.47733176f, 233.32938445f,
  240.21499122f, 247.13338933f, 254.08384998f, 261.06567603f,
  268.07820003f, 275.12078236f, 282.19280949f, 289.29369244f,
  296.42286534f, 303.57978409f, 310.76392512f, 317.97478424f,
  325.21187564f, 332.47473081f, 339.76289772f, 347.07593991f,
  354.41343574f, 361.77497759f, 369.16017124f, 376.56863518f,
  384.00000000f, 391.45390785f, 398.93001188f, 406.42797576f,
  413.94747321f, 421.48818752f, 429.04981119f, 436.63204548f,
  444.23460010f, 451.85719280f, 459.49954906f, 467.16140179f,
  474.84249102f, 482.54256363f, 490.26137307f, 497.99867911f,
  505.75424759f, 513.52785023f, 521.31926438f, 529.12827280f,
  536.95466351f, 544.79822957f, 552.65876890f, 560.53608414f,
  568.42998244f, 576.34027536f, 584.26677867f, 592.20931226f,
  600.16769996f, 608.14176943f, 616.13135206f, 624.13628279f,
  632.15640007f, 640.19154569f, 648.24156472f, 656.30630539f,
  664.38561898f, 672.47935976f, 680.58738488f, 688.70955430f,
  696.84573069f, 704.99577935f, 713.15956818f, 721.33696754f,
  729.52785023f, 737.73209140f, 745.94956849f, 754.18016116f,
  762.42375127f, 770.68022275f, 778.94946161f, 787.23135586f,
  795.52579543f, 803.83267219f, 812.15187982f, 820.48331383f,
  828.82687147f, 837.18245171f, 845.54995518f, 853.92928416f,
  862.32034249f, 870.72303558f, 879.13727036f, 887.56295522f,
  896.00000000f, 904.44831595f, 912.90781569f, 921.37841320f,
  929.86002376f, 938.35256392f, 946.85595152f, 955.37010560f,
  963.89494641f, 972.43039537f, 980.97637504f, 989.53280911f,
  998.09962237f, 1006.67674069f, 1015.26409097f, 1023.86160116f,
  1032.46920021f, 1041.08681805f, 1049.71438560f, 1058.35183469f,
  1066.99909811f, 1075.65610955f, 1084.32280357f, 1092.99911564f,
  1101.68498204f, 1110.38033993f, 1119.08512727f, 1127.79928282f,
  1136.52274614f, 1145.25545758f, 1153.99735821f, 1162.74838989f,
  1171.50849518f, 1180.27761738f, 1189.05570047f, 1197.84268914f,
  1206.63852876f, 1215.44316535f, 1224.25654560f, 1233.07861684f,
  1241.90932703f, 1250.74862473f, 1259.59645914f, 1268.45278005f,
  1277.31753781f, 1286.19068338f, 1295.07216828f, 1303.96194457f,
  1312.85996488f, 1321.76618236f, 1330.68055071f, 1339.60302413f,
  1348.53355734f, 1357.47210556f, 1366.41862452f, 1375.37307041f,
  1384.33539991f, 1393.30557020f, 1402.28353887f, 1411.26926400f,
  1420.26270412f, 1429.26381818f, 1438.27256558f, 1447.28890615f,
  1456.31280014f, 1465.34420819f, 1474.38309138f, 1483.42941118f,
  1492.48312945f, 1501.54420843f, 1510.61261078f, 1519.68829949f,
  1528.77123795f, 1537.86138993f, 1546.95871952f, 1556.06319119f,
  1565.17476976f, 1574.29342040f, 1583.41910860f, 1592.55180020f,
  1601.69146137f, 1610.83805860f, 1619.99155871f, 1629.15192882f,
  1638.31913637f, 1647.49314911f, 1656.67393509f, 1665.86146266f,
  1675.05570047f, 1684.25661744f, 1693.46418280f, 1702.67836605f,
  1711.89913698f, 1721.12646563f, 1730.36032233f, 1739.60067768f,
  1748.84750254f, 1758.10076802f, 1767.36044551f, 1776.62650662f,
  1785.89892323f, 1795.17766747f, 1804.46271172f, 1813.75402857f,
  1823.05159087f, 1832.35537170f, 1841.66534438f, 1850.98148244f,
  1860.30375965f, 1869.63214999f, 1878.96662767f, 1888.30716711f,
  1897.65374295f, 1907.00633003f, 1916.36490342f, 1925.72943838f,
  1935.09991037f, 1944.47629506f, 1953.85856831f, 1963.24670620f,
  1972.64068498f, 1982.04048108f, 1991.44607117f, 2000.85743204f,
  2010.27454072f, 2019.69737440f, 2029.12591044f, 2038.56012640f
};

const VP8LPrefixCode kPrefixEncodeCode[PREFIX_LOOKUP_IDX_MAX] = {
  { 0, 0}, { 0, 0}, { 1, 0}, { 2, 0}, { 3, 0}, { 4, 1}, { 4, 1}, { 5, 1},
  { 5, 1}, { 6, 2}, { 6, 2}, { 6, 2}, { 6, 2}, { 7, 2}, { 7, 2}, { 7, 2},
  { 7, 2}, { 8, 3}, { 8, 3}, { 8, 3}, { 8, 3}, { 8, 3}, { 8, 3}, { 8, 3},
  { 8, 3}, { 9, 3}, { 9, 3}, { 9, 3}, { 9, 3}, { 9, 3}, { 9, 3}, { 9, 3},
  { 9, 3}, {10, 4}, {10, 4}, {10, 4}, {10, 4}, {10, 4}, {10, 4}, {10, 4},
  {10, 4}, {10, 4}, {10, 4}, {10, 4}, {10, 4}, {10, 4}, {10, 4}, {10, 4},
  {10, 4}, {11, 4}, {11, 4}, {11, 4}, {11, 4}, {11, 4}, {11, 4}, {11, 4},
  {11, 4}, {11, 4}, {11, 4}, {11, 4}, {11, 4}, {11, 4}, {11, 4}, {11, 4},
  {11, 4}, {12, 5}, {12, 5}, {12, 5}, {12, 5}, {12, 5}, {12, 5}, {12, 5},
  {12, 5}, {12, 5}, {12, 5}, {12, 5}, {12, 5}, {12, 5}, {12, 5}, {12, 5},
  {12, 5}, {12, 5}, {12, 5}, {12, 5}, {12, 5}, {12, 5}, {12, 5}, {12, 5},
  {12, 5}, {12, 5}, {12, 5}, {12, 5}, {12, 5}, {12, 5}, {12, 5}, {12, 5},
  {12, 5}, {13, 5}, {13, 5}, {13, 5}, {13, 5}, {13, 5}, {13, 5}, {13, 5},
  {13, 5}, {13, 5}, {13, 5}, {13, 5}, {13, 5}, {13, 5}, {13, 5}, {13, 5},
  {13, 5}, {13, 5}, {13, 5}, {13, 5}, {13, 5}, {13, 5}, {13, 5}, {13, 5},
  {13, 5}, {13, 5}, {13, 5}, {13, 5}, {13, 5}, {13, 5}, {13, 5}, {13, 5},
  {13, 5}, {14, 6}, {14, 6}, {14, 6}, {14, 6}, {14, 6}, {14, 6}, {14, 6},
  {14, 6}, {14, 6}, {14, 6}, {14, 6}, {14, 6}, {14, 6}, {14, 6}, {14, 6},
  {14, 6}, {14, 6}, {14, 6}, {14, 6}, {14, 6}, {14, 6}, {14, 6}, {14, 6},
  {14, 6}, {14, 6}, {14, 6}, {14, 6}, {14, 6}, {14, 6}, {14, 6}, {14, 6},
  {14, 6}, {14, 6}, {14, 6}, {14, 6}, {14, 6}, {14, 6}, {14, 6}, {14, 6},
  {14, 6}, {14, 6}, {14, 6}, {14, 6}, {14, 6}, {14, 6}, {14, 6}, {14, 6},
  {14, 6}, {14, 6}, {14, 6}, {14, 6}, {14, 6}, {14, 6}, {14, 6}, {14, 6},
  {14, 6}, {14, 6}, {14, 6}, {14, 6}, {14, 6}, {14, 6}, {14, 6}, {14, 6},
  {14, 6}, {15, 6}, {15, 6}, {15, 6}, {15, 6}, {15, 6}, {15, 6}, {15, 6},
  {15, 6}, {15, 6}, {15, 6}, {15, 6}, {15, 6}, {15, 6}, {15, 6}, {15, 6},
  {15, 6}, {15, 6}, {15, 6}, {15, 6}, {15, 6}, {15, 6}, {15, 6}, {15, 6},
  {15, 6}, {15, 6}, {15, 6}, {15, 6}, {15, 6}, {15, 6}, {15, 6}, {15, 6},
  {15, 6}, {15, 6}, {15, 6}, {15, 6}, {15, 6}, {15, 6}, {15, 6}, {15, 6},
  {15, 6}, {15, 6}, {15, 6}, {15, 6}, {15, 6}, {15, 6}, {15, 6}, {15, 6},
  {15, 6}, {15, 6}, {15, 6}, {15, 6}, {15, 6}, {15, 6}, {15, 6}, {15, 6},
  {15, 6}, {15, 6}, {15, 6}, {15, 6}, {15, 6}, {15, 6}, {15, 6}, {15, 6},
  {15, 6}, {16, 7}, {16, 7}, {16, 7}, {16, 7}, {16, 7}, {16, 7}, {16, 7},
  {16, 7}, {16, 7}, {16, 7}, {16, 7}, {16, 7}, {16, 7}, {16, 7}, {16, 7},
  {16, 7}, {16, 7}, {16, 7}, {16, 7}, {16, 7}, {16, 7}, {16, 7}, {16, 7},
  {16, 7}, {16, 7}, {16, 7}, {16, 7}, {16, 7}, {16, 7}, {16, 7}, {16, 7},
  {16, 7}, {16, 7}, {16, 7}, {16, 7}, {16, 7}, {16, 7}, {16, 7}, {16, 7},
  {16, 7}, {16, 7}, {16, 7}, {16, 7}, {16, 7}, {16, 7}, {16, 7}, {16, 7},
  {16, 7}, {16, 7}, {16, 7}, {16, 7}, {16, 7}, {16, 7}, {16, 7}, {16, 7},
  {16, 7}, {16, 7}, {16, 7}, {16, 7}, {16, 7}, {16, 7}, {16, 7}, {16, 7},
  {16, 7}, {16, 7}, {16, 7}, {16, 7}, {16, 7}, {16, 7}, {16, 7}, {16, 7},
  {16, 7}, {16, 7}, {16, 7}, {16, 7}, {16, 7}, {16, 7}, {16, 7}, {16, 7},
  {16, 7}, {16, 7}, {16, 7}, {16, 7}, {16, 7}, {16, 7}, {16, 7}, {16, 7},
  {16, 7}, {16, 7}, {16, 7}, {16, 7}, {16, 7}, {16, 7}, {16, 7}, {16, 7},
  {16, 7}, {16, 7}, {16, 7}, {16, 7}, {16, 7}, {16, 7}, {16, 7}, {16, 7},
  {16, 7}, {16, 7}, {16, 7}, {16, 7}, {16, 7}, {16, 7}, {16, 7}, {16, 7},
  {16, 7}, {16, 7}, {16, 7}, {16, 7}, {16, 7}, {16, 7}, {16, 7}, {16, 7},
  {16, 7}, {16, 7}, {16, 7}, {16, 7}, {16, 7}, {16, 7}, {16, 7}, {16, 7},
  {16, 7}, {17, 7}, {17, 7}, {17, 7}, {17, 7}, {17, 7}, {17, 7}, {17, 7},
  {17, 7}, {17, 7}, {17, 7}, {17, 7}, {17, 7}, {17, 7}, {17, 7}, {17, 7},
  {17, 7}, {17, 7}, {17, 7}, {17, 7}, {17, 7}, {17, 7}, {17, 7}, {17, 7},
  {17, 7}, {17, 7}, {17, 7}, {17, 7}, {17, 7}, {17, 7}, {17, 7}, {17, 7},
  {17, 7}, {17, 7}, {17, 7}, {17, 7}, {17, 7}, {17, 7}, {17, 7}, {17, 7},
  {17, 7}, {17, 7}, {17, 7}, {17, 7}, {17, 7}, {17, 7}, {17, 7}, {17, 7},
  {17, 7}, {17, 7}, {17, 7}, {17, 7}, {17, 7}, {17, 7}, {17, 7}, {17, 7},
  {17, 7}, {17, 7}, {17, 7}, {17, 7}, {17, 7}, {17, 7}, {17, 7}, {17, 7},
  {17, 7}, {17, 7}, {17, 7}, {17, 7}, {17, 7}, {17, 7}, {17, 7}, {17, 7},
  {17, 7}, {17, 7}, {17, 7}, {17, 7}, {17, 7}, {17, 7}, {17, 7}, {17, 7},
  {17, 7}, {17, 7}, {17, 7}, {17, 7}, {17, 7}, {17, 7}, {17, 7}, {17, 7},
  {17, 7}, {17, 7}, {17, 7}, {17, 7}, {17, 7}, {17, 7}, {17, 7}, {17, 7},
  {17, 7}, {17, 7}, {17, 7}, {17, 7}, {17, 7}, {17, 7}, {17, 7}, {17, 7},
  {17, 7}, {17, 7}, {17, 7}, {17, 7}, {17, 7}, {17, 7}, {17, 7}, {17, 7},
  {17, 7}, {17, 7}, {17, 7}, {17, 7}, {17, 7}, {17, 7}, {17, 7}, {17, 7},
  {17, 7}, {17, 7}, {17, 7}, {17, 7}, {17, 7}, {17, 7}, {17, 7}, {17, 7},
};

const uint8_t kPrefixEncodeExtraBitsValue[PREFIX_LOOKUP_IDX_MAX] = {
   0,  0,  0,  0,  0,  0,  1,  0,  1,  0,  1,  2,  3,  0,  1,  2,  3,
   0,  1,  2,  3,  4,  5,  6,  7,  0,  1,  2,  3,  4,  5,  6,  7,
   0,  1,  2,  3,  4,  5,  6,  7,  8,  9, 10, 11, 12, 13, 14, 15,
   0,  1,  2,  3,  4,  5,  6,  7,  8,  9, 10, 11, 12, 13, 14, 15,
   0,  1,  2,  3,  4,  5,  6,  7,  8,  9, 10, 11, 12, 13, 14, 15,
  16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31,
   0,  1,  2,  3,  4,  5,  6,  7,  8,  9, 10, 11, 12, 13, 14, 15,
  16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31,
   0,  1,  2,  3,  4,  5,  6,  7,  8,  9, 10, 11, 12, 13, 14, 15,
  16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31,
  32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47,
  48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63,
   0,  1,  2,  3,  4,  5,  6,  7,  8,  9, 10, 11, 12, 13, 14, 15,
  16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31,
  32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47,
  48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63,
   0,  1,  2,  3,  4,  5,  6,  7,  8,  9, 10, 11, 12, 13, 14, 15,
  16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31,
  32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47,
  48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63,
  64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79,
  80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95,
  96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111,
  112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126,
  127,
   0,  1,  2,  3,  4,  5,  6,  7,  8,  9, 10, 11, 12, 13, 14, 15,
  16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31,
  32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47,
  48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63,
  64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79,
  80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95,
  96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111,
  112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126
};

// The threshold till approximate version of log_2 can be used.
// Practically, we can get rid of the call to log() as the two values match to
// very high degree (the ratio of these two is 0.99999x).
// Keeping a high threshold for now.
#define APPROX_LOG_WITH_CORRECTION_MAX  65536
#define APPROX_LOG_MAX                   4096
#define LOG_2_RECIPROCAL 1.44269504088896338700465094007086
static float FastSLog2Slow(uint32_t v) {
  assert(v >= LOG_LOOKUP_IDX_MAX);
  if (v < APPROX_LOG_WITH_CORRECTION_MAX) {
    int log_cnt = 0;
    uint32_t y = 1;
    int correction = 0;
    const float v_f = (float)v;
    const uint32_t orig_v = v;
    do {
      ++log_cnt;
      v = v >> 1;
      y = y << 1;
    } while (v >= LOG_LOOKUP_IDX_MAX);
    // vf = (2^log_cnt) * Xf; where y = 2^log_cnt and Xf < 256
    // Xf = floor(Xf) * (1 + (v % y) / v)
    // log2(Xf) = log2(floor(Xf)) + log2(1 + (v % y) / v)
    // The correction factor: log(1 + d) ~ d; for very small d values, so
    // log2(1 + (v % y) / v) ~ LOG_2_RECIPROCAL * (v % y)/v
    // LOG_2_RECIPROCAL ~ 23/16
    correction = (23 * (orig_v & (y - 1))) >> 4;
    return v_f * (kLog2Table[v] + log_cnt) + correction;
  } else {
    return (float)(LOG_2_RECIPROCAL * v * log((double)v));
  }
}

static float FastLog2Slow(uint32_t v) {
  assert(v >= LOG_LOOKUP_IDX_MAX);
  if (v < APPROX_LOG_WITH_CORRECTION_MAX) {
    int log_cnt = 0;
    uint32_t y = 1;
    const uint32_t orig_v = v;
    double log_2;
    do {
      ++log_cnt;
      v = v >> 1;
      y = y << 1;
    } while (v >= LOG_LOOKUP_IDX_MAX);
    log_2 = kLog2Table[v] + log_cnt;
    if (orig_v >= APPROX_LOG_MAX) {
      // Since the division is still expensive, add this correction factor only
      // for large values of 'v'.
      const int correction = (23 * (orig_v & (y - 1))) >> 4;
      log_2 += (double)correction / orig_v;
    }
    return (float)log_2;
  } else {
    return (float)(LOG_2_RECIPROCAL * log((double)v));
  }
}

// Mostly used to reduce code size + readability
static WEBP_INLINE int GetMin(int a, int b) { return (a > b) ? b : a; }

//------------------------------------------------------------------------------
// Methods to calculate Entropy (Shannon).

static float PredictionCostSpatial(const int counts[256], int weight_0,
                                   double exp_val) {
  const int significant_symbols = 256 >> 4;
  const double exp_decay_factor = 0.6;
  double bits = weight_0 * counts[0];
  int i;
  for (i = 1; i < significant_symbols; ++i) {
    bits += exp_val * (counts[i] + counts[256 - i]);
    exp_val *= exp_decay_factor;
  }
  return (float)(-0.1 * bits);
}

// Compute the combined Shanon's entropy for distribution {X} and {X+Y}
static float CombinedShannonEntropy(const int X[256], const int Y[256]) {
  int i;
  double retval = 0.;
  int sumX = 0, sumXY = 0;
  for (i = 0; i < 256; ++i) {
    const int x = X[i];
    const int xy = x + Y[i];
    if (x != 0) {
      sumX += x;
      retval -= VP8LFastSLog2(x);
      sumXY += xy;
      retval -= VP8LFastSLog2(xy);
    } else if (xy != 0) {
      sumXY += xy;
      retval -= VP8LFastSLog2(xy);
    }
  }
  retval += VP8LFastSLog2(sumX) + VP8LFastSLog2(sumXY);
  return (float)retval;
}

static float PredictionCostSpatialHistogram(const int accumulated[4][256],
                                            const int tile[4][256]) {
  int i;
  double retval = 0;
  for (i = 0; i < 4; ++i) {
    const double kExpValue = 0.94;
    retval += PredictionCostSpatial(tile[i], 1, kExpValue);
    retval += CombinedShannonEntropy(tile[i], accumulated[i]);
  }
  return (float)retval;
}

static WEBP_INLINE double BitsEntropyRefine(int nonzeros, int sum, int max_val,
                                            double retval) {
  double mix;
  if (nonzeros < 5) {
    if (nonzeros <= 1) {
      return 0;
    }
    // Two symbols, they will be 0 and 1 in a Huffman code.
    // Let's mix in a bit of entropy to favor good clustering when
    // distributions of these are combined.
    if (nonzeros == 2) {
      return 0.99 * sum + 0.01 * retval;
    }
    // No matter what the entropy says, we cannot be better than min_limit
    // with Huffman coding. I am mixing a bit of entropy into the
    // min_limit since it produces much better (~0.5 %) compression results
    // perhaps because of better entropy clustering.
    if (nonzeros == 3) {
      mix = 0.95;
    } else {
      mix = 0.7;  // nonzeros == 4.
    }
  } else {
    mix = 0.627;
  }

  {
    double min_limit = 2 * sum - max_val;
    min_limit = mix * min_limit + (1.0 - mix) * retval;
    return (retval < min_limit) ? min_limit : retval;
  }
}

// Returns the entropy for the symbols in the input array.
// Also sets trivial_symbol to the code value, if the array has only one code
// value. Otherwise, set it to VP8L_NON_TRIVIAL_SYM.
double VP8LBitsEntropy(const uint32_t* const array, int n,
                       uint32_t* const trivial_symbol) {
  double retval = 0.;
  uint32_t sum = 0;
  uint32_t nonzero_code = VP8L_NON_TRIVIAL_SYM;
  int nonzeros = 0;
  uint32_t max_val = 0;
  int i;
  for (i = 0; i < n; ++i) {
    if (array[i] != 0) {
      sum += array[i];
      nonzero_code = i;
      ++nonzeros;
      retval -= VP8LFastSLog2(array[i]);
      if (max_val < array[i]) {
        max_val = array[i];
      }
    }
  }
  retval += VP8LFastSLog2(sum);
  if (trivial_symbol != NULL) {
    *trivial_symbol = (nonzeros == 1) ? nonzero_code : VP8L_NON_TRIVIAL_SYM;
  }
  return BitsEntropyRefine(nonzeros, sum, max_val, retval);
}

static double InitialHuffmanCost(void) {
  // Small bias because Huffman code length is typically not stored in
  // full length.
  static const int kHuffmanCodeOfHuffmanCodeSize = CODE_LENGTH_CODES * 3;
  static const double kSmallBias = 9.1;
  return kHuffmanCodeOfHuffmanCodeSize - kSmallBias;
}

// Finalize the Huffman cost based on streak numbers and length type (<3 or >=3)
static double FinalHuffmanCost(const VP8LStreaks* const stats) {
  double retval = InitialHuffmanCost();
  retval += stats->counts[0] * 1.5625 + 0.234375 * stats->streaks[0][1];
  retval += stats->counts[1] * 2.578125 + 0.703125 * stats->streaks[1][1];
  retval += 1.796875 * stats->streaks[0][0];
  retval += 3.28125 * stats->streaks[1][0];
  return retval;
}

// Trampolines
static double HuffmanCost(const uint32_t* const population, int length) {
  const VP8LStreaks stats = VP8LHuffmanCostCount(population, length);
  return FinalHuffmanCost(&stats);
}

// Aggregated costs
double VP8LPopulationCost(const uint32_t* const population, int length,
                          uint32_t* const trivial_sym) {
  return
      VP8LBitsEntropy(population, length, trivial_sym) +
      HuffmanCost(population, length);
}

double VP8LGetCombinedEntropy(const uint32_t* const X,
                              const uint32_t* const Y, int length) {
  double bits_entropy_combined;
  double huffman_cost_combined;
  int i;

  // Bit entropy variables.
  double retval = 0.;
  int sum = 0;
  int nonzeros = 0;
  uint32_t max_val = 0;
  int i_prev;
  uint32_t xy;

  // Huffman cost variables.
  int streak = 0;
  uint32_t xy_prev;
  VP8LStreaks stats;
  memset(&stats, 0, sizeof(stats));

  // Treat the first value for the huffman cost: this is keeping the original
  // behavior, even though there is no first streak.
  // TODO(vrabaud): study proper behavior
  xy = X[0] + Y[0];
  ++stats.streaks[xy != 0][0];
  xy_prev = xy;
  i_prev = 0;

  for (i = 1; i < length; ++i) {
    xy = X[i] + Y[i];

    // Process data by streaks for both bit entropy and huffman cost.
    if (xy != xy_prev) {
      streak = i - i_prev;

      // Gather info for the bit entropy.
      if (xy_prev != 0) {
        sum += xy_prev * streak;
        nonzeros += streak;
        retval -= VP8LFastSLog2(xy_prev) * streak;
        if (max_val < xy_prev) {
          max_val = xy_prev;
        }
      }

      // Gather info for the huffman cost.
      stats.counts[xy != 0] += (streak > 3);
      stats.streaks[xy != 0][(streak > 3)] += streak;

      xy_prev = xy;
      i_prev = i;
    }
  }

  // Finish off the last streak for bit entropy.
  if (xy != 0) {
    streak = i - i_prev;
    sum += xy * streak;
    nonzeros += streak;
    retval -= VP8LFastSLog2(xy) * streak;
    if (max_val < xy) {
      max_val = xy;
    }
  }
  // Huffman cost is not updated with the last streak to keep original behavior.
  // TODO(vrabaud): study proper behavior

  retval += VP8LFastSLog2(sum);
  bits_entropy_combined = BitsEntropyRefine(nonzeros, sum, max_val, retval);

  huffman_cost_combined = FinalHuffmanCost(&stats);

  return bits_entropy_combined + huffman_cost_combined;
}

// Estimates the Entropy + Huffman + other block overhead size cost.
double VP8LHistogramEstimateBits(const VP8LHistogram* const p) {
  return
      VP8LPopulationCost(
          p->literal_, VP8LHistogramNumCodes(p->palette_code_bits_), NULL)
      + VP8LPopulationCost(p->red_, NUM_LITERAL_CODES, NULL)
      + VP8LPopulationCost(p->blue_, NUM_LITERAL_CODES, NULL)
      + VP8LPopulationCost(p->alpha_, NUM_LITERAL_CODES, NULL)
      + VP8LPopulationCost(p->distance_, NUM_DISTANCE_CODES, NULL)
      + VP8LExtraCost(p->literal_ + NUM_LITERAL_CODES, NUM_LENGTH_CODES)
      + VP8LExtraCost(p->distance_, NUM_DISTANCE_CODES);
}

double VP8LHistogramEstimateBitsBulk(const VP8LHistogram* const p) {
  return
      VP8LBitsEntropy(p->literal_, VP8LHistogramNumCodes(p->palette_code_bits_),
                  NULL)
      + VP8LBitsEntropy(p->red_, NUM_LITERAL_CODES, NULL)
      + VP8LBitsEntropy(p->blue_, NUM_LITERAL_CODES, NULL)
      + VP8LBitsEntropy(p->alpha_, NUM_LITERAL_CODES, NULL)
      + VP8LBitsEntropy(p->distance_, NUM_DISTANCE_CODES, NULL)
      + VP8LExtraCost(p->literal_ + NUM_LITERAL_CODES, NUM_LENGTH_CODES)
      + VP8LExtraCost(p->distance_, NUM_DISTANCE_CODES);
}

static WEBP_INLINE void UpdateHisto(int histo_argb[4][256], uint32_t argb) {
  ++histo_argb[0][argb >> 24];
  ++histo_argb[1][(argb >> 16) & 0xff];
  ++histo_argb[2][(argb >> 8) & 0xff];
  ++histo_argb[3][argb & 0xff];
}

//------------------------------------------------------------------------------

// Returns best predictor and updates the accumulated histogram.
static int GetBestPredictorForTile(int width, int height,
                                   int tile_x, int tile_y, int bits,
                                   int accumulated[4][256],
                                   const uint32_t* const argb_scratch) {
  const int kNumPredModes = 14;
  const int col_start = tile_x << bits;
  const int row_start = tile_y << bits;
  const int tile_size = 1 << bits;
  const int max_y = GetMin(tile_size, height - row_start);
  const int max_x = GetMin(tile_size, width - col_start);
  float best_diff = MAX_DIFF_COST;
  int best_mode = 0;
  int mode;
  int histo_stack_1[4][256];
  int histo_stack_2[4][256];
  // Need pointers to be able to swap arrays.
  int (*histo_argb)[256] = histo_stack_1;
  int (*best_histo)[256] = histo_stack_2;

  int i, j;
  for (mode = 0; mode < kNumPredModes; ++mode) {
    const uint32_t* current_row = argb_scratch;
    const VP8LPredictorFunc pred_func = VP8LPredictors[mode];
    float cur_diff;
    int y;
    memset(histo_argb, 0, sizeof(histo_stack_1));
    for (y = 0; y < max_y; ++y) {
      int x;
      const int row = row_start + y;
      const uint32_t* const upper_row = current_row;
      current_row = upper_row + width;
      for (x = 0; x < max_x; ++x) {
        const int col = col_start + x;
        uint32_t predict;
        if (row == 0) {
          predict = (col == 0) ? ARGB_BLACK : current_row[col - 1];  // Left.
        } else if (col == 0) {
          predict = upper_row[col];  // Top.
        } else {
          predict = pred_func(current_row[col - 1], upper_row + col);
        }
        UpdateHisto(histo_argb, VP8LSubPixels(current_row[col], predict));
      }
    }
    cur_diff = PredictionCostSpatialHistogram(
        (const int (*)[256])accumulated, (const int (*)[256])histo_argb);
    if (cur_diff < best_diff) {
      int (*tmp)[256] = histo_argb;
      histo_argb = best_histo;
      best_histo = tmp;
      best_diff = cur_diff;
      best_mode = mode;
    }
  }

  for (i = 0; i < 4; i++) {
    for (j = 0; j < 256; j++) {
      accumulated[i][j] += best_histo[i][j];
    }
  }

  return best_mode;
}

static void CopyImageWithPrediction(int width, int height,
                                    int bits, uint32_t* const modes,
                                    uint32_t* const argb_scratch,
                                    uint32_t* const argb) {
  const int tiles_per_row = VP8LSubSampleSize(width, bits);
  const int mask = (1 << bits) - 1;
  // The row size is one pixel longer to allow the top right pixel to point to
  // the leftmost pixel of the next row when at the right edge.
  uint32_t* current_row = argb_scratch;
  uint32_t* upper_row = argb_scratch + width + 1;
  int y;
  VP8LPredictorFunc pred_func = 0;

  for (y = 0; y < height; ++y) {
    int x;
    uint32_t* tmp = upper_row;
    upper_row = current_row;
    current_row = tmp;
    memcpy(current_row, argb + y * width, sizeof(*current_row) * width);
    current_row[width] = (y + 1 < height) ? argb[(y + 1) * width] : ARGB_BLACK;
    for (x = 0; x < width; ++x) {
      uint32_t predict;
      if ((x & mask) == 0) {
        const int mode =
            (modes[(y >> bits) * tiles_per_row + (x >> bits)] >> 8) & 0xff;
        pred_func = VP8LPredictors[mode];
      }
      if (y == 0) {
        predict = (x == 0) ? ARGB_BLACK : current_row[x - 1];  // Left.
      } else if (x == 0) {
        predict = upper_row[x];  // Top.
      } else {
        predict = pred_func(current_row[x - 1], upper_row + x);
      }
      argb[y * width + x] = VP8LSubPixels(current_row[x], predict);
    }
  }
}

void VP8LResidualImage(int width, int height, int bits, int low_effort,
                       uint32_t* const argb, uint32_t* const argb_scratch,
                       uint32_t* const image) {
  const int max_tile_size = 1 << bits;
  const int tiles_per_row = VP8LSubSampleSize(width, bits);
  const int tiles_per_col = VP8LSubSampleSize(height, bits);
  const int kPredLowEffort = 11;
  uint32_t* const upper_row = argb_scratch;
  uint32_t* const current_tile_rows = argb_scratch + width;
  int tile_y;
  int histo[4][256];
  if (!low_effort) memset(histo, 0, sizeof(histo));
  for (tile_y = 0; tile_y < tiles_per_col; ++tile_y) {
    const int tile_y_offset = tile_y * max_tile_size;
    const int this_tile_height =
        (tile_y < tiles_per_col - 1) ? max_tile_size : height - tile_y_offset;
    int tile_x;
    if (tile_y > 0) {
      memcpy(upper_row, current_tile_rows + (max_tile_size - 1) * width,
             width * sizeof(*upper_row));
    }
    memcpy(current_tile_rows, &argb[tile_y_offset * width],
           this_tile_height * width * sizeof(*current_tile_rows));
    for (tile_x = 0; tile_x < tiles_per_row; ++tile_x) {
      const int pred =
          low_effort ? kPredLowEffort :
                       GetBestPredictorForTile(width, height,
                                               tile_x, tile_y, bits,
                                               (int (*)[256])histo,
                                               argb_scratch);
      image[tile_y * tiles_per_row + tile_x] = 0xff000000u | (pred << 8);
    }
  }

  CopyImageWithPrediction(width, height, bits, image, argb_scratch, argb);
}

void VP8LSubtractGreenFromBlueAndRed_C(uint32_t* argb_data, int num_pixels) {
  int i;
  for (i = 0; i < num_pixels; ++i) {
    const uint32_t argb = argb_data[i];
    const uint32_t green = (argb >> 8) & 0xff;
    const uint32_t new_r = (((argb >> 16) & 0xff) - green) & 0xff;
    const uint32_t new_b = ((argb & 0xff) - green) & 0xff;
    argb_data[i] = (argb & 0xff00ff00) | (new_r << 16) | new_b;
  }
}

static WEBP_INLINE void MultipliersClear(VP8LMultipliers* const m) {
  m->green_to_red_ = 0;
  m->green_to_blue_ = 0;
  m->red_to_blue_ = 0;
}

static WEBP_INLINE uint32_t ColorTransformDelta(int8_t color_pred,
                                                int8_t color) {
  return (uint32_t)((int)(color_pred) * color) >> 5;
}

static WEBP_INLINE void ColorCodeToMultipliers(uint32_t color_code,
                                               VP8LMultipliers* const m) {
  m->green_to_red_  = (color_code >>  0) & 0xff;
  m->green_to_blue_ = (color_code >>  8) & 0xff;
  m->red_to_blue_   = (color_code >> 16) & 0xff;
}

static WEBP_INLINE uint32_t MultipliersToColorCode(
    const VP8LMultipliers* const m) {
  return 0xff000000u |
         ((uint32_t)(m->red_to_blue_) << 16) |
         ((uint32_t)(m->green_to_blue_) << 8) |
         m->green_to_red_;
}

void VP8LTransformColor_C(const VP8LMultipliers* const m, uint32_t* data,
                          int num_pixels) {
  int i;
  for (i = 0; i < num_pixels; ++i) {
    const uint32_t argb = data[i];
    const uint32_t green = argb >> 8;
    const uint32_t red = argb >> 16;
    uint32_t new_red = red;
    uint32_t new_blue = argb;
    new_red -= ColorTransformDelta(m->green_to_red_, green);
    new_red &= 0xff;
    new_blue -= ColorTransformDelta(m->green_to_blue_, green);
    new_blue -= ColorTransformDelta(m->red_to_blue_, red);
    new_blue &= 0xff;
    data[i] = (argb & 0xff00ff00u) | (new_red << 16) | (new_blue);
  }
}

static WEBP_INLINE uint8_t TransformColorRed(uint8_t green_to_red,
                                             uint32_t argb) {
  const uint32_t green = argb >> 8;
  uint32_t new_red = argb >> 16;
  new_red -= ColorTransformDelta(green_to_red, green);
  return (new_red & 0xff);
}

static WEBP_INLINE uint8_t TransformColorBlue(uint8_t green_to_blue,
                                              uint8_t red_to_blue,
                                              uint32_t argb) {
  const uint32_t green = argb >> 8;
  const uint32_t red = argb >> 16;
  uint8_t new_blue = argb;
  new_blue -= ColorTransformDelta(green_to_blue, green);
  new_blue -= ColorTransformDelta(red_to_blue, red);
  return (new_blue & 0xff);
}

static float PredictionCostCrossColor(const int accumulated[256],
                                      const int counts[256]) {
  // Favor low entropy, locally and globally.
  // Favor small absolute values for PredictionCostSpatial
  static const double kExpValue = 2.4;
  return CombinedShannonEntropy(counts, accumulated) +
         PredictionCostSpatial(counts, 3, kExpValue);
}

void VP8LCollectColorRedTransforms_C(const uint32_t* argb, int stride,
                                     int tile_width, int tile_height,
                                     int green_to_red, int histo[]) {
  while (tile_height-- > 0) {
    int x;
    for (x = 0; x < tile_width; ++x) {
      ++histo[TransformColorRed(green_to_red, argb[x])];
    }
    argb += stride;
  }
}

static float GetPredictionCostCrossColorRed(
    const uint32_t* argb, int stride, int tile_width, int tile_height,
    VP8LMultipliers prev_x, VP8LMultipliers prev_y, int green_to_red,
    const int accumulated_red_histo[256]) {
  int histo[256] = { 0 };
  float cur_diff;

  VP8LCollectColorRedTransforms(argb, stride, tile_width, tile_height,
                                green_to_red, histo);

  cur_diff = PredictionCostCrossColor(accumulated_red_histo, histo);
  if ((uint8_t)green_to_red == prev_x.green_to_red_) {
    cur_diff -= 3;  // favor keeping the areas locally similar
  }
  if ((uint8_t)green_to_red == prev_y.green_to_red_) {
    cur_diff -= 3;  // favor keeping the areas locally similar
  }
  if (green_to_red == 0) {
    cur_diff -= 3;
  }
  return cur_diff;
}

static void GetBestGreenToRed(
    const uint32_t* argb, int stride, int tile_width, int tile_height,
    VP8LMultipliers prev_x, VP8LMultipliers prev_y, int quality,
    const int accumulated_red_histo[256], VP8LMultipliers* const best_tx) {
  const int kMaxIters = 4 + ((7 * quality) >> 8);  // in range [4..6]
  int green_to_red_best = 0;
  int iter, offset;
  float best_diff = GetPredictionCostCrossColorRed(
      argb, stride, tile_width, tile_height, prev_x, prev_y,
      green_to_red_best, accumulated_red_histo);
  for (iter = 0; iter < kMaxIters; ++iter) {
    // ColorTransformDelta is a 3.5 bit fixed point, so 32 is equal to
    // one in color computation. Having initial delta here as 1 is sufficient
    // to explore the range of (-2, 2).
    const int delta = 32 >> iter;
    // Try a negative and a positive delta from the best known value.
    for (offset = -delta; offset <= delta; offset += 2 * delta) {
      const int green_to_red_cur = offset + green_to_red_best;
      const float cur_diff = GetPredictionCostCrossColorRed(
          argb, stride, tile_width, tile_height, prev_x, prev_y,
          green_to_red_cur, accumulated_red_histo);
      if (cur_diff < best_diff) {
        best_diff = cur_diff;
        green_to_red_best = green_to_red_cur;
      }
    }
  }
  best_tx->green_to_red_ = green_to_red_best;
}

void VP8LCollectColorBlueTransforms_C(const uint32_t* argb, int stride,
                                      int tile_width, int tile_height,
                                      int green_to_blue, int red_to_blue,
                                      int histo[]) {
  while (tile_height-- > 0) {
    int x;
    for (x = 0; x < tile_width; ++x) {
      ++histo[TransformColorBlue(green_to_blue, red_to_blue, argb[x])];
    }
    argb += stride;
  }
}

static float GetPredictionCostCrossColorBlue(
    const uint32_t* argb, int stride, int tile_width, int tile_height,
    VP8LMultipliers prev_x, VP8LMultipliers prev_y,
    int green_to_blue, int red_to_blue, const int accumulated_blue_histo[256]) {
  int histo[256] = { 0 };
  float cur_diff;

  VP8LCollectColorBlueTransforms(argb, stride, tile_width, tile_height,
                                 green_to_blue, red_to_blue, histo);

  cur_diff = PredictionCostCrossColor(accumulated_blue_histo, histo);
  if ((uint8_t)green_to_blue == prev_x.green_to_blue_) {
    cur_diff -= 3;  // favor keeping the areas locally similar
  }
  if ((uint8_t)green_to_blue == prev_y.green_to_blue_) {
    cur_diff -= 3;  // favor keeping the areas locally similar
  }
  if ((uint8_t)red_to_blue == prev_x.red_to_blue_) {
    cur_diff -= 3;  // favor keeping the areas locally similar
  }
  if ((uint8_t)red_to_blue == prev_y.red_to_blue_) {
    cur_diff -= 3;  // favor keeping the areas locally similar
  }
  if (green_to_blue == 0) {
    cur_diff -= 3;
  }
  if (red_to_blue == 0) {
    cur_diff -= 3;
  }
  return cur_diff;
}

#define kGreenRedToBlueNumAxis 8
#define kGreenRedToBlueMaxIters 7
static void GetBestGreenRedToBlue(
    const uint32_t* argb, int stride, int tile_width, int tile_height,
    VP8LMultipliers prev_x, VP8LMultipliers prev_y, int quality,
    const int accumulated_blue_histo[256],
    VP8LMultipliers* const best_tx) {
  const int8_t offset[kGreenRedToBlueNumAxis][2] =
      {{0, -1}, {0, 1}, {-1, 0}, {1, 0}, {-1, -1}, {-1, 1}, {1, -1}, {1, 1}};
  const int8_t delta_lut[kGreenRedToBlueMaxIters] = { 16, 16, 8, 4, 2, 2, 2 };
  const int iters =
      (quality < 25) ? 1 : (quality > 50) ? kGreenRedToBlueMaxIters : 4;
  int green_to_blue_best = 0;
  int red_to_blue_best = 0;
  int iter;
  // Initial value at origin:
  float best_diff = GetPredictionCostCrossColorBlue(
      argb, stride, tile_width, tile_height, prev_x, prev_y,
      green_to_blue_best, red_to_blue_best, accumulated_blue_histo);
  for (iter = 0; iter < iters; ++iter) {
    const int delta = delta_lut[iter];
    int axis;
    for (axis = 0; axis < kGreenRedToBlueNumAxis; ++axis) {
      const int green_to_blue_cur =
          offset[axis][0] * delta + green_to_blue_best;
      const int red_to_blue_cur = offset[axis][1] * delta + red_to_blue_best;
      const float cur_diff = GetPredictionCostCrossColorBlue(
          argb, stride, tile_width, tile_height, prev_x, prev_y,
          green_to_blue_cur, red_to_blue_cur, accumulated_blue_histo);
      if (cur_diff < best_diff) {
        best_diff = cur_diff;
        green_to_blue_best = green_to_blue_cur;
        red_to_blue_best = red_to_blue_cur;
      }
      if (quality < 25 && iter == 4) {
        // Only axis aligned diffs for lower quality.
        break;  // next iter.
      }
    }
    if (delta == 2 && green_to_blue_best == 0 && red_to_blue_best == 0) {
      // Further iterations would not help.
      break;  // out of iter-loop.
    }
  }
  best_tx->green_to_blue_ = green_to_blue_best;
  best_tx->red_to_blue_ = red_to_blue_best;
}
#undef kGreenRedToBlueMaxIters
#undef kGreenRedToBlueNumAxis

static VP8LMultipliers GetBestColorTransformForTile(
    int tile_x, int tile_y, int bits,
    VP8LMultipliers prev_x,
    VP8LMultipliers prev_y,
    int quality, int xsize, int ysize,
    const int accumulated_red_histo[256],
    const int accumulated_blue_histo[256],
    const uint32_t* const argb) {
  const int max_tile_size = 1 << bits;
  const int tile_y_offset = tile_y * max_tile_size;
  const int tile_x_offset = tile_x * max_tile_size;
  const int all_x_max = GetMin(tile_x_offset + max_tile_size, xsize);
  const int all_y_max = GetMin(tile_y_offset + max_tile_size, ysize);
  const int tile_width = all_x_max - tile_x_offset;
  const int tile_height = all_y_max - tile_y_offset;
  const uint32_t* const tile_argb = argb + tile_y_offset * xsize
                                  + tile_x_offset;
  VP8LMultipliers best_tx;
  MultipliersClear(&best_tx);

  GetBestGreenToRed(tile_argb, xsize, tile_width, tile_height,
                    prev_x, prev_y, quality, accumulated_red_histo, &best_tx);
  GetBestGreenRedToBlue(tile_argb, xsize, tile_width, tile_height,
                        prev_x, prev_y, quality, accumulated_blue_histo,
                        &best_tx);
  return best_tx;
}

static void CopyTileWithColorTransform(int xsize, int ysize,
                                       int tile_x, int tile_y,
                                       int max_tile_size,
                                       VP8LMultipliers color_transform,
                                       uint32_t* argb) {
  const int xscan = GetMin(max_tile_size, xsize - tile_x);
  int yscan = GetMin(max_tile_size, ysize - tile_y);
  argb += tile_y * xsize + tile_x;
  while (yscan-- > 0) {
    VP8LTransformColor(&color_transform, argb, xscan);
    argb += xsize;
  }
}

void VP8LColorSpaceTransform(int width, int height, int bits, int quality,
                             uint32_t* const argb, uint32_t* image) {
  const int max_tile_size = 1 << bits;
  const int tile_xsize = VP8LSubSampleSize(width, bits);
  const int tile_ysize = VP8LSubSampleSize(height, bits);
  int accumulated_red_histo[256] = { 0 };
  int accumulated_blue_histo[256] = { 0 };
  int tile_x, tile_y;
  VP8LMultipliers prev_x, prev_y;
  MultipliersClear(&prev_y);
  MultipliersClear(&prev_x);
  for (tile_y = 0; tile_y < tile_ysize; ++tile_y) {
    for (tile_x = 0; tile_x < tile_xsize; ++tile_x) {
      int y;
      const int tile_x_offset = tile_x * max_tile_size;
      const int tile_y_offset = tile_y * max_tile_size;
      const int all_x_max = GetMin(tile_x_offset + max_tile_size, width);
      const int all_y_max = GetMin(tile_y_offset + max_tile_size, height);
      const int offset = tile_y * tile_xsize + tile_x;
      if (tile_y != 0) {
        ColorCodeToMultipliers(image[offset - tile_xsize], &prev_y);
      }
      prev_x = GetBestColorTransformForTile(tile_x, tile_y, bits,
                                            prev_x, prev_y,
                                            quality, width, height,
                                            accumulated_red_histo,
                                            accumulated_blue_histo,
                                            argb);
      image[offset] = MultipliersToColorCode(&prev_x);
      CopyTileWithColorTransform(width, height, tile_x_offset, tile_y_offset,
                                 max_tile_size, prev_x, argb);

      // Gather accumulated histogram data.
      for (y = tile_y_offset; y < all_y_max; ++y) {
        int ix = y * width + tile_x_offset;
        const int ix_end = ix + all_x_max - tile_x_offset;
        for (; ix < ix_end; ++ix) {
          const uint32_t pix = argb[ix];
          if (ix >= 2 &&
              pix == argb[ix - 2] &&
              pix == argb[ix - 1]) {
            continue;  // repeated pixels are handled by backward references
          }
          if (ix >= width + 2 &&
              argb[ix - 2] == argb[ix - width - 2] &&
              argb[ix - 1] == argb[ix - width - 1] &&
              pix == argb[ix - width]) {
            continue;  // repeated pixels are handled by backward references
          }
          ++accumulated_red_histo[(pix >> 16) & 0xff];
          ++accumulated_blue_histo[(pix >> 0) & 0xff];
        }
      }
    }
  }
}

//------------------------------------------------------------------------------
// Bundles multiple (1, 2, 4 or 8) pixels into a single pixel.
void VP8LBundleColorMap(const uint8_t* const row, int width,
                        int xbits, uint32_t* const dst) {
  int x;
  if (xbits > 0) {
    const int bit_depth = 1 << (3 - xbits);
    const int mask = (1 << xbits) - 1;
    uint32_t code = 0xff000000;
    for (x = 0; x < width; ++x) {
      const int xsub = x & mask;
      if (xsub == 0) {
        code = 0xff000000;
      }
      code |= row[x] << (8 + bit_depth * xsub);
      dst[x >> xbits] = code;
    }
  } else {
    for (x = 0; x < width; ++x) dst[x] = 0xff000000 | (row[x] << 8);
  }
}

//------------------------------------------------------------------------------

static double ExtraCost(const uint32_t* population, int length) {
  int i;
  double cost = 0.;
  for (i = 2; i < length - 2; ++i) cost += (i >> 1) * population[i + 2];
  return cost;
}

static double ExtraCostCombined(const uint32_t* X, const uint32_t* Y,
                                int length) {
  int i;
  double cost = 0.;
  for (i = 2; i < length - 2; ++i) {
    const int xy = X[i + 2] + Y[i + 2];
    cost += (i >> 1) * xy;
  }
  return cost;
}

// Returns the various RLE counts
static VP8LStreaks HuffmanCostCount(const uint32_t* population, int length) {
  int i;
  int streak = 0;
  VP8LStreaks stats;
  memset(&stats, 0, sizeof(stats));
  for (i = 0; i < length - 1; ++i) {
    ++streak;
    if (population[i] == population[i + 1]) {
      continue;
    }
    stats.counts[population[i] != 0] += (streak > 3);
    stats.streaks[population[i] != 0][(streak > 3)] += streak;
    streak = 0;
  }
  ++streak;
  stats.counts[population[i] != 0] += (streak > 3);
  stats.streaks[population[i] != 0][(streak > 3)] += streak;
  return stats;
}

//------------------------------------------------------------------------------

static void HistogramAdd(const VP8LHistogram* const a,
                         const VP8LHistogram* const b,
                         VP8LHistogram* const out) {
  int i;
  const int literal_size = VP8LHistogramNumCodes(a->palette_code_bits_);
  assert(a->palette_code_bits_ == b->palette_code_bits_);
  if (b != out) {
    for (i = 0; i < literal_size; ++i) {
      out->literal_[i] = a->literal_[i] + b->literal_[i];
    }
    for (i = 0; i < NUM_DISTANCE_CODES; ++i) {
      out->distance_[i] = a->distance_[i] + b->distance_[i];
    }
    for (i = 0; i < NUM_LITERAL_CODES; ++i) {
      out->red_[i] = a->red_[i] + b->red_[i];
      out->blue_[i] = a->blue_[i] + b->blue_[i];
      out->alpha_[i] = a->alpha_[i] + b->alpha_[i];
    }
  } else {
    for (i = 0; i < literal_size; ++i) {
      out->literal_[i] += a->literal_[i];
    }
    for (i = 0; i < NUM_DISTANCE_CODES; ++i) {
      out->distance_[i] += a->distance_[i];
    }
    for (i = 0; i < NUM_LITERAL_CODES; ++i) {
      out->red_[i] += a->red_[i];
      out->blue_[i] += a->blue_[i];
      out->alpha_[i] += a->alpha_[i];
    }
  }
}

//------------------------------------------------------------------------------

VP8LProcessBlueAndRedFunc VP8LSubtractGreenFromBlueAndRed;

VP8LTransformColorFunc VP8LTransformColor;

VP8LCollectColorBlueTransformsFunc VP8LCollectColorBlueTransforms;
VP8LCollectColorRedTransformsFunc VP8LCollectColorRedTransforms;

VP8LFastLog2SlowFunc VP8LFastLog2Slow;
VP8LFastLog2SlowFunc VP8LFastSLog2Slow;

VP8LCostFunc VP8LExtraCost;
VP8LCostCombinedFunc VP8LExtraCostCombined;

VP8LCostCountFunc VP8LHuffmanCostCount;

VP8LHistogramAddFunc VP8LHistogramAdd;

extern void VP8LEncDspInitSSE2(void);
extern void VP8LEncDspInitSSE41(void);
extern void VP8LEncDspInitNEON(void);
extern void VP8LEncDspInitMIPS32(void);
extern void VP8LEncDspInitMIPSdspR2(void);

static volatile VP8CPUInfo lossless_enc_last_cpuinfo_used =
    (VP8CPUInfo)&lossless_enc_last_cpuinfo_used;

WEBP_TSAN_IGNORE_FUNCTION void VP8LEncDspInit(void) {
  if (lossless_enc_last_cpuinfo_used == VP8GetCPUInfo) return;

  VP8LDspInit();

  VP8LSubtractGreenFromBlueAndRed = VP8LSubtractGreenFromBlueAndRed_C;

  VP8LTransformColor = VP8LTransformColor_C;

  VP8LCollectColorBlueTransforms = VP8LCollectColorBlueTransforms_C;
  VP8LCollectColorRedTransforms = VP8LCollectColorRedTransforms_C;

  VP8LFastLog2Slow = FastLog2Slow;
  VP8LFastSLog2Slow = FastSLog2Slow;

  VP8LExtraCost = ExtraCost;
  VP8LExtraCostCombined = ExtraCostCombined;

  VP8LHuffmanCostCount = HuffmanCostCount;

  VP8LHistogramAdd = HistogramAdd;

  // If defined, use CPUInfo() to overwrite some pointers with faster versions.
  if (VP8GetCPUInfo != NULL) {
#if defined(WEBP_USE_SSE2)
    if (VP8GetCPUInfo(kSSE2)) {
      VP8LEncDspInitSSE2();
#if defined(WEBP_USE_SSE41)
      if (VP8GetCPUInfo(kSSE4_1)) {
        VP8LEncDspInitSSE41();
      }
#endif
    }
#endif
#if defined(WEBP_USE_NEON)
    if (VP8GetCPUInfo(kNEON)) {
      VP8LEncDspInitNEON();
    }
#endif
#if defined(WEBP_USE_MIPS32)
    if (VP8GetCPUInfo(kMIPS32)) {
      VP8LEncDspInitMIPS32();
    }
#endif
#if defined(WEBP_USE_MIPS_DSP_R2)
    if (VP8GetCPUInfo(kMIPSdspR2)) {
      VP8LEncDspInitMIPSdspR2();
    }
#endif
  }
  lossless_enc_last_cpuinfo_used = VP8GetCPUInfo;
}

//------------------------------------------------------------------------------