1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
|
// Copyright 2012 Google Inc. All Rights Reserved.
//
// This code is licensed under the same terms as WebM:
// Software License Agreement: http://www.webmproject.org/license/software/
// Additional IP Rights Grant: http://www.webmproject.org/license/additional/
// -----------------------------------------------------------------------------
//
// Image transforms and color space conversion methods for lossless decoder.
//
// Authors: Vikas Arora (vikaas.arora@gmail.com)
// Jyrki Alakuijala (jyrki@google.com)
// Urvang Joshi (urvang@google.com)
#if defined(__cplusplus) || defined(c_plusplus)
extern "C" {
#endif
#include <math.h>
#include <stdlib.h>
#include "./lossless.h"
#include "../dec/vp8li.h"
#include "../dsp/yuv.h"
#include "../dsp/dsp.h"
#include "../enc/histogram.h"
#define MAX_DIFF_COST (1e30f)
// lookup table for small values of log2(int)
#define APPROX_LOG_MAX 4096
#define LOG_2_RECIPROCAL 1.44269504088896338700465094007086
#define LOG_LOOKUP_IDX_MAX 256
static const float kLog2Table[LOG_LOOKUP_IDX_MAX] = {
0.0000000000000000f, 0.0000000000000000f,
1.0000000000000000f, 1.5849625007211560f,
2.0000000000000000f, 2.3219280948873621f,
2.5849625007211560f, 2.8073549220576041f,
3.0000000000000000f, 3.1699250014423121f,
3.3219280948873621f, 3.4594316186372973f,
3.5849625007211560f, 3.7004397181410921f,
3.8073549220576041f, 3.9068905956085187f,
4.0000000000000000f, 4.0874628412503390f,
4.1699250014423121f, 4.2479275134435852f,
4.3219280948873626f, 4.3923174227787606f,
4.4594316186372973f, 4.5235619560570130f,
4.5849625007211560f, 4.6438561897747243f,
4.7004397181410917f, 4.7548875021634682f,
4.8073549220576037f, 4.8579809951275718f,
4.9068905956085187f, 4.9541963103868749f,
5.0000000000000000f, 5.0443941193584533f,
5.0874628412503390f, 5.1292830169449663f,
5.1699250014423121f, 5.2094533656289501f,
5.2479275134435852f, 5.2854022188622487f,
5.3219280948873626f, 5.3575520046180837f,
5.3923174227787606f, 5.4262647547020979f,
5.4594316186372973f, 5.4918530963296747f,
5.5235619560570130f, 5.5545888516776376f,
5.5849625007211560f, 5.6147098441152083f,
5.6438561897747243f, 5.6724253419714951f,
5.7004397181410917f, 5.7279204545631987f,
5.7548875021634682f, 5.7813597135246599f,
5.8073549220576037f, 5.8328900141647412f,
5.8579809951275718f, 5.8826430493618415f,
5.9068905956085187f, 5.9307373375628866f,
5.9541963103868749f, 5.9772799234999167f,
6.0000000000000000f, 6.0223678130284543f,
6.0443941193584533f, 6.0660891904577720f,
6.0874628412503390f, 6.1085244567781691f,
6.1292830169449663f, 6.1497471195046822f,
6.1699250014423121f, 6.1898245588800175f,
6.2094533656289501f, 6.2288186904958804f,
6.2479275134435852f, 6.2667865406949010f,
6.2854022188622487f, 6.3037807481771030f,
6.3219280948873626f, 6.3398500028846243f,
6.3575520046180837f, 6.3750394313469245f,
6.3923174227787606f, 6.4093909361377017f,
6.4262647547020979f, 6.4429434958487279f,
6.4594316186372973f, 6.4757334309663976f,
6.4918530963296747f, 6.5077946401986963f,
6.5235619560570130f, 6.5391588111080309f,
6.5545888516776376f, 6.5698556083309478f,
6.5849625007211560f, 6.5999128421871278f,
6.6147098441152083f, 6.6293566200796094f,
6.6438561897747243f, 6.6582114827517946f,
6.6724253419714951f, 6.6865005271832185f,
6.7004397181410917f, 6.7142455176661224f,
6.7279204545631987f, 6.7414669864011464f,
6.7548875021634682f, 6.7681843247769259f,
6.7813597135246599f, 6.7944158663501061f,
6.8073549220576037f, 6.8201789624151878f,
6.8328900141647412f, 6.8454900509443747f,
6.8579809951275718f, 6.8703647195834047f,
6.8826430493618415f, 6.8948177633079437f,
6.9068905956085187f, 6.9188632372745946f,
6.9307373375628866f, 6.9425145053392398f,
6.9541963103868749f, 6.9657842846620869f,
6.9772799234999167f, 6.9886846867721654f,
7.0000000000000000f, 7.0112272554232539f,
7.0223678130284543f, 7.0334230015374501f,
7.0443941193584533f, 7.0552824355011898f,
7.0660891904577720f, 7.0768155970508308f,
7.0874628412503390f, 7.0980320829605263f,
7.1085244567781691f, 7.1189410727235076f,
7.1292830169449663f, 7.1395513523987936f,
7.1497471195046822f, 7.1598713367783890f,
7.1699250014423121f, 7.1799090900149344f,
7.1898245588800175f, 7.1996723448363644f,
7.2094533656289501f, 7.2191685204621611f,
7.2288186904958804f, 7.2384047393250785f,
7.2479275134435852f, 7.2573878426926521f,
7.2667865406949010f, 7.2761244052742375f,
7.2854022188622487f, 7.2946207488916270f,
7.3037807481771030f, 7.3128829552843557f,
7.3219280948873626f, 7.3309168781146167f,
7.3398500028846243f, 7.3487281542310771f,
7.3575520046180837f, 7.3663222142458160f,
7.3750394313469245f, 7.3837042924740519f,
7.3923174227787606f, 7.4008794362821843f,
7.4093909361377017f, 7.4178525148858982f,
7.4262647547020979f, 7.4346282276367245f,
7.4429434958487279f, 7.4512111118323289f,
7.4594316186372973f, 7.4676055500829976f,
7.4757334309663976f, 7.4838157772642563f,
7.4918530963296747f, 7.4998458870832056f,
7.5077946401986963f, 7.5156998382840427f,
7.5235619560570130f, 7.5313814605163118f,
7.5391588111080309f, 7.5468944598876364f,
7.5545888516776376f, 7.5622424242210728f,
7.5698556083309478f, 7.5774288280357486f,
7.5849625007211560f, 7.5924570372680806f,
7.5999128421871278f, 7.6073303137496104f,
7.6147098441152083f, 7.6220518194563764f,
7.6293566200796094f, 7.6366246205436487f,
7.6438561897747243f, 7.6510516911789281f,
7.6582114827517946f, 7.6653359171851764f,
7.6724253419714951f, 7.6794800995054464f,
7.6865005271832185f, 7.6934869574993252f,
7.7004397181410917f, 7.7073591320808825f,
7.7142455176661224f, 7.7210991887071855f,
7.7279204545631987f, 7.7347096202258383f,
7.7414669864011464f, 7.7481928495894605f,
7.7548875021634682f, 7.7615512324444795f,
7.7681843247769259f, 7.7747870596011736f,
7.7813597135246599f, 7.7879025593914317f,
7.7944158663501061f, 7.8008998999203047f,
7.8073549220576037f, 7.8137811912170374f,
7.8201789624151878f, 7.8265484872909150f,
7.8328900141647412f, 7.8392037880969436f,
7.8454900509443747f, 7.8517490414160571f,
7.8579809951275718f, 7.8641861446542797f,
7.8703647195834047f, 7.8765169465649993f,
7.8826430493618415f, 7.8887432488982591f,
7.8948177633079437f, 7.9008668079807486f,
7.9068905956085187f, 7.9128893362299619f,
7.9188632372745946f, 7.9248125036057812f,
7.9307373375628866f, 7.9366379390025709f,
7.9425145053392398f, 7.9483672315846778f,
7.9541963103868749f, 7.9600019320680805f,
7.9657842846620869f, 7.9715435539507719f,
7.9772799234999167f, 7.9829935746943103f,
7.9886846867721654f, 7.9943534368588577f
};
float VP8LFastLog2(int v) {
if (v < LOG_LOOKUP_IDX_MAX) {
return kLog2Table[v];
} else if (v < APPROX_LOG_MAX) {
int log_cnt = 0;
while (v >= LOG_LOOKUP_IDX_MAX) {
++log_cnt;
v = v >> 1;
}
return kLog2Table[v] + (float)log_cnt;
} else {
return (float)(LOG_2_RECIPROCAL * log((double)v));
}
}
//------------------------------------------------------------------------------
// Image transforms.
// In-place sum of each component with mod 256.
static WEBP_INLINE void AddPixelsEq(uint32_t* a, uint32_t b) {
const uint32_t alpha_and_green = (*a & 0xff00ff00u) + (b & 0xff00ff00u);
const uint32_t red_and_blue = (*a & 0x00ff00ffu) + (b & 0x00ff00ffu);
*a = (alpha_and_green & 0xff00ff00u) | (red_and_blue & 0x00ff00ffu);
}
static WEBP_INLINE uint32_t Average2(uint32_t a0, uint32_t a1) {
return (((a0 ^ a1) & 0xfefefefeL) >> 1) + (a0 & a1);
}
static WEBP_INLINE uint32_t Average3(uint32_t a0, uint32_t a1, uint32_t a2) {
return Average2(Average2(a0, a2), a1);
}
static WEBP_INLINE uint32_t Average4(uint32_t a0, uint32_t a1,
uint32_t a2, uint32_t a3) {
return Average2(Average2(a0, a1), Average2(a2, a3));
}
static WEBP_INLINE uint32_t Clip255(uint32_t a) {
if (a < 256) {
return a;
}
// return 0, when a is a negative integer.
// return 255, when a is positive.
return ~a >> 24;
}
static WEBP_INLINE int AddSubtractComponentFull(int a, int b, int c) {
return Clip255(a + b - c);
}
static WEBP_INLINE uint32_t ClampedAddSubtractFull(uint32_t c0, uint32_t c1,
uint32_t c2) {
const int a = AddSubtractComponentFull(c0 >> 24, c1 >> 24, c2 >> 24);
const int r = AddSubtractComponentFull((c0 >> 16) & 0xff,
(c1 >> 16) & 0xff,
(c2 >> 16) & 0xff);
const int g = AddSubtractComponentFull((c0 >> 8) & 0xff,
(c1 >> 8) & 0xff,
(c2 >> 8) & 0xff);
const int b = AddSubtractComponentFull(c0 & 0xff, c1 & 0xff, c2 & 0xff);
return (a << 24) | (r << 16) | (g << 8) | b;
}
static WEBP_INLINE int AddSubtractComponentHalf(int a, int b) {
return Clip255(a + (a - b) / 2);
}
static WEBP_INLINE uint32_t ClampedAddSubtractHalf(uint32_t c0, uint32_t c1,
uint32_t c2) {
const uint32_t ave = Average2(c0, c1);
const int a = AddSubtractComponentHalf(ave >> 24, c2 >> 24);
const int r = AddSubtractComponentHalf((ave >> 16) & 0xff, (c2 >> 16) & 0xff);
const int g = AddSubtractComponentHalf((ave >> 8) & 0xff, (c2 >> 8) & 0xff);
const int b = AddSubtractComponentHalf((ave >> 0) & 0xff, (c2 >> 0) & 0xff);
return (a << 24) | (r << 16) | (g << 8) | b;
}
static WEBP_INLINE int Sub3(int a, int b, int c) {
const int pa = b - c;
const int pb = a - c;
return abs(pa) - abs(pb);
}
static WEBP_INLINE uint32_t Select(uint32_t a, uint32_t b, uint32_t c) {
const int pa_minus_pb =
Sub3((a >> 24) , (b >> 24) , (c >> 24) ) +
Sub3((a >> 16) & 0xff, (b >> 16) & 0xff, (c >> 16) & 0xff) +
Sub3((a >> 8) & 0xff, (b >> 8) & 0xff, (c >> 8) & 0xff) +
Sub3((a ) & 0xff, (b ) & 0xff, (c ) & 0xff);
return (pa_minus_pb <= 0) ? a : b;
}
//------------------------------------------------------------------------------
// Predictors
static uint32_t Predictor0(uint32_t left, const uint32_t* const top) {
(void)top;
(void)left;
return ARGB_BLACK;
}
static uint32_t Predictor1(uint32_t left, const uint32_t* const top) {
(void)top;
return left;
}
static uint32_t Predictor2(uint32_t left, const uint32_t* const top) {
(void)left;
return top[0];
}
static uint32_t Predictor3(uint32_t left, const uint32_t* const top) {
(void)left;
return top[1];
}
static uint32_t Predictor4(uint32_t left, const uint32_t* const top) {
(void)left;
return top[-1];
}
static uint32_t Predictor5(uint32_t left, const uint32_t* const top) {
const uint32_t pred = Average3(left, top[0], top[1]);
return pred;
}
static uint32_t Predictor6(uint32_t left, const uint32_t* const top) {
const uint32_t pred = Average2(left, top[-1]);
return pred;
}
static uint32_t Predictor7(uint32_t left, const uint32_t* const top) {
const uint32_t pred = Average2(left, top[0]);
return pred;
}
static uint32_t Predictor8(uint32_t left, const uint32_t* const top) {
const uint32_t pred = Average2(top[-1], top[0]);
(void)left;
return pred;
}
static uint32_t Predictor9(uint32_t left, const uint32_t* const top) {
const uint32_t pred = Average2(top[0], top[1]);
(void)left;
return pred;
}
static uint32_t Predictor10(uint32_t left, const uint32_t* const top) {
const uint32_t pred = Average4(left, top[-1], top[0], top[1]);
return pred;
}
static uint32_t Predictor11(uint32_t left, const uint32_t* const top) {
const uint32_t pred = Select(top[0], left, top[-1]);
return pred;
}
static uint32_t Predictor12(uint32_t left, const uint32_t* const top) {
const uint32_t pred = ClampedAddSubtractFull(left, top[0], top[-1]);
return pred;
}
static uint32_t Predictor13(uint32_t left, const uint32_t* const top) {
const uint32_t pred = ClampedAddSubtractHalf(left, top[0], top[-1]);
return pred;
}
typedef uint32_t (*PredictorFunc)(uint32_t left, const uint32_t* const top);
static const PredictorFunc kPredictors[16] = {
Predictor0, Predictor1, Predictor2, Predictor3,
Predictor4, Predictor5, Predictor6, Predictor7,
Predictor8, Predictor9, Predictor10, Predictor11,
Predictor12, Predictor13,
Predictor0, Predictor0 // <- padding security sentinels
};
// TODO(vikasa): Replace 256 etc with defines.
static float PredictionCostSpatial(const int* counts,
int weight_0, double exp_val) {
const int significant_symbols = 16;
const double exp_decay_factor = 0.6;
double bits = weight_0 * counts[0];
int i;
for (i = 1; i < significant_symbols; ++i) {
bits += exp_val * (counts[i] + counts[256 - i]);
exp_val *= exp_decay_factor;
}
return (float)(-0.1 * bits);
}
// Compute the Shanon's entropy: Sum(p*log2(p))
static float ShannonEntropy(const int* const array, int n) {
int i;
float retval = 0.f;
int sum = 0;
for (i = 0; i < n; ++i) {
if (array[i] != 0) {
sum += array[i];
retval -= VP8LFastSLog2(array[i]);
}
}
retval += VP8LFastSLog2(sum);
return retval;
}
static float PredictionCostSpatialHistogram(int accumulated[4][256],
int tile[4][256]) {
int i;
int k;
int combo[256];
double retval = 0;
for (i = 0; i < 4; ++i) {
const double exp_val = 0.94;
retval += PredictionCostSpatial(&tile[i][0], 1, exp_val);
retval += ShannonEntropy(&tile[i][0], 256);
for (k = 0; k < 256; ++k) {
combo[k] = accumulated[i][k] + tile[i][k];
}
retval += ShannonEntropy(&combo[0], 256);
}
return (float)retval;
}
static int GetBestPredictorForTile(int width, int height,
int tile_x, int tile_y, int bits,
int accumulated[4][256],
const uint32_t* const argb_scratch) {
const int kNumPredModes = 14;
const int col_start = tile_x << bits;
const int row_start = tile_y << bits;
const int tile_size = 1 << bits;
const int ymax = (tile_size <= height - row_start) ?
tile_size : height - row_start;
const int xmax = (tile_size <= width - col_start) ?
tile_size : width - col_start;
int histo[4][256];
float best_diff = MAX_DIFF_COST;
int best_mode = 0;
int mode;
for (mode = 0; mode < kNumPredModes; ++mode) {
const uint32_t* current_row = argb_scratch;
const PredictorFunc pred_func = kPredictors[mode];
float cur_diff;
int y;
memset(&histo[0][0], 0, sizeof(histo));
for (y = 0; y < ymax; ++y) {
int x;
const int row = row_start + y;
const uint32_t* const upper_row = current_row;
current_row = upper_row + width;
for (x = 0; x < xmax; ++x) {
const int col = col_start + x;
uint32_t predict;
uint32_t predict_diff;
if (row == 0) {
predict = (col == 0) ? ARGB_BLACK : current_row[col - 1]; // Left.
} else if (col == 0) {
predict = upper_row[col]; // Top.
} else {
predict = pred_func(current_row[col - 1], upper_row + col);
}
predict_diff = VP8LSubPixels(current_row[col], predict);
++histo[0][predict_diff >> 24];
++histo[1][((predict_diff >> 16) & 0xff)];
++histo[2][((predict_diff >> 8) & 0xff)];
++histo[3][(predict_diff & 0xff)];
}
}
cur_diff = PredictionCostSpatialHistogram(accumulated, histo);
if (cur_diff < best_diff) {
best_diff = cur_diff;
best_mode = mode;
}
}
return best_mode;
}
static void CopyTileWithPrediction(int width, int height,
int tile_x, int tile_y, int bits, int mode,
const uint32_t* const argb_scratch,
uint32_t* const argb) {
const int col_start = tile_x << bits;
const int row_start = tile_y << bits;
const int tile_size = 1 << bits;
const int ymax = (tile_size <= height - row_start) ?
tile_size : height - row_start;
const int xmax = (tile_size <= width - col_start) ?
tile_size : width - col_start;
const PredictorFunc pred_func = kPredictors[mode];
const uint32_t* current_row = argb_scratch;
int y;
for (y = 0; y < ymax; ++y) {
int x;
const int row = row_start + y;
const uint32_t* const upper_row = current_row;
current_row = upper_row + width;
for (x = 0; x < xmax; ++x) {
const int col = col_start + x;
const int pix = row * width + col;
uint32_t predict;
if (row == 0) {
predict = (col == 0) ? ARGB_BLACK : current_row[col - 1]; // Left.
} else if (col == 0) {
predict = upper_row[col]; // Top.
} else {
predict = pred_func(current_row[col - 1], upper_row + col);
}
argb[pix] = VP8LSubPixels(current_row[col], predict);
}
}
}
void VP8LResidualImage(int width, int height, int bits,
uint32_t* const argb, uint32_t* const argb_scratch,
uint32_t* const image) {
const int max_tile_size = 1 << bits;
const int tiles_per_row = VP8LSubSampleSize(width, bits);
const int tiles_per_col = VP8LSubSampleSize(height, bits);
uint32_t* const upper_row = argb_scratch;
uint32_t* const current_tile_rows = argb_scratch + width;
int tile_y;
int histo[4][256];
memset(histo, 0, sizeof(histo));
for (tile_y = 0; tile_y < tiles_per_col; ++tile_y) {
const int tile_y_offset = tile_y * max_tile_size;
const int this_tile_height =
(tile_y < tiles_per_col - 1) ? max_tile_size : height - tile_y_offset;
int tile_x;
if (tile_y > 0) {
memcpy(upper_row, current_tile_rows + (max_tile_size - 1) * width,
width * sizeof(*upper_row));
}
memcpy(current_tile_rows, &argb[tile_y_offset * width],
this_tile_height * width * sizeof(*current_tile_rows));
for (tile_x = 0; tile_x < tiles_per_row; ++tile_x) {
int pred;
int y;
const int tile_x_offset = tile_x * max_tile_size;
int all_x_max = tile_x_offset + max_tile_size;
if (all_x_max > width) {
all_x_max = width;
}
pred = GetBestPredictorForTile(width, height, tile_x, tile_y, bits, histo,
argb_scratch);
image[tile_y * tiles_per_row + tile_x] = 0xff000000u | (pred << 8);
CopyTileWithPrediction(width, height, tile_x, tile_y, bits, pred,
argb_scratch, argb);
for (y = 0; y < max_tile_size; ++y) {
int ix;
int all_x;
int all_y = tile_y_offset + y;
if (all_y >= height) {
break;
}
ix = all_y * width + tile_x_offset;
for (all_x = tile_x_offset; all_x < all_x_max; ++all_x, ++ix) {
const uint32_t a = argb[ix];
++histo[0][a >> 24];
++histo[1][((a >> 16) & 0xff)];
++histo[2][((a >> 8) & 0xff)];
++histo[3][(a & 0xff)];
}
}
}
}
}
// Inverse prediction.
static void PredictorInverseTransform(const VP8LTransform* const transform,
int y_start, int y_end, uint32_t* data) {
const int width = transform->xsize_;
if (y_start == 0) { // First Row follows the L (mode=1) mode.
int x;
const uint32_t pred0 = Predictor0(data[-1], NULL);
AddPixelsEq(data, pred0);
for (x = 1; x < width; ++x) {
const uint32_t pred1 = Predictor1(data[x - 1], NULL);
AddPixelsEq(data + x, pred1);
}
data += width;
++y_start;
}
{
int y = y_start;
const int mask = (1 << transform->bits_) - 1;
const int tiles_per_row = VP8LSubSampleSize(width, transform->bits_);
const uint32_t* pred_mode_base =
transform->data_ + (y >> transform->bits_) * tiles_per_row;
while (y < y_end) {
int x;
const uint32_t pred2 = Predictor2(data[-1], data - width);
const uint32_t* pred_mode_src = pred_mode_base;
PredictorFunc pred_func;
// First pixel follows the T (mode=2) mode.
AddPixelsEq(data, pred2);
// .. the rest:
pred_func = kPredictors[((*pred_mode_src++) >> 8) & 0xf];
for (x = 1; x < width; ++x) {
uint32_t pred;
if ((x & mask) == 0) { // start of tile. Read predictor function.
pred_func = kPredictors[((*pred_mode_src++) >> 8) & 0xf];
}
pred = pred_func(data[x - 1], data + x - width);
AddPixelsEq(data + x, pred);
}
data += width;
++y;
if ((y & mask) == 0) { // Use the same mask, since tiles are squares.
pred_mode_base += tiles_per_row;
}
}
}
}
void VP8LSubtractGreenFromBlueAndRed(uint32_t* argb_data, int num_pixs) {
int i;
for (i = 0; i < num_pixs; ++i) {
const uint32_t argb = argb_data[i];
const uint32_t green = (argb >> 8) & 0xff;
const uint32_t new_r = (((argb >> 16) & 0xff) - green) & 0xff;
const uint32_t new_b = ((argb & 0xff) - green) & 0xff;
argb_data[i] = (argb & 0xff00ff00) | (new_r << 16) | new_b;
}
}
// Add green to blue and red channels (i.e. perform the inverse transform of
// 'subtract green').
static void AddGreenToBlueAndRed(const VP8LTransform* const transform,
int y_start, int y_end, uint32_t* data) {
const int width = transform->xsize_;
const uint32_t* const data_end = data + (y_end - y_start) * width;
while (data < data_end) {
const uint32_t argb = *data;
// "* 0001001u" is equivalent to "(green << 16) + green)"
const uint32_t green = ((argb >> 8) & 0xff);
uint32_t red_blue = (argb & 0x00ff00ffu);
red_blue += (green << 16) | green;
red_blue &= 0x00ff00ffu;
*data++ = (argb & 0xff00ff00u) | red_blue;
}
}
typedef struct {
// Note: the members are uint8_t, so that any negative values are
// automatically converted to "mod 256" values.
uint8_t green_to_red_;
uint8_t green_to_blue_;
uint8_t red_to_blue_;
} Multipliers;
static WEBP_INLINE void MultipliersClear(Multipliers* m) {
m->green_to_red_ = 0;
m->green_to_blue_ = 0;
m->red_to_blue_ = 0;
}
static WEBP_INLINE uint32_t ColorTransformDelta(int8_t color_pred,
int8_t color) {
return (uint32_t)((int)(color_pred) * color) >> 5;
}
static WEBP_INLINE void ColorCodeToMultipliers(uint32_t color_code,
Multipliers* const m) {
m->green_to_red_ = (color_code >> 0) & 0xff;
m->green_to_blue_ = (color_code >> 8) & 0xff;
m->red_to_blue_ = (color_code >> 16) & 0xff;
}
static WEBP_INLINE uint32_t MultipliersToColorCode(Multipliers* const m) {
return 0xff000000u |
((uint32_t)(m->red_to_blue_) << 16) |
((uint32_t)(m->green_to_blue_) << 8) |
m->green_to_red_;
}
static WEBP_INLINE uint32_t TransformColor(const Multipliers* const m,
uint32_t argb, int inverse) {
const uint32_t green = argb >> 8;
const uint32_t red = argb >> 16;
uint32_t new_red = red;
uint32_t new_blue = argb;
if (inverse) {
new_red += ColorTransformDelta(m->green_to_red_, green);
new_red &= 0xff;
new_blue += ColorTransformDelta(m->green_to_blue_, green);
new_blue += ColorTransformDelta(m->red_to_blue_, new_red);
new_blue &= 0xff;
} else {
new_red -= ColorTransformDelta(m->green_to_red_, green);
new_red &= 0xff;
new_blue -= ColorTransformDelta(m->green_to_blue_, green);
new_blue -= ColorTransformDelta(m->red_to_blue_, red);
new_blue &= 0xff;
}
return (argb & 0xff00ff00u) | (new_red << 16) | (new_blue);
}
static WEBP_INLINE int SkipRepeatedPixels(const uint32_t* const argb,
int ix, int xsize) {
const uint32_t v = argb[ix];
if (ix >= xsize + 3) {
if (v == argb[ix - xsize] &&
argb[ix - 1] == argb[ix - xsize - 1] &&
argb[ix - 2] == argb[ix - xsize - 2] &&
argb[ix - 3] == argb[ix - xsize - 3]) {
return 1;
}
return v == argb[ix - 3] && v == argb[ix - 2] && v == argb[ix - 1];
} else if (ix >= 3) {
return v == argb[ix - 3] && v == argb[ix - 2] && v == argb[ix - 1];
}
return 0;
}
static float PredictionCostCrossColor(const int accumulated[256],
const int counts[256]) {
// Favor low entropy, locally and globally.
int i;
int combo[256];
for (i = 0; i < 256; ++i) {
combo[i] = accumulated[i] + counts[i];
}
return ShannonEntropy(combo, 256) +
ShannonEntropy(counts, 256) +
PredictionCostSpatial(counts, 3, 2.4); // Favor small absolute values.
}
static Multipliers GetBestColorTransformForTile(
int tile_x, int tile_y, int bits,
Multipliers prevX,
Multipliers prevY,
int step, int xsize, int ysize,
int* accumulated_red_histo,
int* accumulated_blue_histo,
const uint32_t* const argb) {
float best_diff = MAX_DIFF_COST;
float cur_diff;
const int halfstep = step / 2;
const int max_tile_size = 1 << bits;
const int tile_y_offset = tile_y * max_tile_size;
const int tile_x_offset = tile_x * max_tile_size;
int green_to_red;
int green_to_blue;
int red_to_blue;
int all_x_max = tile_x_offset + max_tile_size;
int all_y_max = tile_y_offset + max_tile_size;
Multipliers best_tx;
MultipliersClear(&best_tx);
if (all_x_max > xsize) {
all_x_max = xsize;
}
if (all_y_max > ysize) {
all_y_max = ysize;
}
for (green_to_red = -64; green_to_red <= 64; green_to_red += halfstep) {
int histo[256] = { 0 };
int all_y;
Multipliers tx;
MultipliersClear(&tx);
tx.green_to_red_ = green_to_red & 0xff;
for (all_y = tile_y_offset; all_y < all_y_max; ++all_y) {
uint32_t predict;
int ix = all_y * xsize + tile_x_offset;
int all_x;
for (all_x = tile_x_offset; all_x < all_x_max; ++all_x, ++ix) {
if (SkipRepeatedPixels(argb, ix, xsize)) {
continue;
}
predict = TransformColor(&tx, argb[ix], 0);
++histo[(predict >> 16) & 0xff]; // red.
}
}
cur_diff = PredictionCostCrossColor(&accumulated_red_histo[0], &histo[0]);
if (tx.green_to_red_ == prevX.green_to_red_) {
cur_diff -= 3; // favor keeping the areas locally similar
}
if (tx.green_to_red_ == prevY.green_to_red_) {
cur_diff -= 3; // favor keeping the areas locally similar
}
if (tx.green_to_red_ == 0) {
cur_diff -= 3;
}
if (cur_diff < best_diff) {
best_diff = cur_diff;
best_tx = tx;
}
}
best_diff = MAX_DIFF_COST;
green_to_red = best_tx.green_to_red_;
for (green_to_blue = -32; green_to_blue <= 32; green_to_blue += step) {
for (red_to_blue = -32; red_to_blue <= 32; red_to_blue += step) {
int all_y;
int histo[256] = { 0 };
Multipliers tx;
tx.green_to_red_ = green_to_red;
tx.green_to_blue_ = green_to_blue;
tx.red_to_blue_ = red_to_blue;
for (all_y = tile_y_offset; all_y < all_y_max; ++all_y) {
uint32_t predict;
int all_x;
int ix = all_y * xsize + tile_x_offset;
for (all_x = tile_x_offset; all_x < all_x_max; ++all_x, ++ix) {
if (SkipRepeatedPixels(argb, ix, xsize)) {
continue;
}
predict = TransformColor(&tx, argb[ix], 0);
++histo[predict & 0xff]; // blue.
}
}
cur_diff =
PredictionCostCrossColor(&accumulated_blue_histo[0], &histo[0]);
if (tx.green_to_blue_ == prevX.green_to_blue_) {
cur_diff -= 3; // favor keeping the areas locally similar
}
if (tx.green_to_blue_ == prevY.green_to_blue_) {
cur_diff -= 3; // favor keeping the areas locally similar
}
if (tx.red_to_blue_ == prevX.red_to_blue_) {
cur_diff -= 3; // favor keeping the areas locally similar
}
if (tx.red_to_blue_ == prevY.red_to_blue_) {
cur_diff -= 3; // favor keeping the areas locally similar
}
if (tx.green_to_blue_ == 0) {
cur_diff -= 3;
}
if (tx.red_to_blue_ == 0) {
cur_diff -= 3;
}
if (cur_diff < best_diff) {
best_diff = cur_diff;
best_tx = tx;
}
}
}
return best_tx;
}
static void CopyTileWithColorTransform(int xsize, int ysize,
int tile_x, int tile_y, int bits,
Multipliers color_transform,
uint32_t* const argb) {
int y;
int xscan = 1 << bits;
int yscan = 1 << bits;
tile_x <<= bits;
tile_y <<= bits;
if (xscan > xsize - tile_x) {
xscan = xsize - tile_x;
}
if (yscan > ysize - tile_y) {
yscan = ysize - tile_y;
}
yscan += tile_y;
for (y = tile_y; y < yscan; ++y) {
int ix = y * xsize + tile_x;
const int end_ix = ix + xscan;
for (; ix < end_ix; ++ix) {
argb[ix] = TransformColor(&color_transform, argb[ix], 0);
}
}
}
void VP8LColorSpaceTransform(int width, int height, int bits, int step,
uint32_t* const argb, uint32_t* image) {
const int max_tile_size = 1 << bits;
int tile_xsize = VP8LSubSampleSize(width, bits);
int tile_ysize = VP8LSubSampleSize(height, bits);
int accumulated_red_histo[256] = { 0 };
int accumulated_blue_histo[256] = { 0 };
int tile_y;
int tile_x;
Multipliers prevX;
Multipliers prevY;
MultipliersClear(&prevY);
MultipliersClear(&prevX);
for (tile_y = 0; tile_y < tile_ysize; ++tile_y) {
for (tile_x = 0; tile_x < tile_xsize; ++tile_x) {
Multipliers color_transform;
int all_x_max;
int y;
const int tile_y_offset = tile_y * max_tile_size;
const int tile_x_offset = tile_x * max_tile_size;
if (tile_y != 0) {
ColorCodeToMultipliers(image[tile_y * tile_xsize + tile_x - 1], &prevX);
ColorCodeToMultipliers(image[(tile_y - 1) * tile_xsize + tile_x],
&prevY);
} else if (tile_x != 0) {
ColorCodeToMultipliers(image[tile_y * tile_xsize + tile_x - 1], &prevX);
}
color_transform =
GetBestColorTransformForTile(tile_x, tile_y, bits,
prevX, prevY,
step, width, height,
&accumulated_red_histo[0],
&accumulated_blue_histo[0],
argb);
image[tile_y * tile_xsize + tile_x] =
MultipliersToColorCode(&color_transform);
CopyTileWithColorTransform(width, height, tile_x, tile_y, bits,
color_transform, argb);
// Gather accumulated histogram data.
all_x_max = tile_x_offset + max_tile_size;
if (all_x_max > width) {
all_x_max = width;
}
for (y = 0; y < max_tile_size; ++y) {
int ix;
int all_x;
int all_y = tile_y_offset + y;
if (all_y >= height) {
break;
}
ix = all_y * width + tile_x_offset;
for (all_x = tile_x_offset; all_x < all_x_max; ++all_x, ++ix) {
if (ix >= 2 &&
argb[ix] == argb[ix - 2] &&
argb[ix] == argb[ix - 1]) {
continue; // repeated pixels are handled by backward references
}
if (ix >= width + 2 &&
argb[ix - 2] == argb[ix - width - 2] &&
argb[ix - 1] == argb[ix - width - 1] &&
argb[ix] == argb[ix - width]) {
continue; // repeated pixels are handled by backward references
}
++accumulated_red_histo[(argb[ix] >> 16) & 0xff];
++accumulated_blue_histo[argb[ix] & 0xff];
}
}
}
}
}
// Color space inverse transform.
static void ColorSpaceInverseTransform(const VP8LTransform* const transform,
int y_start, int y_end, uint32_t* data) {
const int width = transform->xsize_;
const int mask = (1 << transform->bits_) - 1;
const int tiles_per_row = VP8LSubSampleSize(width, transform->bits_);
int y = y_start;
const uint32_t* pred_row =
transform->data_ + (y >> transform->bits_) * tiles_per_row;
while (y < y_end) {
const uint32_t* pred = pred_row;
Multipliers m = { 0, 0, 0 };
int x;
for (x = 0; x < width; ++x) {
if ((x & mask) == 0) ColorCodeToMultipliers(*pred++, &m);
data[x] = TransformColor(&m, data[x], 1);
}
data += width;
++y;
if ((y & mask) == 0) pred_row += tiles_per_row;;
}
}
// Separate out pixels packed together using pixel-bundling.
static void ColorIndexInverseTransform(
const VP8LTransform* const transform,
int y_start, int y_end, const uint32_t* src, uint32_t* dst) {
int y;
const int bits_per_pixel = 8 >> transform->bits_;
const int width = transform->xsize_;
const uint32_t* const color_map = transform->data_;
if (bits_per_pixel < 8) {
const int pixels_per_byte = 1 << transform->bits_;
const int count_mask = pixels_per_byte - 1;
const uint32_t bit_mask = (1 << bits_per_pixel) - 1;
for (y = y_start; y < y_end; ++y) {
uint32_t packed_pixels = 0;
int x;
for (x = 0; x < width; ++x) {
// We need to load fresh 'packed_pixels' once every 'pixels_per_byte'
// increments of x. Fortunately, pixels_per_byte is a power of 2, so
// can just use a mask for that, instead of decrementing a counter.
if ((x & count_mask) == 0) packed_pixels = ((*src++) >> 8) & 0xff;
*dst++ = color_map[packed_pixels & bit_mask];
packed_pixels >>= bits_per_pixel;
}
}
} else {
for (y = y_start; y < y_end; ++y) {
int x;
for (x = 0; x < width; ++x) {
*dst++ = color_map[((*src++) >> 8) & 0xff];
}
}
}
}
void VP8LInverseTransform(const VP8LTransform* const transform,
int row_start, int row_end,
const uint32_t* const in, uint32_t* const out) {
assert(row_start < row_end);
assert(row_end <= transform->ysize_);
switch (transform->type_) {
case SUBTRACT_GREEN:
AddGreenToBlueAndRed(transform, row_start, row_end, out);
break;
case PREDICTOR_TRANSFORM:
PredictorInverseTransform(transform, row_start, row_end, out);
if (row_end != transform->ysize_) {
// The last predicted row in this iteration will be the top-pred row
// for the first row in next iteration.
const int width = transform->xsize_;
memcpy(out - width, out + (row_end - row_start - 1) * width,
width * sizeof(*out));
}
break;
case CROSS_COLOR_TRANSFORM:
ColorSpaceInverseTransform(transform, row_start, row_end, out);
break;
case COLOR_INDEXING_TRANSFORM:
if (in == out && transform->bits_ > 0) {
// Move packed pixels to the end of unpacked region, so that unpacking
// can occur seamlessly.
// Also, note that this is the only transform that applies on
// the effective width of VP8LSubSampleSize(xsize_, bits_). All other
// transforms work on effective width of xsize_.
const int out_stride = (row_end - row_start) * transform->xsize_;
const int in_stride = (row_end - row_start) *
VP8LSubSampleSize(transform->xsize_, transform->bits_);
uint32_t* const src = out + out_stride - in_stride;
memmove(src, out, in_stride * sizeof(*src));
ColorIndexInverseTransform(transform, row_start, row_end, src, out);
} else {
ColorIndexInverseTransform(transform, row_start, row_end, in, out);
}
break;
}
}
//------------------------------------------------------------------------------
// Color space conversion.
static int is_big_endian(void) {
static const union {
uint16_t w;
uint8_t b[2];
} tmp = { 1 };
return (tmp.b[0] != 1);
}
static void ConvertBGRAToRGB(const uint32_t* src,
int num_pixels, uint8_t* dst) {
const uint32_t* const src_end = src + num_pixels;
while (src < src_end) {
const uint32_t argb = *src++;
*dst++ = (argb >> 16) & 0xff;
*dst++ = (argb >> 8) & 0xff;
*dst++ = (argb >> 0) & 0xff;
}
}
static void ConvertBGRAToRGBA(const uint32_t* src,
int num_pixels, uint8_t* dst) {
const uint32_t* const src_end = src + num_pixels;
while (src < src_end) {
const uint32_t argb = *src++;
*dst++ = (argb >> 16) & 0xff;
*dst++ = (argb >> 8) & 0xff;
*dst++ = (argb >> 0) & 0xff;
*dst++ = (argb >> 24) & 0xff;
}
}
static void ConvertBGRAToRGBA4444(const uint32_t* src,
int num_pixels, uint8_t* dst) {
const uint32_t* const src_end = src + num_pixels;
while (src < src_end) {
const uint32_t argb = *src++;
*dst++ = ((argb >> 16) & 0xf0) | ((argb >> 12) & 0xf);
*dst++ = ((argb >> 0) & 0xf0) | ((argb >> 28) & 0xf);
}
}
static void ConvertBGRAToRGB565(const uint32_t* src,
int num_pixels, uint8_t* dst) {
const uint32_t* const src_end = src + num_pixels;
while (src < src_end) {
const uint32_t argb = *src++;
*dst++ = ((argb >> 16) & 0xf8) | ((argb >> 13) & 0x7);
*dst++ = ((argb >> 5) & 0xe0) | ((argb >> 3) & 0x1f);
}
}
static void ConvertBGRAToBGR(const uint32_t* src,
int num_pixels, uint8_t* dst) {
const uint32_t* const src_end = src + num_pixels;
while (src < src_end) {
const uint32_t argb = *src++;
*dst++ = (argb >> 0) & 0xff;
*dst++ = (argb >> 8) & 0xff;
*dst++ = (argb >> 16) & 0xff;
}
}
static void CopyOrSwap(const uint32_t* src, int num_pixels, uint8_t* dst,
int swap_on_big_endian) {
if (is_big_endian() == swap_on_big_endian) {
const uint32_t* const src_end = src + num_pixels;
while (src < src_end) {
uint32_t argb = *src++;
#if !defined(__BIG_ENDIAN__) && (defined(__i386__) || defined(__x86_64__))
__asm__ volatile("bswap %0" : "=r"(argb) : "0"(argb));
*(uint32_t*)dst = argb;
dst += sizeof(argb);
#elif !defined(__BIG_ENDIAN__) && defined(_MSC_VER)
argb = _byteswap_ulong(argb);
*(uint32_t*)dst = argb;
dst += sizeof(argb);
#else
*dst++ = (argb >> 24) & 0xff;
*dst++ = (argb >> 16) & 0xff;
*dst++ = (argb >> 8) & 0xff;
*dst++ = (argb >> 0) & 0xff;
#endif
}
} else {
memcpy(dst, src, num_pixels * sizeof(*src));
}
}
void VP8LConvertFromBGRA(const uint32_t* const in_data, int num_pixels,
WEBP_CSP_MODE out_colorspace, uint8_t* const rgba) {
switch (out_colorspace) {
case MODE_RGB:
ConvertBGRAToRGB(in_data, num_pixels, rgba);
break;
case MODE_RGBA:
ConvertBGRAToRGBA(in_data, num_pixels, rgba);
break;
case MODE_rgbA:
ConvertBGRAToRGBA(in_data, num_pixels, rgba);
WebPApplyAlphaMultiply(rgba, 0, num_pixels, 1, 0);
break;
case MODE_BGR:
ConvertBGRAToBGR(in_data, num_pixels, rgba);
break;
case MODE_BGRA:
CopyOrSwap(in_data, num_pixels, rgba, 1);
break;
case MODE_bgrA:
CopyOrSwap(in_data, num_pixels, rgba, 1);
WebPApplyAlphaMultiply(rgba, 0, num_pixels, 1, 0);
break;
case MODE_ARGB:
CopyOrSwap(in_data, num_pixels, rgba, 0);
break;
case MODE_Argb:
CopyOrSwap(in_data, num_pixels, rgba, 0);
WebPApplyAlphaMultiply(rgba, 1, num_pixels, 1, 0);
break;
case MODE_RGBA_4444:
ConvertBGRAToRGBA4444(in_data, num_pixels, rgba);
break;
case MODE_rgbA_4444:
ConvertBGRAToRGBA4444(in_data, num_pixels, rgba);
WebPApplyAlphaMultiply4444(rgba, num_pixels, 1, 0);
break;
case MODE_RGB_565:
ConvertBGRAToRGB565(in_data, num_pixels, rgba);
break;
default:
assert(0); // Code flow should not reach here.
}
}
//------------------------------------------------------------------------------
#if defined(__cplusplus) || defined(c_plusplus)
} // extern "C"
#endif
|