summaryrefslogtreecommitdiff
path: root/drivers/vulkan/rendering_device_vulkan.h
blob: 492b1c75092b009e99f3c18c09d9655445a492fe (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
#ifndef RENDERING_DEVICE_VULKAN_H
#define RENDERING_DEVICE_VULKAN_H

#include "core/oa_hash_map.h"
#include "core/os/thread_safe.h"
#include "core/rid_owner.h"
#include "servers/visual/rendering_device.h"
#include "thirdparty/glslang/glslang/Public/ShaderLang.h"
#include "vk_mem_alloc.h"
#include <vulkan/vulkan.h>
//todo:
//compute
//push constants
//views of texture slices

class VulkanContext;

class RenderingDeviceVulkan : public RenderingDevice {

	_THREAD_SAFE_CLASS_

	// Miscellaneous tables that map
	// our enums to enums used
	// by vulkan.

	VkPhysicalDeviceLimits limits;
	static const VkFormat vulkan_formats[DATA_FORMAT_MAX];
	static const char *named_formats[DATA_FORMAT_MAX];
	static const VkCompareOp compare_operators[COMPARE_OP_MAX];
	static const VkStencilOp stencil_operations[STENCIL_OP_MAX];
	static const VkSampleCountFlagBits rasterization_sample_count[TEXTURE_SAMPLES_MAX];
	static const VkLogicOp logic_operations[RenderingDevice::LOGIC_OP_MAX];
	static const VkBlendFactor blend_factors[RenderingDevice::BLEND_FACTOR_MAX];
	static const VkBlendOp blend_operations[RenderingDevice::BLEND_OP_MAX];
	static const VkSamplerAddressMode address_modes[SAMPLER_REPEAT_MODE_MAX];
	static const VkBorderColor sampler_border_colors[SAMPLER_BORDER_COLOR_MAX];

	// Functions used for format
	// validation, and ensures the
	// user passes valid data.

	static int get_format_vertex_size(DataFormat p_format);
	static uint32_t get_image_format_pixel_size(DataFormat p_format);
	static void get_compressed_image_format_block_dimensions(DataFormat p_format, uint32_t &r_w, uint32_t &r_h);
	uint32_t get_compressed_image_format_block_byte_size(DataFormat p_format);
	static uint32_t get_compressed_image_format_pixel_rshift(DataFormat p_format);
	static uint32_t get_image_format_required_size(DataFormat p_format, uint32_t p_width, uint32_t p_height, uint32_t p_depth, uint32_t p_mipmap, uint32_t *r_blockw = NULL, uint32_t *r_blockh = NULL);
	static uint32_t get_image_required_mipmaps(uint32_t p_width, uint32_t p_height, uint32_t p_depth);

	/***************************/
	/**** ID INFRASTRUCTURE ****/
	/***************************/

	enum IDType {
		ID_TYPE_FRAMEBUFFER_FORMAT,
		ID_TYPE_VERTEX_FORMAT,
		ID_TYPE_DRAW_LIST,
		ID_TYPE_SPLIT_DRAW_LIST,
		ID_TYPE_MAX,
		ID_BASE_SHIFT = 58 //5 bits for ID types
	};

	VkDevice device;

	Map<RID, Set<RID> > dependency_map; //IDs to IDs that depend on it
	Map<RID, Set<RID> > reverse_dependency_map; //same as above, but in reverse

	void _add_dependency(RID p_id, RID p_depends_on);
	void _free_dependencies(RID p_id);

	/*****************/
	/**** TEXTURE ****/
	/*****************/

	// In Vulkan, the concept of textures does not exist,
	// intead there is the image (the memory prety much,
	// the view (how the memory is interpreted) and the
	// sampler (how it's sampled from the shader).
	//
	// Texture here includes the first two stages, but
	// It's possible to create textures sharing the image
	// but with different views. The main use case for this
	// is textures that can be read as both SRGB/Linear,
	// or slices of a texture (a mipmap, a layer, a 3D slice)
	// for a framebuffer to render into it.

	struct Texture {

		VkImage image;
		VmaAllocation allocation;
		VmaAllocationInfo allocation_info;
		VkImageView view;

		TextureType type;
		DataFormat format;
		TextureSamples samples;
		uint32_t width;
		uint32_t height;
		uint32_t depth;
		uint32_t layers;
		uint32_t mipmaps;
		uint32_t usage_flags;

		VkImageLayout bound_layout; //layout used when bound to framebuffer being drawn
		VkImageLayout unbound_layout; //layout used otherwise
		uint32_t aspect_mask;
		bool bound; //bound to framebffer
		RID owner;
	};

	RID_Owner<Texture> texture_owner;
	uint32_t texture_upload_region_size_px;

	/*****************/
	/**** SAMPLER ****/
	/*****************/

	RID_Owner<VkSampler> sampler_owner;

	/***************************/
	/**** BUFFER MANAGEMENT ****/
	/***************************/

	// These are temporary buffers on CPU memory that hold
	// the information until the CPU fetches it and places it
	// either on GPU buffers, or images (textures). It ensures
	// updates are properly synchronized with whathever the
	// GPU is doing.
	//
	// The logic here is as follows, only 3 of these
	// blocks are created at the beginning (one per frame)
	// they can each belong to a frame (assigned to current when
	// used) and they can only be reused after the same frame is
	// recycled.
	//
	// When CPU requires to allocate more than what is available,
	// more of these buffers are created. If a limit is reached,
	// then a fence will ensure will wait for blocks allocated
	// in previous frames are processed. If that fails, then
	// another fence will ensure everything pending for the current
	// frame is processed (effectively stalling).
	//
	// See the comments in the code to understand better how it works.

	struct StagingBufferBlock {
		VkBuffer buffer;
		VmaAllocation allocation;
		uint64_t frame_used;
		uint32_t fill_amount;
	};

	Vector<StagingBufferBlock> staging_buffer_blocks;
	int staging_buffer_current;
	uint32_t staging_buffer_block_size;
	uint64_t staging_buffer_max_size;
	bool staging_buffer_used;

	Error _staging_buffer_allocate(uint32_t p_amount, uint32_t p_required_align, uint32_t &r_alloc_offset, uint32_t &r_alloc_size, bool p_can_segment = true, bool p_on_draw_command_buffer = false);
	Error _insert_staging_block();

	struct Buffer {

		uint32_t size;
		VkBuffer buffer;
		VmaAllocation allocation;
		VkDescriptorBufferInfo buffer_info; //used for binding
		Buffer() {
			size = 0;
			buffer = NULL;
			allocation = NULL;
		}
	};

	Error _buffer_allocate(Buffer *p_buffer, uint32_t p_size, uint32_t p_usage, VmaMemoryUsage p_mapping);
	Error _buffer_free(Buffer *p_buffer);
	Error _buffer_update(Buffer *p_buffer, size_t p_offset, const uint8_t *p_data, size_t p_data_size, bool p_use_draw_command_buffer = false, uint32_t p_required_align = 32);

	/*********************/
	/**** FRAMEBUFFER ****/
	/*********************/

	// In Vulkan, framebuffers work similar to how they
	// do in OpenGL, with the exception that
	// the "format" (vkRenderPass) is not dynamic
	// and must be more or less the same as the one
	// used for the render pipelines.

	struct FramebufferFormatKey {
		Vector<AttachmentFormat> attachments;
		bool operator<(const FramebufferFormatKey &p_key) const {

			int as = attachments.size();
			int bs = p_key.attachments.size();
			if (as != bs) {
				return as < bs;
			}

			const AttachmentFormat *af_a = attachments.ptr();
			const AttachmentFormat *af_b = p_key.attachments.ptr();
			for (int i = 0; i < as; i++) {
				const AttachmentFormat &a = af_a[i];
				const AttachmentFormat &b = af_b[i];
				if (a.format != b.format) {
					return a.format < b.format;
				}
				if (a.samples != b.samples) {
					return a.samples < b.samples;
				}
				if (a.usage_flags != b.usage_flags) {
					return a.usage_flags < b.usage_flags;
				}
			}

			return false; //equal
		}
	};

	VkRenderPass _render_pass_create(const Vector<AttachmentFormat> &p_format, InitialAction p_initial_action, FinalAction p_final_action, int *r_color_attachment_count = NULL);

	// This is a cache and it's never freed, it ensures
	// IDs for a given format are always unique.
	Map<FramebufferFormatKey, FramebufferFormatID> framebuffer_format_cache;
	struct FramebufferFormat {
		const Map<FramebufferFormatKey, FramebufferFormatID>::Element *E;
		VkRenderPass render_pass; //here for constructing shaders, never used, see section (7.2. Render Pass Compatibility from Vulkan spec)
		int color_attachments; //used for pipeline validation
	};

	Map<FramebufferFormatID, FramebufferFormat> framebuffer_formats;

	struct Framebuffer {
		FramebufferFormatID format_id;
		struct VersionKey {
			InitialAction initial_action;
			FinalAction final_action;
			bool operator<(const VersionKey &p_key) const {
				if (initial_action == p_key.initial_action) {
					return final_action < p_key.final_action;
				} else {
					return initial_action < p_key.initial_action;
				}
			}
		};

		Vector<RID> texture_ids;

		struct Version {
			VkFramebuffer framebuffer;
			VkRenderPass render_pass; //this one is owned
		};

		Map<VersionKey, Version> framebuffers;
		Size2 size;
	};

	RID_Owner<Framebuffer> framebuffer_owner;

	/***********************/
	/**** VERTEX BUFFER ****/
	/***********************/

	// Vertex buffers in Vulkan are similar to how
	// they work in OpenGL, except that instead of
	// an attribtue index, there is a buffer binding
	// index (for binding the buffers in real-time)
	// and a location index (what is used in the shader).
	//
	// This mapping is done here internally, and it's not
	// exposed.

	RID_Owner<Buffer> vertex_buffer_owner;

	struct VertexDescriptionKey {
		Vector<VertexDescription> vertex_formats;
		int buffer_count;
		bool operator<(const VertexDescriptionKey &p_key) const {
			if (buffer_count != p_key.buffer_count) {
				return buffer_count < p_key.buffer_count;
			}
			if (vertex_formats.size() != p_key.vertex_formats.size()) {
				return vertex_formats.size() < p_key.vertex_formats.size();
			} else {
				int vdc = vertex_formats.size();
				const VertexDescription *a_ptr = vertex_formats.ptr();
				const VertexDescription *b_ptr = p_key.vertex_formats.ptr();
				for (int i = 0; i < vdc; i++) {
					const VertexDescription &a = a_ptr[i];
					const VertexDescription &b = b_ptr[i];

					if (a.location != b.location) {
						return a.location < b.location;
					}
					if (a.offset != b.offset) {
						return a.offset < b.offset;
					}
					if (a.format != b.format) {
						return a.format < b.format;
					}
					if (a.stride != b.stride) {
						return a.stride < b.stride;
					}
					return a.frequency < b.frequency;
				}
				return false; //they are equal
			}
		}
	};

	// This is a cache and it's never freed, it ensures that
	// ID used for a specific format always remain the same.
	Map<VertexDescriptionKey, VertexFormatID> vertex_format_cache;
	struct VertexDescriptionCache {
		const Map<VertexDescriptionKey, VertexFormatID>::Element *E;
		VkVertexInputBindingDescription *bindings;
		VkVertexInputAttributeDescription *attributes;
		VkPipelineVertexInputStateCreateInfo create_info;
	};

	Map<VertexFormatID, VertexDescriptionCache> vertex_formats;

	struct VertexArray {
		RID buffer;
		VertexFormatID description;
		int vertex_count;
		uint32_t max_instances_allowed;

		Vector<VkBuffer> buffers; //not owned, just referenced
		Vector<VkDeviceSize> offsets;
	};

	RID_Owner<VertexArray> vertex_array_owner;

	struct IndexBuffer : public Buffer {
		uint32_t max_index; //used for validation
		uint32_t index_count;
		VkIndexType index_type;
		bool supports_restart_indices;
	};

	RID_Owner<IndexBuffer> index_buffer_owner;

	struct IndexArray {
		uint32_t max_index; //remember the maximum index here too, for validation
		VkBuffer buffer; //not owned, inherited from index buffer
		uint32_t offset;
		uint32_t indices;
		VkIndexType index_type;
		bool supports_restart_indices;
	};

	RID_Owner<IndexArray> index_array_owner;

	/****************/
	/**** SHADER ****/
	/****************/

	// Shaders in Vulkan are just pretty much
	// precompiled blocks of SPIR-V bytecode. They
	// are most likely not really compiled to host
	// assembly until a pipeline is created.
	//
	// When supplying the shaders, this implementation
	// will use the reflection abilities of glslang to
	// understand and cache everything required to
	// create and use the descriptor sets (Vulkan's
	// biggest pain).
	//
	// Additionally, hashes are created for every set
	// to do quick validation and ensuring the user
	// does not submit something invalid.

	struct Shader {

		struct UniformInfo {
			UniformType type;
			int binding;
			uint32_t stages;
			int length; //size of arrays (in total elements), or ubos (in bytes * total elements)
			bool operator<(const UniformInfo &p_info) const {
				if (type != p_info.type) {
					return type < p_info.type;
				}
				if (binding != p_info.binding) {
					return binding < p_info.binding;
				}
				if (stages != p_info.stages) {
					return stages < p_info.stages;
				}
				return length < p_info.length;
			}
		};

		struct Set {

			Vector<UniformInfo> uniform_info;
			VkDescriptorSetLayout descriptor_set_layout;
		};

		Vector<int> vertex_input_locations; //inputs used, this is mostly for validation
		int fragment_outputs;

		struct PushConstant {
			uint32_t push_constant_size;
			uint32_t push_constants_vk_stage;
		};

		PushConstant push_constant;

		int max_output;
		Vector<Set> sets;
		Vector<uint32_t> set_hashes;
		Vector<VkPipelineShaderStageCreateInfo> pipeline_stages;
		VkPipelineLayout pipeline_layout;
	};

	bool _uniform_add_binding(Vector<Vector<VkDescriptorSetLayoutBinding> > &bindings, Vector<Vector<Shader::UniformInfo> > &uniform_infos, const glslang::TObjectReflection &reflection, RenderingDevice::ShaderStage p_stage, Shader::PushConstant &push_constant, String *r_error);

	RID_Owner<Shader> shader_owner;

	/******************/
	/**** UNIFORMS ****/
	/******************/

	// Descriptor sets require allocation from a pool.
	// The documentation on how to use pools properly
	// is scarce, and the documentation is strange.
	//
	// Basically, you can mix and match pools as you
	// like, but you'll run into fragmentation issues.
	// Because of this, the recommended approach is to
	// create a a pool for every descriptor set type,
	// as this prevents fragmentation.
	//
	// This is implemented here as a having a list of
	// pools (each can contain up to 64 sets) for each
	// set layout. The amount of sets for each type
	// is used as the key.

	enum {
		MAX_DESCRIPTOR_POOL_ELEMENT = 65535
	};

	struct DescriptorPoolKey {
		union {
			struct {
				uint16_t uniform_type[UNIFORM_TYPE_MAX]; //using 16 bits because, for sending arrays, each element is a pool set.
			};
			struct {
				uint64_t key1;
				uint64_t key2;
				uint64_t key3;
			};
		};
		bool operator<(const DescriptorPoolKey &p_key) const {
			if (key1 != p_key.key1) {
				return key1 < p_key.key1;
			}
			if (key2 != p_key.key2) {
				return key2 < p_key.key2;
			}

			return key3 < p_key.key3;
		}
		DescriptorPoolKey() {
			key1 = 0;
			key2 = 0;
			key3 = 0;
		}
	};

	struct DescriptorPool {
		VkDescriptorPool pool;
		uint32_t usage;
	};

	Map<DescriptorPoolKey, Set<DescriptorPool *> > descriptor_pools;
	uint32_t max_descriptors_per_pool;

	DescriptorPool *_descriptor_pool_allocate(const DescriptorPoolKey &p_key);
	void _descriptor_pool_free(const DescriptorPoolKey &p_key, DescriptorPool *p_pool);

	RID_Owner<Buffer> uniform_buffer_owner;
	RID_Owner<Buffer> storage_buffer_owner;

	//texture buffer needs a view
	struct TextureBuffer {
		Buffer buffer;
		VkBufferView view;
	};

	RID_Owner<TextureBuffer> texture_buffer_owner;

	// This structure contains the descriptor set. They _need_ to be allocated
	// for a shader (and will be erased when this shader is erased), but should
	// work for other shaders as long as the hash matches. This covers using
	// them in shader variants.
	//
	// Keep also in mind that you can share buffers between descriptor sets, so
	// the above restriction is not too serious.

	struct UniformSet {
		uint32_t hash;
		RID shader_id;
		DescriptorPool *pool;
		DescriptorPoolKey pool_key;
		VkDescriptorSet descriptor_set;
		VkPipelineLayout pipeline_layout; //not owned, inherited from shader
		Vector<RID> attachable_textures; //used for validation
	};

	RID_Owner<UniformSet> uniform_set_owner;

	/*******************/
	/**** PIPELINES ****/
	/*******************/

	// Render pipeline contains ALL the
	// information required for drawing.
	// This includes all the rasterizer state
	// as well as shader used, framebuffer format,
	// etc.
	// While the pipeline is just a single object
	// (VkPipeline) a lot of values are also saved
	// here to do validation (vulkan does none by
	// default) and warn the user if something
	// was not supplied as intended.

	struct RenderPipeline {
		//Cached values for validation
		FramebufferFormatID framebuffer_format;
		uint32_t dynamic_state;
		VertexFormatID vertex_format;
		bool uses_restart_indices;
		uint32_t primitive_minimum;
		uint32_t primitive_divisor;
		Vector<uint32_t> set_hashes;
		uint32_t push_constant_size;
		uint32_t push_constant_stages;
		//Actual pipeline
		VkPipelineLayout pipeline_layout; // not owned, needed for push constants
		VkPipeline pipeline;
	};

	RID_Owner<RenderPipeline> pipeline_owner;

	/*******************/
	/**** DRAW LIST ****/
	/*******************/

	// Draw list contains both the command buffer
	// used for drawing as well as a LOT of
	// information used for validation. This
	// validation is cheap so most of it can
	// also run in release builds.

	// When using split command lists, this is
	// implemented internally using secondary command
	// buffers. As they can be created in threads,
	// each needs it's own command pool.

	struct SplitDrawListAllocator {
		VkCommandPool command_pool;
		Vector<VkCommandBuffer> command_buffers; //one for each frame
	};

	Vector<SplitDrawListAllocator> split_draw_list_allocators;

	struct DrawList {

		VkCommandBuffer command_buffer; //if persistent, this is owned, otherwise it's shared with the ringbuffer

		struct Validation {
			bool active; //means command buffer was not closes, so you can keep adding things
			FramebufferFormatID framebuffer_format;
			//actual render pass values
			uint32_t dynamic_state;
			VertexFormatID vertex_format; //INVALID_ID if not set
			uint32_t vertex_array_size; //0 if not set
			uint32_t vertex_max_instances_allowed;
			bool index_buffer_uses_restart_indices;
			uint32_t index_array_size; //0 if index buffer not set
			uint32_t index_array_max_index;
			uint32_t index_array_offset;
			Vector<uint32_t> set_hashes;
			//last pipeline set values
			bool pipeline_active;
			uint32_t pipeline_dynamic_state;
			VertexFormatID pipeline_vertex_format;
			bool pipeline_uses_restart_indices;
			uint32_t pipeline_primitive_divisor;
			uint32_t pipeline_primitive_minimum;
			Vector<uint32_t> pipeline_set_hashes;
			VkPipelineLayout pipeline_push_constant_layout;
			uint32_t pipeline_push_constant_size;
			uint32_t pipeline_push_constant_stages;
			bool pipeline_push_constant_suppplied;

			Validation() {
				active = true;
				dynamic_state = 0;
				vertex_format = INVALID_ID;
				vertex_array_size = 0;
				vertex_max_instances_allowed = 0xFFFFFFFF;
				framebuffer_format = INVALID_ID;
				index_array_size = 0; //not sent
				index_array_max_index = 0; //not set
				index_buffer_uses_restart_indices = false;

				//pipeline state initalize
				pipeline_active = false;
				pipeline_dynamic_state = 0;
				pipeline_vertex_format = INVALID_ID;
				pipeline_uses_restart_indices = false;
				pipeline_push_constant_size = 0;
				pipeline_push_constant_stages = 0;
				pipeline_push_constant_suppplied = false;
			}
		} validation;
	};

	DrawList *draw_list; //one for regular draw lists, multiple for split.
	uint32_t draw_list_count;
	bool draw_list_split;
	Vector<RID> draw_list_bound_textures;
	bool draw_list_unbind_textures;

	Error _draw_list_setup_framebuffer(Framebuffer *p_framebuffer, InitialAction p_initial_action, FinalAction p_final_action, VkFramebuffer *r_framebuffer, VkRenderPass *r_render_pass);
	Error _draw_list_render_pass_begin(Framebuffer *framebuffer, InitialAction p_initial_action, FinalAction p_final_action, const Vector<Color> &p_clear_colors, Point2i viewport_offset, Point2i viewport_size, VkFramebuffer vkframebuffer, VkRenderPass render_pass, VkCommandBuffer command_buffer, VkSubpassContents subpass_contents);
	_FORCE_INLINE_ DrawList *_get_draw_list_ptr(DrawListID p_id);

	/**************************/
	/**** FRAME MANAGEMENT ****/
	/**************************/

	// This is the frame structure. There are normally
	// 3 of these (used for triple buffering), or 2
	// (double buffering). They are cycled constantly.
	//
	// It contains two command buffers, one that is
	// used internally for setting up (creating stuff)
	// and another used mostly for drawing.
	//
	// They also contains a list of things that need
	// to be disposed of when deleted, which can't
	// happen immediately due to the asynchronous
	// nature of the GPU. They will get deleted
	// when the frame is cycled.

	struct Frame {
		//list in usage order, from last to free to first to free
		List<Buffer> buffers_to_dispose_of;
		List<Texture> textures_to_dispose_of;
		List<Framebuffer> framebuffers_to_dispose_of;
		List<VkSampler> samplers_to_dispose_of;
		List<Shader> shaders_to_dispose_of;
		List<VkBufferView> buffer_views_to_dispose_of;
		List<UniformSet> uniform_sets_to_dispose_of;
		List<RenderPipeline> pipelines_to_dispose_of;

		VkCommandPool command_pool;
		VkCommandBuffer setup_command_buffer; //used at the begining of every frame for set-up
		VkCommandBuffer draw_command_buffer; //used at the begining of every frame for set-up
	};

	Frame *frames; //frames available, they are cycled (usually 3)
	int frame; //current frame
	int frame_count; //total amount of frames
	uint64_t frames_drawn;

	void _free_pending_resources();

	VmaAllocator allocator;

	VulkanContext *context;

	void _free_internal(RID p_id);

public:
	virtual RID texture_create(const TextureFormat &p_format, const TextureView &p_view, const Vector<PoolVector<uint8_t> > &p_data = Vector<PoolVector<uint8_t> >());
	virtual RID texture_create_shared(const TextureView &p_view, RID p_with_texture);
	virtual Error texture_update(RID p_texture, uint32_t p_mipmap, uint32_t p_layer, const PoolVector<uint8_t> &p_data, bool p_sync_with_draw = false);

	virtual bool texture_is_format_supported_for_usage(DataFormat p_format, TextureUsageBits p_usage) const;

	/*********************/
	/**** FRAMEBUFFER ****/
	/*********************/

	FramebufferFormatID framebuffer_format_create(const Vector<AttachmentFormat> &p_format);

	virtual RID framebuffer_create(const Vector<RID> &p_texture_attachments, FramebufferFormatID p_format_check = INVALID_ID);

	virtual FramebufferFormatID framebuffer_get_format(RID p_framebuffer);

	/*****************/
	/**** SAMPLER ****/
	/*****************/

	virtual RID sampler_create(const SamplerState &p_state);

	/**********************/
	/**** VERTEX ARRAY ****/
	/**********************/

	virtual RID vertex_buffer_create(uint32_t p_size_bytes, const PoolVector<uint8_t> &p_data = PoolVector<uint8_t>());

	// Internally reference counted, this ID is warranted to be unique for the same description, but needs to be freed as many times as it was allocated
	virtual VertexFormatID vertex_format_create(const Vector<VertexDescription> &p_vertex_formats);
	virtual RID vertex_array_create(uint32_t p_vertex_count, VertexFormatID p_vertex_format, const Vector<RID> &p_src_buffers);

	virtual RID index_buffer_create(uint32_t p_size_indices, IndexBufferFormat p_format, const PoolVector<uint8_t> &p_data = PoolVector<uint8_t>(), bool p_use_restart_indices = false);

	virtual RID index_array_create(RID p_index_buffer, uint32_t p_index_offset, uint32_t p_index_count);

	/****************/
	/**** SHADER ****/
	/****************/

	virtual RID shader_create_from_source(const Vector<ShaderStageSource> &p_stages, String *r_error = NULL, bool p_allow_cache = true);

	/*****************/
	/**** UNIFORM ****/
	/*****************/

	virtual RID uniform_buffer_create(uint32_t p_size_bytes, const PoolVector<uint8_t> &p_data = PoolVector<uint8_t>());
	virtual RID storage_buffer_create(uint32_t p_size_bytes, const PoolVector<uint8_t> &p_data = PoolVector<uint8_t>());
	virtual RID texture_buffer_create(uint32_t p_size_elements, DataFormat p_format, const PoolVector<uint8_t> &p_data = PoolVector<uint8_t>());

	virtual RID uniform_set_create(const Vector<Uniform> &p_uniforms, RID p_shader, uint32_t p_shader_set);

	virtual Error buffer_update(RID p_buffer, uint32_t p_offset, uint32_t p_size, void *p_data, bool p_sync_with_draw = false); //works for any buffer

	/*************************/
	/**** RENDER PIPELINE ****/
	/*************************/

	virtual RID render_pipeline_create(RID p_shader, FramebufferFormatID p_framebuffer_format, VertexFormatID p_vertex_format, RenderPrimitive p_render_primitive, const PipelineRasterizationState &p_rasterization_state, const PipelineMultisampleState &p_multisample_state, const PipelineDepthStencilState &p_depth_stencil_state, const PipelineColorBlendState &p_blend_state, int p_dynamic_state_flags = 0);

	/****************/
	/**** SCREEN ****/
	/****************/

	virtual int screen_get_width(int p_screen = 0) const;
	virtual int screen_get_height(int p_screen = 0) const;
	virtual FramebufferFormatID screen_get_framebuffer_format() const;

	/********************/
	/**** DRAW LISTS ****/
	/********************/

	virtual DrawListID draw_list_begin_for_screen(int p_screen = 0, const Color &p_clear_color = Color());
	virtual DrawListID draw_list_begin(RID p_framebuffer, InitialAction p_initial_action, FinalAction p_final_action, const Vector<Color> &p_clear_colors = Vector<Color>(), const Rect2 &p_region = Rect2());
	virtual Error draw_list_begin_split(RID p_framebuffer, uint32_t p_splits, DrawListID *r_split_ids, InitialAction p_initial_action, FinalAction p_final_action, const Vector<Color> &p_clear_colors = Vector<Color>(), const Rect2 &p_region = Rect2());

	virtual void draw_list_bind_render_pipeline(DrawListID p_list, RID p_render_pipeline);
	virtual void draw_list_bind_uniform_set(DrawListID p_list, RID p_uniform_set, uint32_t p_index);
	virtual void draw_list_bind_vertex_array(DrawListID p_list, RID p_vertex_array);
	virtual void draw_list_bind_index_array(DrawListID p_list, RID p_index_array);
	virtual void draw_list_set_push_constant(DrawListID p_list, void *p_data, uint32_t p_data_size);

	virtual void draw_list_draw(DrawListID p_list, bool p_use_indices, uint32_t p_instances = 1);

	virtual void draw_list_enable_scissor(DrawListID p_list, const Rect2 &p_rect);
	virtual void draw_list_disable_scissor(DrawListID p_list);

	virtual void draw_list_end();

	virtual void free(RID p_id);

	/**************/
	/**** FREE ****/
	/**************/

	void initialize(VulkanContext *p_context);
	void finalize();

	void finalize_frame();
	void advance_frame();

	RenderingDeviceVulkan();
};

#endif // RENDERING_DEVICE_VULKAN_H