summaryrefslogtreecommitdiff
path: root/drivers/vulkan/rendering_device_vulkan.h
blob: eac3250bf7c83cc3814e76473dc796b8a1d14f2f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
/*************************************************************************/
/*  rendering_device_vulkan.h                                            */
/*************************************************************************/
/*                       This file is part of:                           */
/*                           GODOT ENGINE                                */
/*                      https://godotengine.org                          */
/*************************************************************************/
/* Copyright (c) 2007-2020 Juan Linietsky, Ariel Manzur.                 */
/* Copyright (c) 2014-2020 Godot Engine contributors (cf. AUTHORS.md).   */
/*                                                                       */
/* Permission is hereby granted, free of charge, to any person obtaining */
/* a copy of this software and associated documentation files (the       */
/* "Software"), to deal in the Software without restriction, including   */
/* without limitation the rights to use, copy, modify, merge, publish,   */
/* distribute, sublicense, and/or sell copies of the Software, and to    */
/* permit persons to whom the Software is furnished to do so, subject to */
/* the following conditions:                                             */
/*                                                                       */
/* The above copyright notice and this permission notice shall be        */
/* included in all copies or substantial portions of the Software.       */
/*                                                                       */
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,       */
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF    */
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY  */
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,  */
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE     */
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.                */
/*************************************************************************/

#ifndef RENDERING_DEVICE_VULKAN_H
#define RENDERING_DEVICE_VULKAN_H

#include "core/oa_hash_map.h"
#include "core/os/thread_safe.h"
#include "core/rid_owner.h"
#include "servers/rendering/rendering_device.h"

#ifdef DEBUG_ENABLED
#ifndef _DEBUG
#define _DEBUG
#endif
#endif
#include "vk_mem_alloc.h"

#include <vulkan/vulkan.h>

//todo:
//compute
//push constants
//views of texture slices

class VulkanContext;

class RenderingDeviceVulkan : public RenderingDevice {
	_THREAD_SAFE_CLASS_

	// Miscellaneous tables that map
	// our enums to enums used
	// by vulkan.

	VkPhysicalDeviceLimits limits;
	static const VkFormat vulkan_formats[DATA_FORMAT_MAX];
	static const char *named_formats[DATA_FORMAT_MAX];
	static const VkCompareOp compare_operators[COMPARE_OP_MAX];
	static const VkStencilOp stencil_operations[STENCIL_OP_MAX];
	static const VkSampleCountFlagBits rasterization_sample_count[TEXTURE_SAMPLES_MAX];
	static const VkLogicOp logic_operations[RenderingDevice::LOGIC_OP_MAX];
	static const VkBlendFactor blend_factors[RenderingDevice::BLEND_FACTOR_MAX];
	static const VkBlendOp blend_operations[RenderingDevice::BLEND_OP_MAX];
	static const VkSamplerAddressMode address_modes[SAMPLER_REPEAT_MODE_MAX];
	static const VkBorderColor sampler_border_colors[SAMPLER_BORDER_COLOR_MAX];
	static const VkImageType vulkan_image_type[TEXTURE_TYPE_MAX];

	// Functions used for format
	// validation, and ensures the
	// user passes valid data.

	static int get_format_vertex_size(DataFormat p_format);
	static uint32_t get_image_format_pixel_size(DataFormat p_format);
	static void get_compressed_image_format_block_dimensions(DataFormat p_format, uint32_t &r_w, uint32_t &r_h);
	uint32_t get_compressed_image_format_block_byte_size(DataFormat p_format);
	static uint32_t get_compressed_image_format_pixel_rshift(DataFormat p_format);
	static uint32_t get_image_format_required_size(DataFormat p_format, uint32_t p_width, uint32_t p_height, uint32_t p_depth, uint32_t p_mipmaps, uint32_t *r_blockw = nullptr, uint32_t *r_blockh = nullptr, uint32_t *r_depth = nullptr);
	static uint32_t get_image_required_mipmaps(uint32_t p_width, uint32_t p_height, uint32_t p_depth);
	static bool format_has_stencil(DataFormat p_format);

	/***************************/
	/**** ID INFRASTRUCTURE ****/
	/***************************/

	enum IDType {
		ID_TYPE_FRAMEBUFFER_FORMAT,
		ID_TYPE_VERTEX_FORMAT,
		ID_TYPE_DRAW_LIST,
		ID_TYPE_SPLIT_DRAW_LIST,
		ID_TYPE_COMPUTE_LIST,
		ID_TYPE_MAX,
		ID_BASE_SHIFT = 58 //5 bits for ID types
	};

	VkDevice device;

	Map<RID, Set<RID>> dependency_map; //IDs to IDs that depend on it
	Map<RID, Set<RID>> reverse_dependency_map; //same as above, but in reverse

	void _add_dependency(RID p_id, RID p_depends_on);
	void _free_dependencies(RID p_id);

	/*****************/
	/**** TEXTURE ****/
	/*****************/

	// In Vulkan, the concept of textures does not exist,
	// intead there is the image (the memory prety much,
	// the view (how the memory is interpreted) and the
	// sampler (how it's sampled from the shader).
	//
	// Texture here includes the first two stages, but
	// It's possible to create textures sharing the image
	// but with different views. The main use case for this
	// is textures that can be read as both SRGB/Linear,
	// or slices of a texture (a mipmap, a layer, a 3D slice)
	// for a framebuffer to render into it.

	struct Texture {
		VkImage image;
		VmaAllocation allocation;
		VmaAllocationInfo allocation_info;
		VkImageView view;

		TextureType type;
		DataFormat format;
		TextureSamples samples;
		uint32_t width;
		uint32_t height;
		uint32_t depth;
		uint32_t layers;
		uint32_t mipmaps;
		uint32_t usage_flags;
		uint32_t base_mipmap;
		uint32_t base_layer;

		Vector<DataFormat> allowed_shared_formats;

		VkImageLayout layout;

		uint32_t read_aspect_mask;
		uint32_t barrier_aspect_mask;
		bool bound; //bound to framebffer
		RID owner;
	};

	RID_Owner<Texture, true> texture_owner;
	uint32_t texture_upload_region_size_px;

	Vector<uint8_t> _texture_get_data_from_image(Texture *tex, VkImage p_image, VmaAllocation p_allocation, uint32_t p_layer, bool p_2d = false);

	/*****************/
	/**** SAMPLER ****/
	/*****************/

	RID_Owner<VkSampler> sampler_owner;

	/***************************/
	/**** BUFFER MANAGEMENT ****/
	/***************************/

	// These are temporary buffers on CPU memory that hold
	// the information until the CPU fetches it and places it
	// either on GPU buffers, or images (textures). It ensures
	// updates are properly synchronized with whathever the
	// GPU is doing.
	//
	// The logic here is as follows, only 3 of these
	// blocks are created at the beginning (one per frame)
	// they can each belong to a frame (assigned to current when
	// used) and they can only be reused after the same frame is
	// recycled.
	//
	// When CPU requires to allocate more than what is available,
	// more of these buffers are created. If a limit is reached,
	// then a fence will ensure will wait for blocks allocated
	// in previous frames are processed. If that fails, then
	// another fence will ensure everything pending for the current
	// frame is processed (effectively stalling).
	//
	// See the comments in the code to understand better how it works.

	struct StagingBufferBlock {
		VkBuffer buffer;
		VmaAllocation allocation;
		uint64_t frame_used;
		uint32_t fill_amount;
	};

	Vector<StagingBufferBlock> staging_buffer_blocks;
	int staging_buffer_current;
	uint32_t staging_buffer_block_size;
	uint64_t staging_buffer_max_size;
	bool staging_buffer_used;

	Error _staging_buffer_allocate(uint32_t p_amount, uint32_t p_required_align, uint32_t &r_alloc_offset, uint32_t &r_alloc_size, bool p_can_segment = true, bool p_on_draw_command_buffer = false);
	Error _insert_staging_block();

	struct Buffer {
		uint32_t size = 0;
		VkBuffer buffer = VK_NULL_HANDLE;
		VmaAllocation allocation = nullptr;
		VkDescriptorBufferInfo buffer_info; //used for binding
	};

	Error _buffer_allocate(Buffer *p_buffer, uint32_t p_size, uint32_t p_usage, VmaMemoryUsage p_mapping);
	Error _buffer_free(Buffer *p_buffer);
	Error _buffer_update(Buffer *p_buffer, size_t p_offset, const uint8_t *p_data, size_t p_data_size, bool p_use_draw_command_buffer = false, uint32_t p_required_align = 32);

	void _full_barrier(bool p_sync_with_draw);
	void _memory_barrier(VkPipelineStageFlags p_src_stage_mask, VkPipelineStageFlags p_dst_stage_mask, VkAccessFlags p_src_access, VkAccessFlags p_dst_sccess, bool p_sync_with_draw);
	void _buffer_memory_barrier(VkBuffer buffer, uint64_t p_from, uint64_t p_size, VkPipelineStageFlags p_src_stage_mask, VkPipelineStageFlags p_dst_stage_mask, VkAccessFlags p_src_access, VkAccessFlags p_dst_sccess, bool p_sync_with_draw);

	/*********************/
	/**** FRAMEBUFFER ****/
	/*********************/

	// In Vulkan, framebuffers work similar to how they
	// do in OpenGL, with the exception that
	// the "format" (vkRenderPass) is not dynamic
	// and must be more or less the same as the one
	// used for the render pipelines.

	struct FramebufferFormatKey {
		Vector<AttachmentFormat> attachments;
		bool operator<(const FramebufferFormatKey &p_key) const {
			int as = attachments.size();
			int bs = p_key.attachments.size();
			if (as != bs) {
				return as < bs;
			}

			const AttachmentFormat *af_a = attachments.ptr();
			const AttachmentFormat *af_b = p_key.attachments.ptr();
			for (int i = 0; i < as; i++) {
				const AttachmentFormat &a = af_a[i];
				const AttachmentFormat &b = af_b[i];
				if (a.format != b.format) {
					return a.format < b.format;
				}
				if (a.samples != b.samples) {
					return a.samples < b.samples;
				}
				if (a.usage_flags != b.usage_flags) {
					return a.usage_flags < b.usage_flags;
				}
			}

			return false; //equal
		}
	};

	VkRenderPass _render_pass_create(const Vector<AttachmentFormat> &p_format, InitialAction p_initial_action, FinalAction p_final_action, InitialAction p_initial_depth_action, FinalAction p_final_depthcolor_action, int *r_color_attachment_count = nullptr);

	// This is a cache and it's never freed, it ensures
	// IDs for a given format are always unique.
	Map<FramebufferFormatKey, FramebufferFormatID> framebuffer_format_cache;
	struct FramebufferFormat {
		const Map<FramebufferFormatKey, FramebufferFormatID>::Element *E;
		VkRenderPass render_pass; //here for constructing shaders, never used, see section (7.2. Render Pass Compatibility from Vulkan spec)
		int color_attachments; //used for pipeline validation
		TextureSamples samples;
	};

	Map<FramebufferFormatID, FramebufferFormat> framebuffer_formats;

	struct Framebuffer {
		FramebufferFormatID format_id;
		struct VersionKey {
			InitialAction initial_color_action;
			FinalAction final_color_action;
			InitialAction initial_depth_action;
			FinalAction final_depth_action;
			bool operator<(const VersionKey &p_key) const {
				if (initial_color_action == p_key.initial_color_action) {
					if (final_color_action == p_key.final_color_action) {
						if (initial_depth_action == p_key.initial_depth_action) {
							return final_depth_action < p_key.final_depth_action;
						} else {
							return initial_depth_action < p_key.initial_depth_action;
						}
					} else {
						return final_color_action < p_key.final_color_action;
					}
				} else {
					return initial_color_action < p_key.initial_color_action;
				}
			}
		};

		uint32_t storage_mask;
		Vector<RID> texture_ids;

		struct Version {
			VkFramebuffer framebuffer;
			VkRenderPass render_pass; //this one is owned
		};

		Map<VersionKey, Version> framebuffers;
		Size2 size;
	};

	RID_Owner<Framebuffer, true> framebuffer_owner;

	/***********************/
	/**** VERTEX BUFFER ****/
	/***********************/

	// Vertex buffers in Vulkan are similar to how
	// they work in OpenGL, except that instead of
	// an attribtue index, there is a buffer binding
	// index (for binding the buffers in real-time)
	// and a location index (what is used in the shader).
	//
	// This mapping is done here internally, and it's not
	// exposed.

	RID_Owner<Buffer, true> vertex_buffer_owner;

	struct VertexDescriptionKey {
		Vector<VertexAttribute> vertex_formats;
		bool operator==(const VertexDescriptionKey &p_key) const {
			int vdc = vertex_formats.size();
			int vdck = p_key.vertex_formats.size();

			if (vdc != vdck) {
				return false;
			} else {
				const VertexAttribute *a_ptr = vertex_formats.ptr();
				const VertexAttribute *b_ptr = p_key.vertex_formats.ptr();
				for (int i = 0; i < vdc; i++) {
					const VertexAttribute &a = a_ptr[i];
					const VertexAttribute &b = b_ptr[i];

					if (a.location != b.location) {
						return false;
					}
					if (a.offset != b.offset) {
						return false;
					}
					if (a.format != b.format) {
						return false;
					}
					if (a.stride != b.stride) {
						return false;
					}
					if (a.frequency != b.frequency) {
						return false;
					}
				}
				return true; //they are equal
			}
		}

		uint32_t hash() const {
			int vdc = vertex_formats.size();
			uint32_t h = hash_djb2_one_32(vdc);
			const VertexAttribute *ptr = vertex_formats.ptr();
			for (int i = 0; i < vdc; i++) {
				const VertexAttribute &vd = ptr[i];
				h = hash_djb2_one_32(vd.location, h);
				h = hash_djb2_one_32(vd.offset, h);
				h = hash_djb2_one_32(vd.format, h);
				h = hash_djb2_one_32(vd.stride, h);
				h = hash_djb2_one_32(vd.frequency, h);
			}
			return h;
		}
	};

	struct VertexDescriptionHash {
		static _FORCE_INLINE_ uint32_t hash(const VertexDescriptionKey &p_key) {
			return p_key.hash();
		}
	};

	// This is a cache and it's never freed, it ensures that
	// ID used for a specific format always remain the same.
	HashMap<VertexDescriptionKey, VertexFormatID, VertexDescriptionHash> vertex_format_cache;

	struct VertexDescriptionCache {
		Vector<VertexAttribute> vertex_formats;
		VkVertexInputBindingDescription *bindings;
		VkVertexInputAttributeDescription *attributes;
		VkPipelineVertexInputStateCreateInfo create_info;
	};

	Map<VertexFormatID, VertexDescriptionCache> vertex_formats;

	struct VertexArray {
		RID buffer;
		VertexFormatID description;
		int vertex_count;
		uint32_t max_instances_allowed;

		Vector<VkBuffer> buffers; //not owned, just referenced
		Vector<VkDeviceSize> offsets;
	};

	RID_Owner<VertexArray, true> vertex_array_owner;

	struct IndexBuffer : public Buffer {
		uint32_t max_index; //used for validation
		uint32_t index_count;
		VkIndexType index_type;
		bool supports_restart_indices;
	};

	RID_Owner<IndexBuffer, true> index_buffer_owner;

	struct IndexArray {
		uint32_t max_index; //remember the maximum index here too, for validation
		VkBuffer buffer; //not owned, inherited from index buffer
		uint32_t offset;
		uint32_t indices;
		VkIndexType index_type;
		bool supports_restart_indices;
	};

	RID_Owner<IndexArray, true> index_array_owner;

	/****************/
	/**** SHADER ****/
	/****************/

	// Vulkan specifies a really complex behavior for the application
	// in order to tell when descriptor sets need to be re-bound (or not).
	// "When binding a descriptor set (see Descriptor Set Binding) to set
	//  number N, if the previously bound descriptor sets for sets zero
	//  through N-1 were all bound using compatible pipeline layouts,
	//  then performing this binding does not disturb any of the lower numbered sets.
	//  If, additionally, the previous bound descriptor set for set N was
	//  bound using a pipeline layout compatible for set N, then the bindings
	//  in sets numbered greater than N are also not disturbed."
	// As a result, we need to figure out quickly when something is no longer "compatible".
	// in order to avoid costly rebinds.

	enum {
		MAX_UNIFORM_SETS = 16
	};

	struct UniformInfo {
		UniformType type;
		int binding;
		uint32_t stages;
		int length; //size of arrays (in total elements), or ubos (in bytes * total elements)

		bool operator!=(const UniformInfo &p_info) const {
			return (binding != p_info.binding || type != p_info.type || stages != p_info.stages || length != p_info.length);
		}

		bool operator<(const UniformInfo &p_info) const {
			if (binding != p_info.binding) {
				return binding < p_info.binding;
			}
			if (type != p_info.type) {
				return type < p_info.type;
			}
			if (stages != p_info.stages) {
				return stages < p_info.stages;
			}
			return length < p_info.length;
		}
	};

	struct UniformSetFormat {
		Vector<UniformInfo> uniform_info;
		bool operator<(const UniformSetFormat &p_format) const {
			uint32_t size = uniform_info.size();
			uint32_t psize = p_format.uniform_info.size();

			if (size != psize) {
				return size < psize;
			}

			const UniformInfo *infoptr = uniform_info.ptr();
			const UniformInfo *pinfoptr = p_format.uniform_info.ptr();

			for (uint32_t i = 0; i < size; i++) {
				if (infoptr[i] != pinfoptr[i]) {
					return infoptr[i] < pinfoptr[i];
				}
			}

			return false;
		}
	};

	// Always grows, never shrinks, ensuring unique IDs, but we assume
	// the amount of formats will never be a problem, as the amount of shaders
	// in a game is limited.
	Map<UniformSetFormat, uint32_t> uniform_set_format_cache;

	// Shaders in Vulkan are just pretty much
	// precompiled blocks of SPIR-V bytecode. They
	// are most likely not really compiled to host
	// assembly until a pipeline is created.
	//
	// When supplying the shaders, this implementation
	// will use the reflection abilities of glslang to
	// understand and cache everything required to
	// create and use the descriptor sets (Vulkan's
	// biggest pain).
	//
	// Additionally, hashes are created for every set
	// to do quick validation and ensuring the user
	// does not submit something invalid.

	struct Shader {
		struct Set {
			Vector<UniformInfo> uniform_info;
			VkDescriptorSetLayout descriptor_set_layout;
		};

		uint32_t vertex_input_mask; //inputs used, this is mostly for validation
		int fragment_outputs;

		struct PushConstant {
			uint32_t push_constant_size;
			uint32_t push_constants_vk_stage;
		};

		PushConstant push_constant;

		bool is_compute = false;
		int max_output;
		Vector<Set> sets;
		Vector<uint32_t> set_formats;
		Vector<VkPipelineShaderStageCreateInfo> pipeline_stages;
		VkPipelineLayout pipeline_layout;
	};

	String _shader_uniform_debug(RID p_shader, int p_set = -1);

	RID_Owner<Shader, true> shader_owner;

	/******************/
	/**** UNIFORMS ****/
	/******************/

	// Descriptor sets require allocation from a pool.
	// The documentation on how to use pools properly
	// is scarce, and the documentation is strange.
	//
	// Basically, you can mix and match pools as you
	// like, but you'll run into fragmentation issues.
	// Because of this, the recommended approach is to
	// create a a pool for every descriptor set type,
	// as this prevents fragmentation.
	//
	// This is implemented here as a having a list of
	// pools (each can contain up to 64 sets) for each
	// set layout. The amount of sets for each type
	// is used as the key.

	enum {
		MAX_DESCRIPTOR_POOL_ELEMENT = 65535
	};

	struct DescriptorPoolKey {
		union {
			struct {
				uint16_t uniform_type[UNIFORM_TYPE_MAX]; // Using 16 bits because, for sending arrays, each element is a pool set.
			};
			struct {
				uint64_t key1;
				uint64_t key2;
				uint64_t key3;
			};
		};
		bool operator<(const DescriptorPoolKey &p_key) const {
			if (key1 != p_key.key1) {
				return key1 < p_key.key1;
			}
			if (key2 != p_key.key2) {
				return key2 < p_key.key2;
			}

			return key3 < p_key.key3;
		}
		DescriptorPoolKey() {
			key1 = 0;
			key2 = 0;
			key3 = 0;
		}
	};

	struct DescriptorPool {
		VkDescriptorPool pool;
		uint32_t usage;
	};

	Map<DescriptorPoolKey, Set<DescriptorPool *>> descriptor_pools;
	uint32_t max_descriptors_per_pool;

	DescriptorPool *_descriptor_pool_allocate(const DescriptorPoolKey &p_key);
	void _descriptor_pool_free(const DescriptorPoolKey &p_key, DescriptorPool *p_pool);

	RID_Owner<Buffer, true> uniform_buffer_owner;
	RID_Owner<Buffer, true> storage_buffer_owner;

	//texture buffer needs a view
	struct TextureBuffer {
		Buffer buffer;
		VkBufferView view;
	};

	RID_Owner<TextureBuffer, true> texture_buffer_owner;

	// This structure contains the descriptor set. They _need_ to be allocated
	// for a shader (and will be erased when this shader is erased), but should
	// work for other shaders as long as the hash matches. This covers using
	// them in shader variants.
	//
	// Keep also in mind that you can share buffers between descriptor sets, so
	// the above restriction is not too serious.

	struct UniformSet {
		uint32_t format;
		RID shader_id;
		uint32_t shader_set;
		DescriptorPool *pool;
		DescriptorPoolKey pool_key;
		VkDescriptorSet descriptor_set;
		//VkPipelineLayout pipeline_layout; //not owned, inherited from shader
		Vector<RID> attachable_textures; //used for validation
		Vector<Texture *> mutable_sampled_textures; //used for layout change
		Vector<Texture *> mutable_storage_textures; //used for layout change
	};

	RID_Owner<UniformSet, true> uniform_set_owner;

	/*******************/
	/**** PIPELINES ****/
	/*******************/

	// Render pipeline contains ALL the
	// information required for drawing.
	// This includes all the rasterizer state
	// as well as shader used, framebuffer format,
	// etc.
	// While the pipeline is just a single object
	// (VkPipeline) a lot of values are also saved
	// here to do validation (vulkan does none by
	// default) and warn the user if something
	// was not supplied as intended.

	struct RenderPipeline {
		//Cached values for validation
#ifdef DEBUG_ENABLED
		struct Validation {
			FramebufferFormatID framebuffer_format;
			uint32_t dynamic_state;
			VertexFormatID vertex_format;
			bool uses_restart_indices;
			uint32_t primitive_minimum;
			uint32_t primitive_divisor;
		} validation;
#endif
		//Actual pipeline
		RID shader;
		Vector<uint32_t> set_formats;
		VkPipelineLayout pipeline_layout; // not owned, needed for push constants
		VkPipeline pipeline;
		uint32_t push_constant_size;
		uint32_t push_constant_stages;
	};

	RID_Owner<RenderPipeline, true> render_pipeline_owner;

	struct ComputePipeline {
		RID shader;
		Vector<uint32_t> set_formats;
		VkPipelineLayout pipeline_layout; // not owned, needed for push constants
		VkPipeline pipeline;
		uint32_t push_constant_size;
		uint32_t push_constant_stages;
	};

	RID_Owner<ComputePipeline, true> compute_pipeline_owner;

	/*******************/
	/**** DRAW LIST ****/
	/*******************/

	// Draw list contains both the command buffer
	// used for drawing as well as a LOT of
	// information used for validation. This
	// validation is cheap so most of it can
	// also run in release builds.

	// When using split command lists, this is
	// implemented internally using secondary command
	// buffers. As they can be created in threads,
	// each needs it's own command pool.

	struct SplitDrawListAllocator {
		VkCommandPool command_pool;
		Vector<VkCommandBuffer> command_buffers; //one for each frame
	};

	Vector<SplitDrawListAllocator> split_draw_list_allocators;

	struct DrawList {
		VkCommandBuffer command_buffer; // If persistent, this is owned, otherwise it's shared with the ringbuffer.
		Rect2i viewport;

		struct SetState {
			uint32_t pipeline_expected_format = 0;
			uint32_t uniform_set_format = 0;
			VkDescriptorSet descriptor_set = VK_NULL_HANDLE;
			RID uniform_set;
			bool bound = false;
		};

		struct State {
			SetState sets[MAX_UNIFORM_SETS];
			uint32_t set_count = 0;
			RID pipeline;
			RID pipeline_shader;
			VkPipelineLayout pipeline_layout = VK_NULL_HANDLE;
			RID vertex_array;
			RID index_array;
			uint32_t pipeline_push_constant_stages = 0;
		} state;

#ifdef DEBUG_ENABLED
		struct Validation {
			bool active = true; // Means command buffer was not closed, so you can keep adding things.
			FramebufferFormatID framebuffer_format = INVALID_ID;
			// Actual render pass values.
			uint32_t dynamic_state = 0;
			VertexFormatID vertex_format = INVALID_ID;
			uint32_t vertex_array_size = 0;
			uint32_t vertex_max_instances_allowed = 0xFFFFFFFF;
			bool index_buffer_uses_restart_indices = false;
			uint32_t index_array_size = 0;
			uint32_t index_array_max_index = 0;
			uint32_t index_array_offset;
			Vector<uint32_t> set_formats;
			Vector<bool> set_bound;
			Vector<RID> set_rids;
			// Last pipeline set values.
			bool pipeline_active = false;
			uint32_t pipeline_dynamic_state = 0;
			VertexFormatID pipeline_vertex_format = INVALID_ID;
			RID pipeline_shader;
			uint32_t invalid_set_from = 0;
			bool pipeline_uses_restart_indices = false;
			uint32_t pipeline_primitive_divisor;
			uint32_t pipeline_primitive_minimum;
			Vector<uint32_t> pipeline_set_formats;
			uint32_t pipeline_push_constant_size = 0;
			bool pipeline_push_constant_supplied = false;
		} validation;
#else
		struct Validation {
			uint32_t vertex_array_size = 0;
			uint32_t index_array_size = 0;
			uint32_t index_array_offset;
		} validation;
#endif
	};

	DrawList *draw_list; // One for regular draw lists, multiple for split.
	uint32_t draw_list_count;
	bool draw_list_split;
	Vector<RID> draw_list_bound_textures;
	bool draw_list_unbind_color_textures;
	bool draw_list_unbind_depth_textures;

	void _draw_list_insert_clear_region(DrawList *draw_list, Framebuffer *framebuffer, Point2i viewport_offset, Point2i viewport_size, bool p_clear_color, const Vector<Color> &p_clear_colors, bool p_clear_depth, float p_depth, uint32_t p_stencil);
	Error _draw_list_setup_framebuffer(Framebuffer *p_framebuffer, InitialAction p_initial_color_action, FinalAction p_final_color_action, InitialAction p_initial_depth_action, FinalAction p_final_depth_action, VkFramebuffer *r_framebuffer, VkRenderPass *r_render_pass);
	Error _draw_list_render_pass_begin(Framebuffer *framebuffer, InitialAction p_initial_color_action, FinalAction p_final_color_action, InitialAction p_initial_depth_action, FinalAction p_final_depth_action, const Vector<Color> &p_clear_colors, float p_clear_depth, uint32_t p_clear_stencil, Point2i viewport_offset, Point2i viewport_size, VkFramebuffer vkframebuffer, VkRenderPass render_pass, VkCommandBuffer command_buffer, VkSubpassContents subpass_contents);
	_FORCE_INLINE_ DrawList *_get_draw_list_ptr(DrawListID p_id);

	/**********************/
	/**** COMPUTE LIST ****/
	/**********************/

	struct ComputeList {
		VkCommandBuffer command_buffer; // If persistent, this is owned, otherwise it's shared with the ringbuffer.

		struct SetState {
			uint32_t pipeline_expected_format = 0;
			uint32_t uniform_set_format = 0;
			VkDescriptorSet descriptor_set = VK_NULL_HANDLE;
			RID uniform_set;
			bool bound = false;
		};

		struct State {
			Set<Texture *> textures_to_sampled_layout;
			SetState sets[MAX_UNIFORM_SETS];
			uint32_t set_count = 0;
			RID pipeline;
			RID pipeline_shader;
			VkPipelineLayout pipeline_layout = VK_NULL_HANDLE;
			uint32_t pipeline_push_constant_stages = 0;
		} state;

#ifdef DEBUG_ENABLED
		struct Validation {
			bool active = true; // Means command buffer was not closed, so you can keep adding things.
			Vector<uint32_t> set_formats;
			Vector<bool> set_bound;
			Vector<RID> set_rids;
			// Last pipeline set values.
			bool pipeline_active = false;
			RID pipeline_shader;
			uint32_t invalid_set_from = 0;
			Vector<uint32_t> pipeline_set_formats;
			uint32_t pipeline_push_constant_size = 0;
			bool pipeline_push_constant_supplied = false;
		} validation;
#endif
	};

	ComputeList *compute_list;

	/**************************/
	/**** FRAME MANAGEMENT ****/
	/**************************/

	// This is the frame structure. There are normally
	// 3 of these (used for triple buffering), or 2
	// (double buffering). They are cycled constantly.
	//
	// It contains two command buffers, one that is
	// used internally for setting up (creating stuff)
	// and another used mostly for drawing.
	//
	// They also contains a list of things that need
	// to be disposed of when deleted, which can't
	// happen immediately due to the asynchronous
	// nature of the GPU. They will get deleted
	// when the frame is cycled.

	struct Frame {
		//list in usage order, from last to free to first to free
		List<Buffer> buffers_to_dispose_of;
		List<Texture> textures_to_dispose_of;
		List<Framebuffer> framebuffers_to_dispose_of;
		List<VkSampler> samplers_to_dispose_of;
		List<Shader> shaders_to_dispose_of;
		List<VkBufferView> buffer_views_to_dispose_of;
		List<UniformSet> uniform_sets_to_dispose_of;
		List<RenderPipeline> render_pipelines_to_dispose_of;
		List<ComputePipeline> compute_pipelines_to_dispose_of;

		VkCommandPool command_pool;
		VkCommandBuffer setup_command_buffer; //used at the begining of every frame for set-up
		VkCommandBuffer draw_command_buffer; //used at the begining of every frame for set-up

		struct Timestamp {
			String description;
			uint64_t value;
		};

		VkQueryPool timestamp_pool;

		String *timestamp_names;
		uint64_t *timestamp_cpu_values;
		uint32_t timestamp_count;
		String *timestamp_result_names;
		uint64_t *timestamp_cpu_result_values;
		uint64_t *timestamp_result_values;
		uint32_t timestamp_result_count;
		uint64_t index;
	};

	uint32_t max_timestamp_query_elements;

	Frame *frames; //frames available, for main device they are cycled (usually 3), for local devices only 1
	int frame; //current frame
	int frame_count; //total amount of frames
	uint64_t frames_drawn;
	RID local_device;
	bool local_device_processing = false;

	void _free_pending_resources(int p_frame);

	VmaAllocator allocator;

	VulkanContext *context;

	void _free_internal(RID p_id);
	void _flush(bool p_current_frame);

	bool screen_prepared;

	template <class T>
	void _free_rids(T &p_owner, const char *p_type);

	void _finalize_command_bufers();
	void _begin_frame();

public:
	virtual RID texture_create(const TextureFormat &p_format, const TextureView &p_view, const Vector<Vector<uint8_t>> &p_data = Vector<Vector<uint8_t>>());
	virtual RID texture_create_shared(const TextureView &p_view, RID p_with_texture);

	virtual RID texture_create_shared_from_slice(const TextureView &p_view, RID p_with_texture, uint32_t p_layer, uint32_t p_mipmap, TextureSliceType p_slice_type = TEXTURE_SLICE_2D);
	virtual Error texture_update(RID p_texture, uint32_t p_layer, const Vector<uint8_t> &p_data, bool p_sync_with_draw = false);
	virtual Vector<uint8_t> texture_get_data(RID p_texture, uint32_t p_layer);

	virtual bool texture_is_format_supported_for_usage(DataFormat p_format, uint32_t p_usage) const;
	virtual bool texture_is_shared(RID p_texture);
	virtual bool texture_is_valid(RID p_texture);

	virtual Error texture_copy(RID p_from_texture, RID p_to_texture, const Vector3 &p_from, const Vector3 &p_to, const Vector3 &p_size, uint32_t p_src_mipmap, uint32_t p_dst_mipmap, uint32_t p_src_layer, uint32_t p_dst_layer, bool p_sync_with_draw = false);
	virtual Error texture_clear(RID p_texture, const Color &p_color, uint32_t p_base_mipmap, uint32_t p_mipmaps, uint32_t p_base_layer, uint32_t p_layers, bool p_sync_with_draw = false);
	virtual Error texture_resolve_multisample(RID p_from_texture, RID p_to_texture, bool p_sync_with_draw = false);

	/*********************/
	/**** FRAMEBUFFER ****/
	/*********************/

	virtual FramebufferFormatID framebuffer_format_create(const Vector<AttachmentFormat> &p_format);
	virtual TextureSamples framebuffer_format_get_texture_samples(FramebufferFormatID p_format);

	virtual RID framebuffer_create(const Vector<RID> &p_texture_attachments, FramebufferFormatID p_format_check = INVALID_ID);

	virtual FramebufferFormatID framebuffer_get_format(RID p_framebuffer);

	/*****************/
	/**** SAMPLER ****/
	/*****************/

	virtual RID sampler_create(const SamplerState &p_state);

	/**********************/
	/**** VERTEX ARRAY ****/
	/**********************/

	virtual RID vertex_buffer_create(uint32_t p_size_bytes, const Vector<uint8_t> &p_data = Vector<uint8_t>());

	// Internally reference counted, this ID is warranted to be unique for the same description, but needs to be freed as many times as it was allocated
	virtual VertexFormatID vertex_format_create(const Vector<VertexAttribute> &p_vertex_formats);
	virtual RID vertex_array_create(uint32_t p_vertex_count, VertexFormatID p_vertex_format, const Vector<RID> &p_src_buffers);

	virtual RID index_buffer_create(uint32_t p_size_indices, IndexBufferFormat p_format, const Vector<uint8_t> &p_data = Vector<uint8_t>(), bool p_use_restart_indices = false);

	virtual RID index_array_create(RID p_index_buffer, uint32_t p_index_offset, uint32_t p_index_count);

	/****************/
	/**** SHADER ****/
	/****************/

	virtual RID shader_create(const Vector<ShaderStageData> &p_stages);
	virtual uint32_t shader_get_vertex_input_attribute_mask(RID p_shader);

	/*****************/
	/**** UNIFORM ****/
	/*****************/

	virtual RID uniform_buffer_create(uint32_t p_size_bytes, const Vector<uint8_t> &p_data = Vector<uint8_t>());
	virtual RID storage_buffer_create(uint32_t p_size_bytes, const Vector<uint8_t> &p_data = Vector<uint8_t>());
	virtual RID texture_buffer_create(uint32_t p_size_elements, DataFormat p_format, const Vector<uint8_t> &p_data = Vector<uint8_t>());

	virtual RID uniform_set_create(const Vector<Uniform> &p_uniforms, RID p_shader, uint32_t p_shader_set);
	virtual bool uniform_set_is_valid(RID p_uniform_set);

	virtual Error buffer_update(RID p_buffer, uint32_t p_offset, uint32_t p_size, const void *p_data, bool p_sync_with_draw = false); //works for any buffer
	virtual Vector<uint8_t> buffer_get_data(RID p_buffer);

	/*************************/
	/**** RENDER PIPELINE ****/
	/*************************/

	virtual RID render_pipeline_create(RID p_shader, FramebufferFormatID p_framebuffer_format, VertexFormatID p_vertex_format, RenderPrimitive p_render_primitive, const PipelineRasterizationState &p_rasterization_state, const PipelineMultisampleState &p_multisample_state, const PipelineDepthStencilState &p_depth_stencil_state, const PipelineColorBlendState &p_blend_state, int p_dynamic_state_flags = 0);
	virtual bool render_pipeline_is_valid(RID p_pipeline);

	/**************************/
	/**** COMPUTE PIPELINE ****/
	/**************************/

	virtual RID compute_pipeline_create(RID p_shader);
	virtual bool compute_pipeline_is_valid(RID p_pipeline);

	/****************/
	/**** SCREEN ****/
	/****************/

	virtual int screen_get_width(DisplayServer::WindowID p_screen = 0) const;
	virtual int screen_get_height(DisplayServer::WindowID p_screen = 0) const;
	virtual FramebufferFormatID screen_get_framebuffer_format() const;

	/********************/
	/**** DRAW LISTS ****/
	/********************/

	virtual DrawListID draw_list_begin_for_screen(DisplayServer::WindowID p_screen = 0, const Color &p_clear_color = Color());

	virtual DrawListID draw_list_begin(RID p_framebuffer, InitialAction p_initial_color_action, FinalAction p_final_color_action, InitialAction p_initial_depth_action, FinalAction p_final_depth_action, const Vector<Color> &p_clear_color_values = Vector<Color>(), float p_clear_depth = 1.0, uint32_t p_clear_stencil = 0, const Rect2 &p_region = Rect2());
	virtual Error draw_list_begin_split(RID p_framebuffer, uint32_t p_splits, DrawListID *r_split_ids, InitialAction p_initial_color_action, FinalAction p_final_color_action, InitialAction p_initial_depth_action, FinalAction p_final_depth_action, const Vector<Color> &p_clear_color_values = Vector<Color>(), float p_clear_depth = 1.0, uint32_t p_clear_stencil = 0, const Rect2 &p_region = Rect2());

	virtual void draw_list_bind_render_pipeline(DrawListID p_list, RID p_render_pipeline);
	virtual void draw_list_bind_uniform_set(DrawListID p_list, RID p_uniform_set, uint32_t p_index);
	virtual void draw_list_bind_vertex_array(DrawListID p_list, RID p_vertex_array);
	virtual void draw_list_bind_index_array(DrawListID p_list, RID p_index_array);
	virtual void draw_list_set_line_width(DrawListID p_list, float p_width);
	virtual void draw_list_set_push_constant(DrawListID p_list, const void *p_data, uint32_t p_data_size);

	virtual void draw_list_draw(DrawListID p_list, bool p_use_indices, uint32_t p_instances = 1, uint32_t p_procedural_vertices = 0);

	virtual void draw_list_enable_scissor(DrawListID p_list, const Rect2 &p_rect);
	virtual void draw_list_disable_scissor(DrawListID p_list);

	virtual void draw_list_end();

	/***********************/
	/**** COMPUTE LISTS ****/
	/***********************/

	virtual ComputeListID compute_list_begin();
	virtual void compute_list_bind_compute_pipeline(ComputeListID p_list, RID p_compute_pipeline);
	virtual void compute_list_bind_uniform_set(ComputeListID p_list, RID p_uniform_set, uint32_t p_index);
	virtual void compute_list_set_push_constant(ComputeListID p_list, const void *p_data, uint32_t p_data_size);
	virtual void compute_list_add_barrier(ComputeListID p_list);

	virtual void compute_list_dispatch(ComputeListID p_list, uint32_t p_x_groups, uint32_t p_y_groups, uint32_t p_z_groups);
	virtual void compute_list_end();

	/**************/
	/**** FREE ****/
	/**************/

	virtual void free(RID p_id);

	/****************/
	/**** Timing ****/
	/****************/

	virtual void capture_timestamp(const String &p_name, bool p_sync_to_draw);
	virtual uint32_t get_captured_timestamps_count() const;
	virtual uint64_t get_captured_timestamps_frame() const;
	virtual uint64_t get_captured_timestamp_gpu_time(uint32_t p_index) const;
	virtual uint64_t get_captured_timestamp_cpu_time(uint32_t p_index) const;
	virtual String get_captured_timestamp_name(uint32_t p_index) const;

	/****************/
	/**** Limits ****/
	/****************/

	virtual int limit_get(Limit p_limit);

	virtual void prepare_screen_for_drawing();
	void initialize(VulkanContext *p_context, bool p_local_device = false);
	void finalize();

	virtual void swap_buffers(); //for main device

	virtual void submit(); //for local device
	virtual void sync(); //for local device

	virtual uint32_t get_frame_delay() const;

	virtual RenderingDevice *create_local_device();

	virtual uint64_t get_memory_usage() const;

	RenderingDeviceVulkan();
	~RenderingDeviceVulkan();
};

#endif // RENDERING_DEVICE_VULKAN_H