1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
|
/***********************************************************************
Copyright (c) 2006-2011, Skype Limited. All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:
- Redistributions of source code must retain the above copyright notice,
this list of conditions and the following disclaimer.
- Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
- Neither the name of Internet Society, IETF or IETF Trust, nor the
names of specific contributors, may be used to endorse or promote
products derived from this software without specific prior written
permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.
***********************************************************************/
#ifdef OPUS_HAVE_CONFIG_H
#include "opus_config.h"
#endif
#include "main_FIX.h"
#include "stack_alloc.h"
#include "tuning_parameters.h"
/* Compute gain to make warped filter coefficients have a zero mean log frequency response on a */
/* non-warped frequency scale. (So that it can be implemented with a minimum-phase monic filter.) */
/* Note: A monic filter is one with the first coefficient equal to 1.0. In Silk we omit the first */
/* coefficient in an array of coefficients, for monic filters. */
static OPUS_INLINE opus_int32 warped_gain( /* gain in Q16*/
const opus_int32 *coefs_Q24,
opus_int lambda_Q16,
opus_int order
) {
opus_int i;
opus_int32 gain_Q24;
lambda_Q16 = -lambda_Q16;
gain_Q24 = coefs_Q24[ order - 1 ];
for( i = order - 2; i >= 0; i-- ) {
gain_Q24 = silk_SMLAWB( coefs_Q24[ i ], gain_Q24, lambda_Q16 );
}
gain_Q24 = silk_SMLAWB( SILK_FIX_CONST( 1.0, 24 ), gain_Q24, -lambda_Q16 );
return silk_INVERSE32_varQ( gain_Q24, 40 );
}
/* Convert warped filter coefficients to monic pseudo-warped coefficients and limit maximum */
/* amplitude of monic warped coefficients by using bandwidth expansion on the true coefficients */
static OPUS_INLINE void limit_warped_coefs(
opus_int32 *coefs_syn_Q24,
opus_int32 *coefs_ana_Q24,
opus_int lambda_Q16,
opus_int32 limit_Q24,
opus_int order
) {
opus_int i, iter, ind = 0;
opus_int32 tmp, maxabs_Q24, chirp_Q16, gain_syn_Q16, gain_ana_Q16;
opus_int32 nom_Q16, den_Q24;
/* Convert to monic coefficients */
lambda_Q16 = -lambda_Q16;
for( i = order - 1; i > 0; i-- ) {
coefs_syn_Q24[ i - 1 ] = silk_SMLAWB( coefs_syn_Q24[ i - 1 ], coefs_syn_Q24[ i ], lambda_Q16 );
coefs_ana_Q24[ i - 1 ] = silk_SMLAWB( coefs_ana_Q24[ i - 1 ], coefs_ana_Q24[ i ], lambda_Q16 );
}
lambda_Q16 = -lambda_Q16;
nom_Q16 = silk_SMLAWB( SILK_FIX_CONST( 1.0, 16 ), -(opus_int32)lambda_Q16, lambda_Q16 );
den_Q24 = silk_SMLAWB( SILK_FIX_CONST( 1.0, 24 ), coefs_syn_Q24[ 0 ], lambda_Q16 );
gain_syn_Q16 = silk_DIV32_varQ( nom_Q16, den_Q24, 24 );
den_Q24 = silk_SMLAWB( SILK_FIX_CONST( 1.0, 24 ), coefs_ana_Q24[ 0 ], lambda_Q16 );
gain_ana_Q16 = silk_DIV32_varQ( nom_Q16, den_Q24, 24 );
for( i = 0; i < order; i++ ) {
coefs_syn_Q24[ i ] = silk_SMULWW( gain_syn_Q16, coefs_syn_Q24[ i ] );
coefs_ana_Q24[ i ] = silk_SMULWW( gain_ana_Q16, coefs_ana_Q24[ i ] );
}
for( iter = 0; iter < 10; iter++ ) {
/* Find maximum absolute value */
maxabs_Q24 = -1;
for( i = 0; i < order; i++ ) {
tmp = silk_max( silk_abs_int32( coefs_syn_Q24[ i ] ), silk_abs_int32( coefs_ana_Q24[ i ] ) );
if( tmp > maxabs_Q24 ) {
maxabs_Q24 = tmp;
ind = i;
}
}
if( maxabs_Q24 <= limit_Q24 ) {
/* Coefficients are within range - done */
return;
}
/* Convert back to true warped coefficients */
for( i = 1; i < order; i++ ) {
coefs_syn_Q24[ i - 1 ] = silk_SMLAWB( coefs_syn_Q24[ i - 1 ], coefs_syn_Q24[ i ], lambda_Q16 );
coefs_ana_Q24[ i - 1 ] = silk_SMLAWB( coefs_ana_Q24[ i - 1 ], coefs_ana_Q24[ i ], lambda_Q16 );
}
gain_syn_Q16 = silk_INVERSE32_varQ( gain_syn_Q16, 32 );
gain_ana_Q16 = silk_INVERSE32_varQ( gain_ana_Q16, 32 );
for( i = 0; i < order; i++ ) {
coefs_syn_Q24[ i ] = silk_SMULWW( gain_syn_Q16, coefs_syn_Q24[ i ] );
coefs_ana_Q24[ i ] = silk_SMULWW( gain_ana_Q16, coefs_ana_Q24[ i ] );
}
/* Apply bandwidth expansion */
chirp_Q16 = SILK_FIX_CONST( 0.99, 16 ) - silk_DIV32_varQ(
silk_SMULWB( maxabs_Q24 - limit_Q24, silk_SMLABB( SILK_FIX_CONST( 0.8, 10 ), SILK_FIX_CONST( 0.1, 10 ), iter ) ),
silk_MUL( maxabs_Q24, ind + 1 ), 22 );
silk_bwexpander_32( coefs_syn_Q24, order, chirp_Q16 );
silk_bwexpander_32( coefs_ana_Q24, order, chirp_Q16 );
/* Convert to monic warped coefficients */
lambda_Q16 = -lambda_Q16;
for( i = order - 1; i > 0; i-- ) {
coefs_syn_Q24[ i - 1 ] = silk_SMLAWB( coefs_syn_Q24[ i - 1 ], coefs_syn_Q24[ i ], lambda_Q16 );
coefs_ana_Q24[ i - 1 ] = silk_SMLAWB( coefs_ana_Q24[ i - 1 ], coefs_ana_Q24[ i ], lambda_Q16 );
}
lambda_Q16 = -lambda_Q16;
nom_Q16 = silk_SMLAWB( SILK_FIX_CONST( 1.0, 16 ), -(opus_int32)lambda_Q16, lambda_Q16 );
den_Q24 = silk_SMLAWB( SILK_FIX_CONST( 1.0, 24 ), coefs_syn_Q24[ 0 ], lambda_Q16 );
gain_syn_Q16 = silk_DIV32_varQ( nom_Q16, den_Q24, 24 );
den_Q24 = silk_SMLAWB( SILK_FIX_CONST( 1.0, 24 ), coefs_ana_Q24[ 0 ], lambda_Q16 );
gain_ana_Q16 = silk_DIV32_varQ( nom_Q16, den_Q24, 24 );
for( i = 0; i < order; i++ ) {
coefs_syn_Q24[ i ] = silk_SMULWW( gain_syn_Q16, coefs_syn_Q24[ i ] );
coefs_ana_Q24[ i ] = silk_SMULWW( gain_ana_Q16, coefs_ana_Q24[ i ] );
}
}
silk_assert( 0 );
}
/**************************************************************/
/* Compute noise shaping coefficients and initial gain values */
/**************************************************************/
void silk_noise_shape_analysis_FIX(
silk_encoder_state_FIX *psEnc, /* I/O Encoder state FIX */
silk_encoder_control_FIX *psEncCtrl, /* I/O Encoder control FIX */
const opus_int16 *pitch_res, /* I LPC residual from pitch analysis */
const opus_int16 *x, /* I Input signal [ frame_length + la_shape ] */
int arch /* I Run-time architecture */
)
{
silk_shape_state_FIX *psShapeSt = &psEnc->sShape;
opus_int k, i, nSamples, Qnrg, b_Q14, warping_Q16, scale = 0;
opus_int32 SNR_adj_dB_Q7, HarmBoost_Q16, HarmShapeGain_Q16, Tilt_Q16, tmp32;
opus_int32 nrg, pre_nrg_Q30, log_energy_Q7, log_energy_prev_Q7, energy_variation_Q7;
opus_int32 delta_Q16, BWExp1_Q16, BWExp2_Q16, gain_mult_Q16, gain_add_Q16, strength_Q16, b_Q8;
opus_int32 auto_corr[ MAX_SHAPE_LPC_ORDER + 1 ];
opus_int32 refl_coef_Q16[ MAX_SHAPE_LPC_ORDER ];
opus_int32 AR1_Q24[ MAX_SHAPE_LPC_ORDER ];
opus_int32 AR2_Q24[ MAX_SHAPE_LPC_ORDER ];
VARDECL( opus_int16, x_windowed );
const opus_int16 *x_ptr, *pitch_res_ptr;
SAVE_STACK;
/* Point to start of first LPC analysis block */
x_ptr = x - psEnc->sCmn.la_shape;
/****************/
/* GAIN CONTROL */
/****************/
SNR_adj_dB_Q7 = psEnc->sCmn.SNR_dB_Q7;
/* Input quality is the average of the quality in the lowest two VAD bands */
psEncCtrl->input_quality_Q14 = ( opus_int )silk_RSHIFT( (opus_int32)psEnc->sCmn.input_quality_bands_Q15[ 0 ]
+ psEnc->sCmn.input_quality_bands_Q15[ 1 ], 2 );
/* Coding quality level, between 0.0_Q0 and 1.0_Q0, but in Q14 */
psEncCtrl->coding_quality_Q14 = silk_RSHIFT( silk_sigm_Q15( silk_RSHIFT_ROUND( SNR_adj_dB_Q7 -
SILK_FIX_CONST( 20.0, 7 ), 4 ) ), 1 );
/* Reduce coding SNR during low speech activity */
if( psEnc->sCmn.useCBR == 0 ) {
b_Q8 = SILK_FIX_CONST( 1.0, 8 ) - psEnc->sCmn.speech_activity_Q8;
b_Q8 = silk_SMULWB( silk_LSHIFT( b_Q8, 8 ), b_Q8 );
SNR_adj_dB_Q7 = silk_SMLAWB( SNR_adj_dB_Q7,
silk_SMULBB( SILK_FIX_CONST( -BG_SNR_DECR_dB, 7 ) >> ( 4 + 1 ), b_Q8 ), /* Q11*/
silk_SMULWB( SILK_FIX_CONST( 1.0, 14 ) + psEncCtrl->input_quality_Q14, psEncCtrl->coding_quality_Q14 ) ); /* Q12*/
}
if( psEnc->sCmn.indices.signalType == TYPE_VOICED ) {
/* Reduce gains for periodic signals */
SNR_adj_dB_Q7 = silk_SMLAWB( SNR_adj_dB_Q7, SILK_FIX_CONST( HARM_SNR_INCR_dB, 8 ), psEnc->LTPCorr_Q15 );
} else {
/* For unvoiced signals and low-quality input, adjust the quality slower than SNR_dB setting */
SNR_adj_dB_Q7 = silk_SMLAWB( SNR_adj_dB_Q7,
silk_SMLAWB( SILK_FIX_CONST( 6.0, 9 ), -SILK_FIX_CONST( 0.4, 18 ), psEnc->sCmn.SNR_dB_Q7 ),
SILK_FIX_CONST( 1.0, 14 ) - psEncCtrl->input_quality_Q14 );
}
/*************************/
/* SPARSENESS PROCESSING */
/*************************/
/* Set quantizer offset */
if( psEnc->sCmn.indices.signalType == TYPE_VOICED ) {
/* Initially set to 0; may be overruled in process_gains(..) */
psEnc->sCmn.indices.quantOffsetType = 0;
psEncCtrl->sparseness_Q8 = 0;
} else {
/* Sparseness measure, based on relative fluctuations of energy per 2 milliseconds */
nSamples = silk_LSHIFT( psEnc->sCmn.fs_kHz, 1 );
energy_variation_Q7 = 0;
log_energy_prev_Q7 = 0;
pitch_res_ptr = pitch_res;
for( k = 0; k < silk_SMULBB( SUB_FRAME_LENGTH_MS, psEnc->sCmn.nb_subfr ) / 2; k++ ) {
silk_sum_sqr_shift( &nrg, &scale, pitch_res_ptr, nSamples );
nrg += silk_RSHIFT( nSamples, scale ); /* Q(-scale)*/
log_energy_Q7 = silk_lin2log( nrg );
if( k > 0 ) {
energy_variation_Q7 += silk_abs( log_energy_Q7 - log_energy_prev_Q7 );
}
log_energy_prev_Q7 = log_energy_Q7;
pitch_res_ptr += nSamples;
}
psEncCtrl->sparseness_Q8 = silk_RSHIFT( silk_sigm_Q15( silk_SMULWB( energy_variation_Q7 -
SILK_FIX_CONST( 5.0, 7 ), SILK_FIX_CONST( 0.1, 16 ) ) ), 7 );
/* Set quantization offset depending on sparseness measure */
if( psEncCtrl->sparseness_Q8 > SILK_FIX_CONST( SPARSENESS_THRESHOLD_QNT_OFFSET, 8 ) ) {
psEnc->sCmn.indices.quantOffsetType = 0;
} else {
psEnc->sCmn.indices.quantOffsetType = 1;
}
/* Increase coding SNR for sparse signals */
SNR_adj_dB_Q7 = silk_SMLAWB( SNR_adj_dB_Q7, SILK_FIX_CONST( SPARSE_SNR_INCR_dB, 15 ), psEncCtrl->sparseness_Q8 - SILK_FIX_CONST( 0.5, 8 ) );
}
/*******************************/
/* Control bandwidth expansion */
/*******************************/
/* More BWE for signals with high prediction gain */
strength_Q16 = silk_SMULWB( psEncCtrl->predGain_Q16, SILK_FIX_CONST( FIND_PITCH_WHITE_NOISE_FRACTION, 16 ) );
BWExp1_Q16 = BWExp2_Q16 = silk_DIV32_varQ( SILK_FIX_CONST( BANDWIDTH_EXPANSION, 16 ),
silk_SMLAWW( SILK_FIX_CONST( 1.0, 16 ), strength_Q16, strength_Q16 ), 16 );
delta_Q16 = silk_SMULWB( SILK_FIX_CONST( 1.0, 16 ) - silk_SMULBB( 3, psEncCtrl->coding_quality_Q14 ),
SILK_FIX_CONST( LOW_RATE_BANDWIDTH_EXPANSION_DELTA, 16 ) );
BWExp1_Q16 = silk_SUB32( BWExp1_Q16, delta_Q16 );
BWExp2_Q16 = silk_ADD32( BWExp2_Q16, delta_Q16 );
/* BWExp1 will be applied after BWExp2, so make it relative */
BWExp1_Q16 = silk_DIV32_16( silk_LSHIFT( BWExp1_Q16, 14 ), silk_RSHIFT( BWExp2_Q16, 2 ) );
if( psEnc->sCmn.warping_Q16 > 0 ) {
/* Slightly more warping in analysis will move quantization noise up in frequency, where it's better masked */
warping_Q16 = silk_SMLAWB( psEnc->sCmn.warping_Q16, (opus_int32)psEncCtrl->coding_quality_Q14, SILK_FIX_CONST( 0.01, 18 ) );
} else {
warping_Q16 = 0;
}
/********************************************/
/* Compute noise shaping AR coefs and gains */
/********************************************/
ALLOC( x_windowed, psEnc->sCmn.shapeWinLength, opus_int16 );
for( k = 0; k < psEnc->sCmn.nb_subfr; k++ ) {
/* Apply window: sine slope followed by flat part followed by cosine slope */
opus_int shift, slope_part, flat_part;
flat_part = psEnc->sCmn.fs_kHz * 3;
slope_part = silk_RSHIFT( psEnc->sCmn.shapeWinLength - flat_part, 1 );
silk_apply_sine_window( x_windowed, x_ptr, 1, slope_part );
shift = slope_part;
silk_memcpy( x_windowed + shift, x_ptr + shift, flat_part * sizeof(opus_int16) );
shift += flat_part;
silk_apply_sine_window( x_windowed + shift, x_ptr + shift, 2, slope_part );
/* Update pointer: next LPC analysis block */
x_ptr += psEnc->sCmn.subfr_length;
if( psEnc->sCmn.warping_Q16 > 0 ) {
/* Calculate warped auto correlation */
silk_warped_autocorrelation_FIX( auto_corr, &scale, x_windowed, warping_Q16, psEnc->sCmn.shapeWinLength, psEnc->sCmn.shapingLPCOrder );
} else {
/* Calculate regular auto correlation */
silk_autocorr( auto_corr, &scale, x_windowed, psEnc->sCmn.shapeWinLength, psEnc->sCmn.shapingLPCOrder + 1, arch );
}
/* Add white noise, as a fraction of energy */
auto_corr[0] = silk_ADD32( auto_corr[0], silk_max_32( silk_SMULWB( silk_RSHIFT( auto_corr[ 0 ], 4 ),
SILK_FIX_CONST( SHAPE_WHITE_NOISE_FRACTION, 20 ) ), 1 ) );
/* Calculate the reflection coefficients using schur */
nrg = silk_schur64( refl_coef_Q16, auto_corr, psEnc->sCmn.shapingLPCOrder );
silk_assert( nrg >= 0 );
/* Convert reflection coefficients to prediction coefficients */
silk_k2a_Q16( AR2_Q24, refl_coef_Q16, psEnc->sCmn.shapingLPCOrder );
Qnrg = -scale; /* range: -12...30*/
silk_assert( Qnrg >= -12 );
silk_assert( Qnrg <= 30 );
/* Make sure that Qnrg is an even number */
if( Qnrg & 1 ) {
Qnrg -= 1;
nrg >>= 1;
}
tmp32 = silk_SQRT_APPROX( nrg );
Qnrg >>= 1; /* range: -6...15*/
psEncCtrl->Gains_Q16[ k ] = silk_LSHIFT_SAT32( tmp32, 16 - Qnrg );
if( psEnc->sCmn.warping_Q16 > 0 ) {
/* Adjust gain for warping */
gain_mult_Q16 = warped_gain( AR2_Q24, warping_Q16, psEnc->sCmn.shapingLPCOrder );
silk_assert( psEncCtrl->Gains_Q16[ k ] >= 0 );
if ( silk_SMULWW( silk_RSHIFT_ROUND( psEncCtrl->Gains_Q16[ k ], 1 ), gain_mult_Q16 ) >= ( silk_int32_MAX >> 1 ) ) {
psEncCtrl->Gains_Q16[ k ] = silk_int32_MAX;
} else {
psEncCtrl->Gains_Q16[ k ] = silk_SMULWW( psEncCtrl->Gains_Q16[ k ], gain_mult_Q16 );
}
}
/* Bandwidth expansion for synthesis filter shaping */
silk_bwexpander_32( AR2_Q24, psEnc->sCmn.shapingLPCOrder, BWExp2_Q16 );
/* Compute noise shaping filter coefficients */
silk_memcpy( AR1_Q24, AR2_Q24, psEnc->sCmn.shapingLPCOrder * sizeof( opus_int32 ) );
/* Bandwidth expansion for analysis filter shaping */
silk_assert( BWExp1_Q16 <= SILK_FIX_CONST( 1.0, 16 ) );
silk_bwexpander_32( AR1_Q24, psEnc->sCmn.shapingLPCOrder, BWExp1_Q16 );
/* Ratio of prediction gains, in energy domain */
pre_nrg_Q30 = silk_LPC_inverse_pred_gain_Q24( AR2_Q24, psEnc->sCmn.shapingLPCOrder );
nrg = silk_LPC_inverse_pred_gain_Q24( AR1_Q24, psEnc->sCmn.shapingLPCOrder );
/*psEncCtrl->GainsPre[ k ] = 1.0f - 0.7f * ( 1.0f - pre_nrg / nrg ) = 0.3f + 0.7f * pre_nrg / nrg;*/
pre_nrg_Q30 = silk_LSHIFT32( silk_SMULWB( pre_nrg_Q30, SILK_FIX_CONST( 0.7, 15 ) ), 1 );
psEncCtrl->GainsPre_Q14[ k ] = ( opus_int ) SILK_FIX_CONST( 0.3, 14 ) + silk_DIV32_varQ( pre_nrg_Q30, nrg, 14 );
/* Convert to monic warped prediction coefficients and limit absolute values */
limit_warped_coefs( AR2_Q24, AR1_Q24, warping_Q16, SILK_FIX_CONST( 3.999, 24 ), psEnc->sCmn.shapingLPCOrder );
/* Convert from Q24 to Q13 and store in int16 */
for( i = 0; i < psEnc->sCmn.shapingLPCOrder; i++ ) {
psEncCtrl->AR1_Q13[ k * MAX_SHAPE_LPC_ORDER + i ] = (opus_int16)silk_SAT16( silk_RSHIFT_ROUND( AR1_Q24[ i ], 11 ) );
psEncCtrl->AR2_Q13[ k * MAX_SHAPE_LPC_ORDER + i ] = (opus_int16)silk_SAT16( silk_RSHIFT_ROUND( AR2_Q24[ i ], 11 ) );
}
}
/*****************/
/* Gain tweaking */
/*****************/
/* Increase gains during low speech activity and put lower limit on gains */
gain_mult_Q16 = silk_log2lin( -silk_SMLAWB( -SILK_FIX_CONST( 16.0, 7 ), SNR_adj_dB_Q7, SILK_FIX_CONST( 0.16, 16 ) ) );
gain_add_Q16 = silk_log2lin( silk_SMLAWB( SILK_FIX_CONST( 16.0, 7 ), SILK_FIX_CONST( MIN_QGAIN_DB, 7 ), SILK_FIX_CONST( 0.16, 16 ) ) );
silk_assert( gain_mult_Q16 > 0 );
for( k = 0; k < psEnc->sCmn.nb_subfr; k++ ) {
psEncCtrl->Gains_Q16[ k ] = silk_SMULWW( psEncCtrl->Gains_Q16[ k ], gain_mult_Q16 );
silk_assert( psEncCtrl->Gains_Q16[ k ] >= 0 );
psEncCtrl->Gains_Q16[ k ] = silk_ADD_POS_SAT32( psEncCtrl->Gains_Q16[ k ], gain_add_Q16 );
}
gain_mult_Q16 = SILK_FIX_CONST( 1.0, 16 ) + silk_RSHIFT_ROUND( silk_MLA( SILK_FIX_CONST( INPUT_TILT, 26 ),
psEncCtrl->coding_quality_Q14, SILK_FIX_CONST( HIGH_RATE_INPUT_TILT, 12 ) ), 10 );
for( k = 0; k < psEnc->sCmn.nb_subfr; k++ ) {
psEncCtrl->GainsPre_Q14[ k ] = silk_SMULWB( gain_mult_Q16, psEncCtrl->GainsPre_Q14[ k ] );
}
/************************************************/
/* Control low-frequency shaping and noise tilt */
/************************************************/
/* Less low frequency shaping for noisy inputs */
strength_Q16 = silk_MUL( SILK_FIX_CONST( LOW_FREQ_SHAPING, 4 ), silk_SMLAWB( SILK_FIX_CONST( 1.0, 12 ),
SILK_FIX_CONST( LOW_QUALITY_LOW_FREQ_SHAPING_DECR, 13 ), psEnc->sCmn.input_quality_bands_Q15[ 0 ] - SILK_FIX_CONST( 1.0, 15 ) ) );
strength_Q16 = silk_RSHIFT( silk_MUL( strength_Q16, psEnc->sCmn.speech_activity_Q8 ), 8 );
if( psEnc->sCmn.indices.signalType == TYPE_VOICED ) {
/* Reduce low frequencies quantization noise for periodic signals, depending on pitch lag */
/*f = 400; freqz([1, -0.98 + 2e-4 * f], [1, -0.97 + 7e-4 * f], 2^12, Fs); axis([0, 1000, -10, 1])*/
opus_int fs_kHz_inv = silk_DIV32_16( SILK_FIX_CONST( 0.2, 14 ), psEnc->sCmn.fs_kHz );
for( k = 0; k < psEnc->sCmn.nb_subfr; k++ ) {
b_Q14 = fs_kHz_inv + silk_DIV32_16( SILK_FIX_CONST( 3.0, 14 ), psEncCtrl->pitchL[ k ] );
/* Pack two coefficients in one int32 */
psEncCtrl->LF_shp_Q14[ k ] = silk_LSHIFT( SILK_FIX_CONST( 1.0, 14 ) - b_Q14 - silk_SMULWB( strength_Q16, b_Q14 ), 16 );
psEncCtrl->LF_shp_Q14[ k ] |= (opus_uint16)( b_Q14 - SILK_FIX_CONST( 1.0, 14 ) );
}
silk_assert( SILK_FIX_CONST( HARM_HP_NOISE_COEF, 24 ) < SILK_FIX_CONST( 0.5, 24 ) ); /* Guarantees that second argument to SMULWB() is within range of an opus_int16*/
Tilt_Q16 = - SILK_FIX_CONST( HP_NOISE_COEF, 16 ) -
silk_SMULWB( SILK_FIX_CONST( 1.0, 16 ) - SILK_FIX_CONST( HP_NOISE_COEF, 16 ),
silk_SMULWB( SILK_FIX_CONST( HARM_HP_NOISE_COEF, 24 ), psEnc->sCmn.speech_activity_Q8 ) );
} else {
b_Q14 = silk_DIV32_16( 21299, psEnc->sCmn.fs_kHz ); /* 1.3_Q0 = 21299_Q14*/
/* Pack two coefficients in one int32 */
psEncCtrl->LF_shp_Q14[ 0 ] = silk_LSHIFT( SILK_FIX_CONST( 1.0, 14 ) - b_Q14 -
silk_SMULWB( strength_Q16, silk_SMULWB( SILK_FIX_CONST( 0.6, 16 ), b_Q14 ) ), 16 );
psEncCtrl->LF_shp_Q14[ 0 ] |= (opus_uint16)( b_Q14 - SILK_FIX_CONST( 1.0, 14 ) );
for( k = 1; k < psEnc->sCmn.nb_subfr; k++ ) {
psEncCtrl->LF_shp_Q14[ k ] = psEncCtrl->LF_shp_Q14[ 0 ];
}
Tilt_Q16 = -SILK_FIX_CONST( HP_NOISE_COEF, 16 );
}
/****************************/
/* HARMONIC SHAPING CONTROL */
/****************************/
/* Control boosting of harmonic frequencies */
HarmBoost_Q16 = silk_SMULWB( silk_SMULWB( SILK_FIX_CONST( 1.0, 17 ) - silk_LSHIFT( psEncCtrl->coding_quality_Q14, 3 ),
psEnc->LTPCorr_Q15 ), SILK_FIX_CONST( LOW_RATE_HARMONIC_BOOST, 16 ) );
/* More harmonic boost for noisy input signals */
HarmBoost_Q16 = silk_SMLAWB( HarmBoost_Q16,
SILK_FIX_CONST( 1.0, 16 ) - silk_LSHIFT( psEncCtrl->input_quality_Q14, 2 ), SILK_FIX_CONST( LOW_INPUT_QUALITY_HARMONIC_BOOST, 16 ) );
if( USE_HARM_SHAPING && psEnc->sCmn.indices.signalType == TYPE_VOICED ) {
/* More harmonic noise shaping for high bitrates or noisy input */
HarmShapeGain_Q16 = silk_SMLAWB( SILK_FIX_CONST( HARMONIC_SHAPING, 16 ),
SILK_FIX_CONST( 1.0, 16 ) - silk_SMULWB( SILK_FIX_CONST( 1.0, 18 ) - silk_LSHIFT( psEncCtrl->coding_quality_Q14, 4 ),
psEncCtrl->input_quality_Q14 ), SILK_FIX_CONST( HIGH_RATE_OR_LOW_QUALITY_HARMONIC_SHAPING, 16 ) );
/* Less harmonic noise shaping for less periodic signals */
HarmShapeGain_Q16 = silk_SMULWB( silk_LSHIFT( HarmShapeGain_Q16, 1 ),
silk_SQRT_APPROX( silk_LSHIFT( psEnc->LTPCorr_Q15, 15 ) ) );
} else {
HarmShapeGain_Q16 = 0;
}
/*************************/
/* Smooth over subframes */
/*************************/
for( k = 0; k < MAX_NB_SUBFR; k++ ) {
psShapeSt->HarmBoost_smth_Q16 =
silk_SMLAWB( psShapeSt->HarmBoost_smth_Q16, HarmBoost_Q16 - psShapeSt->HarmBoost_smth_Q16, SILK_FIX_CONST( SUBFR_SMTH_COEF, 16 ) );
psShapeSt->HarmShapeGain_smth_Q16 =
silk_SMLAWB( psShapeSt->HarmShapeGain_smth_Q16, HarmShapeGain_Q16 - psShapeSt->HarmShapeGain_smth_Q16, SILK_FIX_CONST( SUBFR_SMTH_COEF, 16 ) );
psShapeSt->Tilt_smth_Q16 =
silk_SMLAWB( psShapeSt->Tilt_smth_Q16, Tilt_Q16 - psShapeSt->Tilt_smth_Q16, SILK_FIX_CONST( SUBFR_SMTH_COEF, 16 ) );
psEncCtrl->HarmBoost_Q14[ k ] = ( opus_int )silk_RSHIFT_ROUND( psShapeSt->HarmBoost_smth_Q16, 2 );
psEncCtrl->HarmShapeGain_Q14[ k ] = ( opus_int )silk_RSHIFT_ROUND( psShapeSt->HarmShapeGain_smth_Q16, 2 );
psEncCtrl->Tilt_Q14[ k ] = ( opus_int )silk_RSHIFT_ROUND( psShapeSt->Tilt_smth_Q16, 2 );
}
RESTORE_STACK;
}
|