1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
|
[vertex]
layout(location=0) in highp vec4 vertex_attrib;
layout(location=4) in vec2 uv_in;
out vec2 uv_interp;
out vec2 pos_interp;
void main() {
uv_interp = uv_in;
gl_Position = vertex_attrib;
pos_interp.xy=gl_Position.xy;
}
[fragment]
in vec2 uv_interp;
in vec2 pos_interp;
uniform sampler2D source_diffuse; //texunit:0
uniform sampler2D source_normal_roughness; //texunit:1
uniform sampler2D source_depth; //texunit:2
uniform float camera_z_near;
uniform float camera_z_far;
uniform vec2 viewport_size;
uniform vec2 pixel_size;
uniform float filter_mipmap_levels;
uniform mat4 inverse_projection;
uniform mat4 projection;
uniform int num_steps;
uniform float depth_tolerance;
uniform float distance_fade;
uniform float acceleration;
layout(location = 0) out vec4 frag_color;
vec2 view_to_screen(vec3 view_pos,out float w) {
vec4 projected = projection * vec4(view_pos, 1.0);
projected.xyz /= projected.w;
projected.xy = projected.xy * 0.5 + 0.5;
w=projected.w;
return projected.xy;
}
#define M_PI 3.14159265359
void main() {
////
vec4 diffuse = texture( source_diffuse, uv_interp );
vec4 normal_roughness = texture( source_normal_roughness, uv_interp);
vec3 normal;
normal = normal_roughness.xyz*2.0-1.0;
float roughness = normal_roughness.w;
float depth_tex = texture(source_depth,uv_interp).r;
vec4 world_pos = inverse_projection * vec4( uv_interp*2.0-1.0, depth_tex*2.0-1.0, 1.0 );
vec3 vertex = world_pos.xyz/world_pos.w;
vec3 view_dir = normalize(vertex);
vec3 ray_dir = normalize(reflect(view_dir, normal));
if (dot(ray_dir,normal)<0.001) {
frag_color=vec4(0.0);
return;
}
//ray_dir = normalize(view_dir - normal * dot(normal,view_dir) * 2.0);
//ray_dir = normalize(vec3(1,1,-1));
////////////////
//make ray length and clip it against the near plane (don't want to trace beyond visible)
float ray_len = (vertex.z + ray_dir.z * camera_z_far) > -camera_z_near ? (-camera_z_near - vertex.z) / ray_dir.z : camera_z_far;
vec3 ray_end = vertex + ray_dir*ray_len;
float w_begin;
vec2 vp_line_begin = view_to_screen(vertex,w_begin);
float w_end;
vec2 vp_line_end = view_to_screen( ray_end, w_end);
vec2 vp_line_dir = vp_line_end-vp_line_begin;
//we need to interpolate w along the ray, to generate perspective correct reflections
w_begin = 1.0/w_begin;
w_end = 1.0/w_end;
float z_begin = vertex.z*w_begin;
float z_end = ray_end.z*w_end;
vec2 line_begin = vp_line_begin/pixel_size;
vec2 line_dir = vp_line_dir/pixel_size;
float z_dir = z_end - z_begin;
float w_dir = w_end - w_begin;
// clip the line to the viewport edges
float scale_max_x = min(1.0, 0.99 * (1.0 - vp_line_begin.x) / max(1e-5, vp_line_dir.x));
float scale_max_y = min(1.0, 0.99 * (1.0 - vp_line_begin.y) / max(1e-5, vp_line_dir.y));
float scale_min_x = min(1.0, 0.99 * vp_line_begin.x / max(1e-5, -vp_line_dir.x));
float scale_min_y = min(1.0, 0.99 * vp_line_begin.y / max(1e-5, -vp_line_dir.y));
float line_clip = min(scale_max_x, scale_max_y) * min(scale_min_x, scale_min_y);
line_dir *= line_clip;
z_dir *= line_clip;
w_dir *=line_clip;
//clip z and w advance to line advance
vec2 line_advance = normalize(line_dir); //down to pixel
float step_size = length(line_advance)/length(line_dir);
float z_advance = z_dir*step_size; // adapt z advance to line advance
float w_advance = w_dir*step_size; // adapt w advance to line advance
//make line advance faster if direction is closer to pixel edges (this avoids sampling the same pixel twice)
float advance_angle_adj = 1.0/max(abs(line_advance.x),abs(line_advance.y));
line_advance*=advance_angle_adj; // adapt z advance to line advance
z_advance*=advance_angle_adj;
w_advance*=advance_angle_adj;
vec2 pos = line_begin;
float z = z_begin;
float w = w_begin;
float z_from=z/w;
float z_to=z_from;
float depth;
vec2 prev_pos=pos;
bool found=false;
//if acceleration > 0, distance between pixels gets larger each step. This allows covering a larger area
float accel=1.0+acceleration;
float steps_taken=0.0;
for(int i=0;i<num_steps;i++) {
pos+=line_advance;
z+=z_advance;
w+=w_advance;
//convert to linear depth
depth = texture(source_depth, pos*pixel_size).r * 2.0 - 1.0;
depth = 2.0 * camera_z_near * camera_z_far / (camera_z_far + camera_z_near - depth * (camera_z_far - camera_z_near));
depth=-depth;
z_from = z_to;
z_to = z/w;
if (depth>z_to) {
//if depth was surpassed
if (depth<=max(z_to,z_from)+depth_tolerance) {
//check the depth tolerance
found=true;
}
break;
}
steps_taken+=1.0;
prev_pos=pos;
z_advance*=accel;
w_advance*=accel;
line_advance*=accel;
}
if (found) {
float margin_blend=1.0;
vec2 margin = vec2((viewport_size.x+viewport_size.y)*0.5*0.05); //make a uniform margin
if (any(bvec4(lessThan(pos,-margin),greaterThan(pos,viewport_size+margin)))) {
//clip outside screen + margin
frag_color=vec4(0.0);
return;
}
{
//blend fading out towards external margin
vec2 margin_grad = mix(pos-viewport_size,-pos,lessThan(pos,vec2(0.0)));
margin_blend = 1.0-smoothstep(0.0,margin.x,max(margin_grad.x,margin_grad.y));
//margin_blend=1.0;
}
vec2 final_pos;
float grad;
#ifdef SMOOTH_ACCEL
//if the distance between point and prev point is >1, then take some samples in the middle for smoothing out the image
vec2 blend_dir = pos - prev_pos;
float steps = min(8.0,length(blend_dir));
if (steps>2.0) {
vec2 blend_step = blend_dir/steps;
float blend_z = (z_to-z_from)/steps;
vec2 new_pos;
float subgrad=0.0;
for(float i=0.0;i<steps;i++) {
new_pos = (prev_pos+blend_step*i);
float z = z_from+blend_z*i;
depth = texture(source_depth, new_pos*pixel_size).r * 2.0 - 1.0;
depth = 2.0 * camera_z_near * camera_z_far / (camera_z_far + camera_z_near - depth * (camera_z_far - camera_z_near));
depth=-depth;
subgrad=i/steps;
if (depth>z)
break;
}
final_pos = new_pos;
grad=(steps_taken+subgrad)/float(num_steps);
} else {
#endif
grad=steps_taken/float(num_steps);
final_pos=pos;
#ifdef SMOOTH_ACCEL
}
#endif
#ifdef REFLECT_ROUGHNESS
vec4 final_color;
//if roughness is enabled, do screen space cone tracing
if (roughness > 0.001) {
///////////////////////////////////////////////////////////////////////////////////////
//use a blurred version (in consecutive mipmaps) of the screen to simulate roughness
float gloss = 1.0-roughness;
float cone_angle = roughness * M_PI * 0.5;
vec2 cone_dir = final_pos - line_begin;
float cone_len = length(cone_dir);
cone_dir = normalize(cone_dir); //will be used normalized from now on
float max_mipmap = filter_mipmap_levels - 1.0;
float gloss_mult=gloss;
float rem_alpha=1.0;
final_color = vec4(0.0);
for(int i=0;i<7;i++) {
float op_len = 2.0 * tan(cone_angle) * cone_len; //opposite side of iso triangle
float radius;
{
//fit to sphere inside cone (sphere ends at end of cone), something like this:
// ___
// \O/
// V
//
// as it avoids bleeding from beyond the reflection as much as possible. As a plus
// it also makes the rough reflection more elongated.
float a = op_len;
float h = cone_len;
float a2 = a * a;
float fh2 = 4.0f * h * h;
radius = (a * (sqrt(a2 + fh2) - a)) / (4.0f * h);
}
//find the place where screen must be sampled
vec2 sample_pos = ( line_begin + cone_dir * (cone_len - radius) ) * pixel_size;
//radius is in pixels, so it's natural that log2(radius) maps to the right mipmap for the amount of pixels
float mipmap = clamp( log2( radius ), 0.0, max_mipmap );
//mipmap = max(mipmap-1.0,0.0);
//do sampling
vec4 sample_color;
{
sample_color = textureLod(source_diffuse,sample_pos,mipmap);
}
//multiply by gloss
sample_color.rgb*=gloss_mult;
sample_color.a=gloss_mult;
rem_alpha -= sample_color.a;
if(rem_alpha < 0.0) {
sample_color.rgb *= (1.0 - abs(rem_alpha));
}
final_color+=sample_color;
if (final_color.a>=0.95) {
// This code of accumulating gloss and aborting on near one
// makes sense when you think of cone tracing.
// Think of it as if roughness was 0, then we could abort on the first
// iteration. For lesser roughness values, we need more iterations, but
// each needs to have less influence given the sphere is smaller
break;
}
cone_len-=radius*2.0; //go to next (smaller) circle.
gloss_mult*=gloss;
}
} else {
final_color = textureLod(source_diffuse,final_pos*pixel_size,0.0);
}
frag_color = vec4(final_color.rgb,pow(clamp(1.0-grad,0.0,1.0),distance_fade)*margin_blend);
#else
frag_color = vec4(textureLod(source_diffuse,final_pos*pixel_size,0.0).rgb,pow(clamp(1.0-grad,0.0,1.0),distance_fade)*margin_blend);
#endif
} else {
frag_color = vec4(0.0,0.0,0.0,0.0);
}
}
|