summaryrefslogtreecommitdiff
path: root/drivers/gles3/shaders/scene.glsl
blob: 66123193e6e843098154906a4c1302b0d2baf260 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
[vertex]


/*
from VisualServer:

ARRAY_VERTEX=0,
ARRAY_NORMAL=1,
ARRAY_TANGENT=2,
ARRAY_COLOR=3,
ARRAY_TEX_UV=4,
ARRAY_TEX_UV2=5,
ARRAY_BONES=6,
ARRAY_WEIGHTS=7,
ARRAY_INDEX=8,
*/

//hack to use uv if no uv present so it works with lightmap


/* INPUT ATTRIBS */

layout(location=0) in highp vec4 vertex_attrib;
layout(location=1) in vec3 normal_attrib;
#if defined(ENABLE_TANGENT_INTERP) || defined(ENABLE_NORMALMAP) || defined(LIGHT_USE_ANISOTROPY)
layout(location=2) in vec4 tangent_attrib;
#endif

#if defined(ENABLE_COLOR_INTERP)
layout(location=3) in vec4 color_attrib;
#endif

#if defined(ENABLE_UV_INTERP)
layout(location=4) in vec2 uv_attrib;
#endif

#if defined(ENABLE_UV2_INTERP)
layout(location=5) in vec2 uv2_attrib;
#endif

uniform float normal_mult;

#ifdef USE_SKELETON
layout(location=6) in ivec4 bone_indices; // attrib:6
layout(location=7) in vec4 bone_weights; // attrib:7
#endif

#ifdef USE_INSTANCING

layout(location=8) in highp vec4 instance_xform0;
layout(location=9) in highp vec4 instance_xform1;
layout(location=10) in highp vec4 instance_xform2;
layout(location=11) in lowp vec4 instance_color;

#endif

layout(std140) uniform SceneData { //ubo:0

	highp mat4 projection_matrix;
	highp mat4 camera_inverse_matrix;
	highp mat4 camera_matrix;
	highp vec4 time;

	highp vec4 ambient_light_color;
	highp vec4 bg_color;
	float ambient_energy;
	float bg_energy;

	float shadow_z_offset;
	float shadow_z_slope_scale;
	float shadow_dual_paraboloid_render_zfar;
	float shadow_dual_paraboloid_render_side;

	vec2 shadow_atlas_pixel_size;
	vec2 directional_shadow_pixel_size;

	float reflection_multiplier;
	float subsurface_scatter_width;
	float ambient_occlusion_affect_light;

};

uniform highp mat4 world_transform;

#ifdef USE_LIGHT_DIRECTIONAL

layout(std140) uniform DirectionalLightData { //ubo:3

	highp vec4 light_pos_inv_radius;
	mediump vec4 light_direction_attenuation;
	mediump vec4 light_color_energy;
	mediump vec4 light_params; //cone attenuation, angle, specular, shadow enabled,
	mediump vec4 light_clamp;
	mediump vec4 shadow_color;
	highp mat4 shadow_matrix1;
	highp mat4 shadow_matrix2;
	highp mat4 shadow_matrix3;
	highp mat4 shadow_matrix4;
	mediump vec4 shadow_split_offsets;
};

#endif


/* Varyings */

out highp vec3 vertex_interp;
out vec3 normal_interp;

#if defined(ENABLE_COLOR_INTERP)
out vec4 color_interp;
#endif

#if defined(ENABLE_UV_INTERP)
out vec2 uv_interp;
#endif

#if defined(ENABLE_UV2_INTERP)
out vec2 uv2_interp;
#endif


#if defined(ENABLE_TANGENT_INTERP) || defined(ENABLE_NORMALMAP) || defined(LIGHT_USE_ANISOTROPY)
out vec3 tangent_interp;
out vec3 binormal_interp;
#endif


#if !defined(USE_DEPTH_SHADOWS) && defined(USE_SHADOW_PASS)

varying vec4 position_interp;

#endif


VERTEX_SHADER_GLOBALS


#if defined(USE_MATERIAL)

layout(std140) uniform UniformData { //ubo:1

MATERIAL_UNIFORMS

};

#endif

#ifdef RENDER_DEPTH_DUAL_PARABOLOID

out highp float dp_clip;

#endif

#ifdef USE_SKELETON

layout(std140) uniform SkeletonData { //ubo:7

	mat3x4 skeleton[MAX_SKELETON_BONES];
};

#endif

void main() {

	highp vec4 vertex = vertex_attrib; // vec4(vertex_attrib.xyz * data_attrib.x,1.0);
	highp mat4 modelview = camera_inverse_matrix * world_transform;
	vec3 normal = normal_attrib * normal_mult;

#if defined(ENABLE_TANGENT_INTERP) || defined(ENABLE_NORMALMAP) || defined(LIGHT_USE_ANISOTROPY)
	vec3 tangent = tangent_attrib.xyz;
	tangent*=normal_mult;
	float binormalf = tangent_attrib.a;
#endif

#if defined(ENABLE_COLOR_INTERP)
	color_interp = color_attrib;
#endif


#ifdef USE_SKELETON

	{
		//skeleton transform
		highp mat3x4 m=skeleton[bone_indices.x]*bone_weights.x;
		m+=skeleton[bone_indices.y]*bone_weights.y;
		m+=skeleton[bone_indices.z]*bone_weights.z;
		m+=skeleton[bone_indices.w]*bone_weights.w;

		vertex.xyz = vertex * m;

		normal = vec4(normal,0.0) * m;
#if defined(ENABLE_TANGENT_INTERP) || defined(ENABLE_NORMALMAP) || defined(LIGHT_USE_ANISOTROPY)
		tangent.xyz = vec4(tangent.xyz,0.0) * mn;
#endif
	}
#endif // USE_SKELETON1


#ifdef USE_INSTANCING

	{
		highp mat3x4 m=mat3x4(instance_xform0,instance_xform1,instance_xform2);

		vertex.xyz = vertex * m;
		normal = vec4(normal,0.0) * m;
#if defined(ENABLE_TANGENT_INTERP) || defined(ENABLE_NORMALMAP) || defined(LIGHT_USE_ANISOTROPY)
		tangent.xyz = vec4(tangent.xyz,0.0) * mn;
#endif

#if defined(ENABLE_COLOR_INTERP)
		color_interp*=instance_color;
#endif
	}
#endif //USE_INSTANCING

#if !defined(SKIP_TRANSFORM_USED)

	vertex = modelview * vertex;
	normal = normalize((modelview * vec4(normal,0.0)).xyz);
#endif

#if defined(ENABLE_TANGENT_INTERP) || defined(ENABLE_NORMALMAP) || defined(LIGHT_USE_ANISOTROPY)
# if !defined(SKIP_TRANSFORM_USED)

	tangent=normalize((modelview * vec4(tangent,0.0)).xyz);
# endif
	vec3 binormal = normalize( cross(normal,tangent) * binormalf );
#endif




#if defined(ENABLE_UV_INTERP)
	uv_interp = uv_attrib;
#endif

#if defined(ENABLE_UV2_INTERP)
	uv2_interp = uv2_attrib;
#endif

{

VERTEX_SHADER_CODE

}

	vertex_interp = vertex.xyz;
	normal_interp = normal;

#if defined(ENABLE_TANGENT_INTERP) || defined(ENABLE_NORMALMAP) || defined(LIGHT_USE_ANISOTROPY)
	tangent_interp = tangent;
	binormal_interp = binormal;
#endif

#ifdef RENDER_DEPTH


#ifdef RENDER_DEPTH_DUAL_PARABOLOID

	vertex_interp.z*= shadow_dual_paraboloid_render_side;
	normal_interp.z*= shadow_dual_paraboloid_render_side;

	dp_clip=vertex_interp.z; //this attempts to avoid noise caused by objects sent to the other parabolloid side due to bias

	//for dual paraboloid shadow mapping, this is the fastest but least correct way, as it curves straight edges

	highp vec3 vtx = vertex_interp+normalize(vertex_interp)*shadow_z_offset;
	highp float distance = length(vtx);
	vtx = normalize(vtx);
	vtx.xy/=1.0-vtx.z;
	vtx.z=(distance/shadow_dual_paraboloid_render_zfar);
	vtx.z=vtx.z * 2.0 - 1.0;

	vertex.xyz=vtx;
	vertex.w=1.0;


#else

	float z_ofs = shadow_z_offset;
	z_ofs += (1.0-abs(normal_interp.z))*shadow_z_slope_scale;
	vertex_interp.z-=z_ofs;

#endif //RENDER_DEPTH_DUAL_PARABOLOID

#endif //RENDER_DEPTH


#if !defined(SKIP_TRANSFORM_USED) && !defined(RENDER_DEPTH_DUAL_PARABOLOID)
	gl_Position = projection_matrix * vec4(vertex_interp,1.0);
#else
	gl_Position = vertex;
#endif


}


[fragment]



#define M_PI 3.14159265359

/* Varyings */

#if defined(ENABLE_COLOR_INTERP)
in vec4 color_interp;
#endif

#if defined(ENABLE_UV_INTERP)
in vec2 uv_interp;
#endif

#if defined(ENABLE_UV2_INTERP)
in vec2 uv2_interp;
#endif

#if defined(ENABLE_TANGENT_INTERP) || defined(ENABLE_NORMALMAP) || defined(LIGHT_USE_ANISOTROPY)
in vec3 tangent_interp;
in vec3 binormal_interp;
#endif

in highp vec3 vertex_interp;
in vec3 normal_interp;


/* PBR CHANNELS */

//used on forward mainly
uniform bool no_ambient_light;

uniform sampler2D brdf_texture; //texunit:-1

#ifdef USE_RADIANCE_MAP

uniform sampler2D radiance_map; //texunit:-2


layout(std140) uniform Radiance { //ubo:2

	mat4 radiance_inverse_xform;
	vec3 radiance_box_min;
	vec3 radiance_box_max;
	float radiance_ambient_contribution;

};

#endif

/* Material Uniforms */


FRAGMENT_SHADER_GLOBALS


#if defined(USE_MATERIAL)

layout(std140) uniform UniformData {

MATERIAL_UNIFORMS

};

#endif


layout(std140) uniform SceneData {

	highp mat4 projection_matrix;
	highp mat4 camera_inverse_matrix;
	highp mat4 camera_matrix;
	highp vec4 time;

	highp vec4 ambient_light_color;
	highp vec4 bg_color;
	float ambient_energy;
	float bg_energy;

	float shadow_z_offset;
	float shadow_z_slope_scale;
	float shadow_dual_paraboloid_render_zfar;
	float shadow_dual_paraboloid_render_side;

	vec2 shadow_atlas_pixel_size;
	vec2 directional_shadow_pixel_size;

	float reflection_multiplier;
	float subsurface_scatter_width;
	float ambient_occlusion_affect_light;

};

//directional light data

#ifdef USE_LIGHT_DIRECTIONAL

layout(std140) uniform DirectionalLightData {

	highp vec4 light_pos_inv_radius;
	mediump vec4 light_direction_attenuation;
	mediump vec4 light_color_energy;
	mediump vec4 light_params; //cone attenuation, angle, specular, shadow enabled,
	mediump vec4 light_clamp;
	mediump vec4 shadow_color;
	highp mat4 shadow_matrix1;
	highp mat4 shadow_matrix2;
	highp mat4 shadow_matrix3;
	highp mat4 shadow_matrix4;
	mediump vec4 shadow_split_offsets;
};


uniform highp sampler2DShadow directional_shadow; //texunit:-4

#endif

//omni and spot

struct LightData {

	highp vec4 light_pos_inv_radius;
	mediump vec4 light_direction_attenuation;
	mediump vec4 light_color_energy;
	mediump vec4 light_params; //cone attenuation, angle, specular, shadow enabled,
	mediump vec4 light_clamp;
	mediump vec4 shadow_color;
	highp mat4 shadow_matrix;

};


layout(std140) uniform OmniLightData { //ubo:4

	LightData omni_lights[MAX_LIGHT_DATA_STRUCTS];
};

layout(std140) uniform SpotLightData { //ubo:5

	LightData spot_lights[MAX_LIGHT_DATA_STRUCTS];
};


uniform highp sampler2DShadow shadow_atlas; //texunit:-3


struct ReflectionData {

	mediump vec4 box_extents;
	mediump vec4 box_offset;
	mediump vec4 params; // intensity, 0, interior , boxproject
	mediump vec4 ambient; //ambient color, energy
	mediump vec4 atlas_clamp;
	highp mat4 local_matrix; //up to here for spot and omni, rest is for directional
	//notes: for ambientblend, use distance to edge to blend between already existing global environment
};

layout(std140) uniform ReflectionProbeData { //ubo:6

	ReflectionData reflections[MAX_REFLECTION_DATA_STRUCTS];
};
uniform mediump sampler2D reflection_atlas; //texunit:-5


#ifdef USE_FORWARD_LIGHTING

uniform int omni_light_indices[MAX_FORWARD_LIGHTS];
uniform int omni_light_count;

uniform int spot_light_indices[MAX_FORWARD_LIGHTS];
uniform int spot_light_count;

uniform int reflection_indices[MAX_FORWARD_LIGHTS];
uniform int reflection_count;

#endif



#ifdef USE_MULTIPLE_RENDER_TARGETS

layout(location=0) out vec4 diffuse_buffer;
layout(location=1) out vec4 specular_buffer;
layout(location=2) out vec4 normal_mr_buffer;
#if defined (ENABLE_SSS_MOTION)
layout(location=3) out vec4 motion_ssr_buffer;
#endif

#else

layout(location=0) out vec4 frag_color;

#endif


// GGX Specular
// Source: http://www.filmicworlds.com/images/ggx-opt/optimized-ggx.hlsl
float G1V(float dotNV, float k)
{
    return 1.0 / (dotNV * (1.0 - k) + k);
}


float SchlickFresnel(float u)
{
    float m = 1.0-u;
    float m2 = m*m;
    return m2*m2*m; // pow(m,5)
}

float GTR1(float NdotH, float a)
{
    if (a >= 1.0) return 1.0/M_PI;
    float a2 = a*a;
    float t = 1.0 + (a2-1.0)*NdotH*NdotH;
    return (a2-1.0) / (M_PI*log(a2)*t);
}

void light_compute(vec3 N, vec3 L,vec3 V,vec3 B, vec3 T,vec3 light_color,vec3 diffuse_color, vec3 specular_color, float specular_blob_intensity, float roughness, float rim,float rim_tint, float clearcoat, float clearcoat_gloss,float anisotropy,inout vec3 diffuse, inout vec3 specular) {

	float dotNL = max(dot(N,L), 0.0 );
	float dotNV = max(dot(N,V), 0.0 );

#if defined(LIGHT_USE_RIM)
	float rim_light = pow(1.0-dotNV,(1.0-roughness)*16.0);
	diffuse += rim_light * rim * mix(vec3(1.0),diffuse_color,rim_tint) * light_color;
#endif

	diffuse += dotNL * light_color * diffuse_color;

	if (roughness > 0.0) {

		float alpha = roughness * roughness;

		vec3 H = normalize(V + L);

		float dotNH = max(dot(N,H), 0.0 );
		float dotLH = max(dot(L,H), 0.0 );

		// D
#if defined(LIGHT_USE_ANISOTROPY)

		float aspect = sqrt(1.0-anisotropy*0.9);
		float rx = roughness/aspect;
		float ry = roughness*aspect;
		float ax = rx*rx;
		float ay = ry*ry;
		float dotXH = dot( T, H );
		float dotYH = dot( B, H );
		float pi = M_PI;
		float denom = dotXH*dotXH / (ax*ax) + dotYH*dotYH / (ay*ay) + dotNH*dotNH;
		float D = 1.0 / ( pi * ax*ay * denom*denom );

#else
		float alphaSqr = alpha * alpha;
		float pi = M_PI;
		float denom = dotNH * dotNH * (alphaSqr - 1.0) + 1.0;
		float D = alphaSqr / (pi * denom * denom);
#endif
		// F
		float F0 = 1.0;
		float dotLH5 = SchlickFresnel( dotLH );
		float F = F0 + (1.0 - F0) * (dotLH5);

		// V
		float k = alpha / 2.0f;
		float vis = G1V(dotNL, k) * G1V(dotNV, k);

		float speci = dotNL * D * F * vis;

		specular += speci * light_color /* specular_color*/ * specular_blob_intensity;

#if defined(LIGHT_USE_CLEARCOAT)
		float Dr = GTR1(dotNH, mix(.1,.001,clearcoat_gloss));
		float Fr = mix(.04, 1.0, dotLH5);
		float Gr = G1V(dotNL, .25) * G1V(dotNV, .25);

		specular += .25*clearcoat*Gr*Fr*Dr;
#endif
	}


}


float sample_shadow(highp sampler2DShadow shadow, vec2 shadow_pixel_size, vec2 pos, float depth, vec4 clamp_rect) {

#ifdef SHADOW_MODE_PCF_13

	float avg=textureProj(shadow,vec4(pos,depth,1.0));
	avg+=textureProj(shadow,vec4(pos+vec2(shadow_pixel_size.x,0.0),depth,1.0));
	avg+=textureProj(shadow,vec4(pos+vec2(-shadow_pixel_size.x,0.0),depth,1.0));
	avg+=textureProj(shadow,vec4(pos+vec2(0.0,shadow_pixel_size.y),depth,1.0));
	avg+=textureProj(shadow,vec4(pos+vec2(0.0,-shadow_pixel_size.y),depth,1.0));
	avg+=textureProj(shadow,vec4(pos+vec2(shadow_pixel_size.x,shadow_pixel_size.y),depth,1.0));
	avg+=textureProj(shadow,vec4(pos+vec2(-shadow_pixel_size.x,shadow_pixel_size.y),depth,1.0));
	avg+=textureProj(shadow,vec4(pos+vec2(shadow_pixel_size.x,-shadow_pixel_size.y),depth,1.0));
	avg+=textureProj(shadow,vec4(pos+vec2(-shadow_pixel_size.x,-shadow_pixel_size.y),depth,1.0));
	avg+=textureProj(shadow,vec4(pos+vec2(shadow_pixel_size.x*2.0,0.0),depth,1.0));
	avg+=textureProj(shadow,vec4(pos+vec2(-shadow_pixel_size.x*2.0,0.0),depth,1.0));
	avg+=textureProj(shadow,vec4(pos+vec2(0.0,shadow_pixel_size.y*2.0),depth,1.0));
	avg+=textureProj(shadow,vec4(pos+vec2(0.0,-shadow_pixel_size.y*2.0),depth,1.0));
	return avg*(1.0/13.0);

#endif

#ifdef SHADOW_MODE_PCF_5

	float avg=textureProj(shadow,vec4(pos,depth,1.0));
	avg+=textureProj(shadow,vec4(pos+vec2(shadow_pixel_size.x,0.0),depth,1.0));
	avg+=textureProj(shadow,vec4(pos+vec2(-shadow_pixel_size.x,0.0),depth,1.0));
	avg+=textureProj(shadow,vec4(pos+vec2(0.0,shadow_pixel_size.y),depth,1.0));
	avg+=textureProj(shadow,vec4(pos+vec2(0.0,-shadow_pixel_size.y),depth,1.0));
	return avg*(1.0/5.0);
#endif

#if !defined(SHADOW_MODE_PCF_5) && !defined(SHADOW_MODE_PCF_13)

	return textureProj(shadow,vec4(pos,depth,1.0));
#endif

}

#ifdef RENDER_DEPTH_DUAL_PARABOLOID

in highp float dp_clip;

#endif

#if 0
//need to save texture depth for this

vec3 light_transmittance(float translucency,vec3 light_vec, vec3 normal, vec3 pos, float distance) {

	float scale = 8.25 * (1.0 - translucency) / subsurface_scatter_width;
	float d = scale * distance;

    /**
     * Armed with the thickness, we can now calculate the color by means of the
     * precalculated transmittance profile.
     * (It can be precomputed into a texture, for maximum performance):
     */
	float dd = -d * d;
	vec3 profile = vec3(0.233, 0.455, 0.649) * exp(dd / 0.0064) +
		     vec3(0.1,   0.336, 0.344) * exp(dd / 0.0484) +
		     vec3(0.118, 0.198, 0.0)   * exp(dd / 0.187)  +
		     vec3(0.113, 0.007, 0.007) * exp(dd / 0.567)  +
		     vec3(0.358, 0.004, 0.0)   * exp(dd / 1.99)   +
		     vec3(0.078, 0.0,   0.0)   * exp(dd / 7.41);

    /**
     * Using the profile, we finally approximate the transmitted lighting from
     * the back of the object:
     */
    return profile * clamp(0.3 + dot(light_vec, normal),0.0,1.0);
}
#endif

void light_process_omni(int idx, vec3 vertex, vec3 eye_vec,vec3 normal,vec3 binormal, vec3 tangent, vec3 albedo, vec3 specular, float roughness, float rim, float rim_tint, float clearcoat, float clearcoat_gloss,float anisotropy,inout vec3 diffuse_light, inout vec3 specular_light) {

	vec3 light_rel_vec = omni_lights[idx].light_pos_inv_radius.xyz-vertex;
	float normalized_distance = length( light_rel_vec )*omni_lights[idx].light_pos_inv_radius.w;
	vec3 light_attenuation = vec3(pow( max(1.0 - normalized_distance, 0.0), omni_lights[idx].light_direction_attenuation.w ));

	if (omni_lights[idx].light_params.w>0.5) {
		//there is a shadowmap

		highp vec3 splane=(omni_lights[idx].shadow_matrix * vec4(vertex,1.0)).xyz;
		float shadow_len=length(splane);
		splane=normalize(splane);
		vec4 clamp_rect=omni_lights[idx].light_clamp;

		if (splane.z>=0.0) {

			splane.z+=1.0;

			clamp_rect.y+=clamp_rect.w;

		} else {

			splane.z=1.0 - splane.z;

			/*
			if (clamp_rect.z<clamp_rect.w) {
				clamp_rect.x+=clamp_rect.z;
			} else {
				clamp_rect.y+=clamp_rect.w;
			}
			*/

		}

		splane.xy/=splane.z;
		splane.xy=splane.xy * 0.5 + 0.5;
		splane.z = shadow_len * omni_lights[idx].light_pos_inv_radius.w;

		splane.xy = clamp_rect.xy+splane.xy*clamp_rect.zw;

		light_attenuation*=mix(omni_lights[idx].shadow_color.rgb,vec3(1.0),sample_shadow(shadow_atlas,shadow_atlas_pixel_size,splane.xy,splane.z,clamp_rect));
	}

	light_compute(normal,normalize(light_rel_vec),eye_vec,binormal,tangent,omni_lights[idx].light_color_energy.rgb*light_attenuation,albedo,specular,omni_lights[idx].light_params.z,roughness,rim,rim_tint,clearcoat,clearcoat_gloss,anisotropy,diffuse_light,specular_light);

}

void light_process_spot(int idx, vec3 vertex, vec3 eye_vec, vec3 normal, vec3 binormal, vec3 tangent,vec3 albedo, vec3 specular, float roughness, float rim,float rim_tint, float clearcoat, float clearcoat_gloss,float anisotropy, inout vec3 diffuse_light, inout vec3 specular_light) {

	vec3 light_rel_vec = spot_lights[idx].light_pos_inv_radius.xyz-vertex;
	float normalized_distance = length( light_rel_vec )*spot_lights[idx].light_pos_inv_radius.w;
	vec3 light_attenuation = vec3(pow( max(1.0 - normalized_distance, 0.0), spot_lights[idx].light_direction_attenuation.w ));
	vec3 spot_dir = spot_lights[idx].light_direction_attenuation.xyz;
	float spot_cutoff=spot_lights[idx].light_params.y;
	float scos = max(dot(-normalize(light_rel_vec), spot_dir),spot_cutoff);
	float spot_rim = (1.0 - scos) / (1.0 - spot_cutoff);
	light_attenuation *= 1.0 - pow( spot_rim, spot_lights[idx].light_params.x);

	if (spot_lights[idx].light_params.w>0.5) {
		//there is a shadowmap
		highp vec4 splane=(spot_lights[idx].shadow_matrix * vec4(vertex,1.0));
		splane.xyz/=splane.w;
		light_attenuation*=mix(spot_lights[idx].shadow_color.rgb,vec3(1.0),sample_shadow(shadow_atlas,shadow_atlas_pixel_size,splane.xy,splane.z,spot_lights[idx].light_clamp));
	}

	light_compute(normal,normalize(light_rel_vec),eye_vec,binormal,tangent,spot_lights[idx].light_color_energy.rgb*light_attenuation,albedo,specular,spot_lights[idx].light_params.z,roughness,rim,rim_tint,clearcoat,clearcoat_gloss,anisotropy,diffuse_light,specular_light);

}

void reflection_process(int idx, vec3 vertex, vec3 normal,vec3 binormal, vec3 tangent,float roughness,float anisotropy,vec3 ambient,vec3 skybox,vec2 brdf, inout highp vec4 reflection_accum,inout highp vec4 ambient_accum) {

	vec3 ref_vec = normalize(reflect(vertex,normal));
	vec3 local_pos = (reflections[idx].local_matrix * vec4(vertex,1.0)).xyz;
	vec3 box_extents = reflections[idx].box_extents.xyz;

	if (any(greaterThan(abs(local_pos),box_extents))) { //out of the reflection box
		return;
	}

	vec3 inner_pos = abs(local_pos / box_extents);
	float blend = max(inner_pos.x,max(inner_pos.y,inner_pos.z));
	//make blend more rounded
	blend=mix(length(inner_pos),blend,blend);
	blend*=blend;
	blend=1.001-blend;

	if (reflections[idx].params.x>0.0){// compute reflection

		vec3 local_ref_vec = (reflections[idx].local_matrix * vec4(ref_vec,0.0)).xyz;

		if (reflections[idx].params.w > 0.5) { //box project

			vec3 nrdir = normalize(local_ref_vec);
			vec3 rbmax = (box_extents - local_pos)/nrdir;
			vec3 rbmin = (-box_extents - local_pos)/nrdir;


			vec3 rbminmax = mix(rbmin,rbmax,greaterThan(nrdir,vec3(0.0,0.0,0.0)));

			float fa = min(min(rbminmax.x, rbminmax.y), rbminmax.z);
			vec3 posonbox = local_pos + nrdir * fa;
			local_ref_vec = posonbox - reflections[idx].box_offset.xyz;
		}



		vec3 splane=normalize(local_ref_vec);
		vec4 clamp_rect=reflections[idx].atlas_clamp;

		splane.z*=-1.0;
		if (splane.z>=0.0) {
			splane.z+=1.0;
			clamp_rect.y+=clamp_rect.w;
		} else {
			splane.z=1.0 - splane.z;
			splane.y=-splane.y;
		}

		splane.xy/=splane.z;
		splane.xy=splane.xy * 0.5 + 0.5;

		splane.xy = splane.xy * clamp_rect.zw + clamp_rect.xy;
		splane.xy = clamp(splane.xy,clamp_rect.xy,clamp_rect.xy+clamp_rect.zw);

		highp vec4 reflection;
		reflection.rgb = textureLod(reflection_atlas,splane.xy,roughness*5.0).rgb *  brdf.x + brdf.y;

		if (reflections[idx].params.z < 0.5) {
			reflection.rgb = mix(skybox,reflection.rgb,blend);
		}
		reflection.rgb*=reflections[idx].params.x;
		reflection.a = blend;
		reflection.rgb*=reflection.a;

		reflection_accum+=reflection;
	}

	if (reflections[idx].ambient.a>0.0) { //compute ambient using skybox


		vec3 local_amb_vec = (reflections[idx].local_matrix * vec4(normal,0.0)).xyz;

		vec3 splane=normalize(local_amb_vec);
		vec4 clamp_rect=reflections[idx].atlas_clamp;

		splane.z*=-1.0;
		if (splane.z>=0.0) {
			splane.z+=1.0;
			clamp_rect.y+=clamp_rect.w;
		} else {
			splane.z=1.0 - splane.z;
			splane.y=-splane.y;
		}

		splane.xy/=splane.z;
		splane.xy=splane.xy * 0.5 + 0.5;

		splane.xy = splane.xy * clamp_rect.zw + clamp_rect.xy;
		splane.xy = clamp(splane.xy,clamp_rect.xy,clamp_rect.xy+clamp_rect.zw);

		highp vec4 ambient_out;
		ambient_out.a=blend;
		ambient_out.rgb = textureLod(reflection_atlas,splane.xy,5.0).rgb;
		ambient_out.rgb=mix(reflections[idx].ambient.rgb,ambient_out.rgb,reflections[idx].ambient.a);
		if (reflections[idx].params.z < 0.5) {
			ambient_out.rgb = mix(ambient,ambient_out.rgb,blend);
		}

		ambient_out.rgb *= ambient_out.a;
		ambient_accum+=ambient_out;
	} else {

		highp vec4 ambient_out;
		ambient_out.a=blend;
		ambient_out.rgb=reflections[idx].ambient.rgb;
		if (reflections[idx].params.z < 0.5) {
			ambient_out.rgb = mix(ambient,ambient_out.rgb,blend);
		}
		ambient_out.rgb *= ambient_out.a;
		ambient_accum+=ambient_out;

	}
}

#ifdef USE_GI_PROBES

uniform mediump sampler3D gi_probe1; //texunit:-6
uniform highp mat4 gi_probe_xform1;
uniform highp vec3 gi_probe_bounds1;
uniform highp vec3 gi_probe_cell_size1;
uniform highp float gi_probe_multiplier1;
uniform bool gi_probe_blend_ambient1;

uniform mediump sampler3D gi_probe2; //texunit:-7
uniform highp mat4 gi_probe_xform2;
uniform highp vec3 gi_probe_bounds2;
uniform highp vec3 gi_probe_cell_size2;
uniform highp float gi_probe_multiplier2;
uniform bool gi_probe2_enabled;
uniform bool gi_probe_blend_ambient2;

vec3 voxel_cone_trace(sampler3D probe, vec3 cell_size, vec3 pos, vec3 ambient, bool blend_ambient, vec3 direction, float tan_half_angle, float max_distance) {


	float dist = dot(direction,mix(vec3(-1.0),vec3(1.0),greaterThan(direction,vec3(0.0))))*2.0;
	float alpha=0.0;
	vec3 color = vec3(0.0);

	while(dist < max_distance && alpha < 0.95) {
		float diameter = max(1.0, 2.0 * tan_half_angle * dist);
		vec4 scolor = textureLod(probe, (pos + dist * direction) * cell_size, log2(diameter) );
		float a = (1.0 - alpha);
		color += scolor.rgb * a;
		alpha += a * scolor.a;
		dist += diameter * 0.5;
	}

	//color.rgb = mix(color.rgb,mix(ambient,color.rgb,alpha),blend_ambient);

	return color;
}

void gi_probe_compute(sampler3D probe, mat4 probe_xform, vec3 bounds,vec3 cell_size,vec3 pos, vec3 ambient, vec3 environment, bool blend_ambient,float multiplier, mat3 normal_mtx,vec3 ref_vec, float roughness, out vec4 out_spec, out vec4 out_diff) {



	vec3 probe_pos = (probe_xform * vec4(pos,1.0)).xyz;
	vec3 ref_pos = (probe_xform * vec4(pos+ref_vec,1.0)).xyz;

	ref_vec = normalize(ref_pos - probe_pos);

/*	out_diff.rgb = voxel_cone_trace(probe,cell_size,probe_pos,normalize((probe_xform * vec4(ref_vec,0.0)).xyz),0.0 ,100.0);
	out_diff.a = 1.0;
	return;*/
	//out_diff = vec4(textureLod(probe,probe_pos*cell_size,3.0).rgb,1.0);
	//return;

	if (any(bvec2(any(lessThan(probe_pos,vec3(0.0))),any(greaterThan(probe_pos,bounds)))))
		return;

	vec3 blendv = probe_pos/bounds * 2.0 - 1.0;
	float blend = 1.001-max(blendv.x,max(blendv.y,blendv.z));
	blend=1.0;

	float max_distance = length(bounds);

	//radiance
#ifdef VCT_QUALITY_HIGH

#define MAX_CONE_DIRS 6
	vec3 cone_dirs[MAX_CONE_DIRS] = vec3[] (
		vec3(0, 0, 1),
		vec3(0.866025, 0, 0.5),
		vec3(0.267617, 0.823639, 0.5),
		vec3(-0.700629, 0.509037, 0.5),
		vec3(-0.700629, -0.509037, 0.5),
		vec3(0.267617, -0.823639, 0.5)
	);

	float cone_weights[MAX_CONE_DIRS] = float[](0.25, 0.15, 0.15, 0.15, 0.15, 0.15);
	float cone_angle_tan = 0.577;
	float min_ref_tan = 0.0;
#else

#define MAX_CONE_DIRS 4

	vec3 cone_dirs[MAX_CONE_DIRS] = vec3[] (
			vec3(0.707107, 0, 0.707107),
			vec3(0, 0.707107, 0.707107),
			vec3(-0.707107, 0, 0.707107),
			vec3(0, -0.707107, 0.707107)
	);

	float cone_weights[MAX_CONE_DIRS] = float[](0.25, 0.25, 0.25, 0.25);
	float cone_angle_tan = 0.98269;
	max_distance*=0.5;
	float min_ref_tan = 0.2;

#endif
	vec3 light=vec3(0.0);
	for(int i=0;i<MAX_CONE_DIRS;i++) {

		vec3 dir = normalize( (probe_xform * vec4(pos + normal_mtx * cone_dirs[i],1.0)).xyz - probe_pos);
		light+=cone_weights[i] * voxel_cone_trace(probe,cell_size,probe_pos,ambient,blend_ambient,dir,cone_angle_tan,max_distance);

	}

	light*=multiplier;

	out_diff = vec4(light*blend,blend);

	//irradiance

	vec3 irr_light =  voxel_cone_trace(probe,cell_size,probe_pos,environment,blend_ambient,ref_vec,max(min_ref_tan,tan(roughness * 0.5 * M_PI)) ,max_distance);

	irr_light *= multiplier;
	//irr_light=vec3(0.0);

	out_spec = vec4(irr_light*blend,blend);
}


void gi_probes_compute(vec3 pos, vec3 normal, float roughness, vec3 specular, inout vec3 out_specular, inout vec3 out_ambient) {

	roughness = roughness * roughness;

	vec3 ref_vec = normalize(reflect(normalize(pos),normal));

	//find arbitrary tangent and bitangent, then build a matrix
	vec3 v0 = abs(normal.z) < 0.999 ? vec3(0, 0, 1) : vec3(0, 1, 0);
	vec3 tangent = normalize(cross(v0, normal));
	vec3 bitangent = normalize(cross(tangent, normal));
	mat3 normal_mat = mat3(tangent,bitangent,normal);

	vec4 diff_accum = vec4(0.0);
	vec4 spec_accum = vec4(0.0);

	vec3 ambient = out_ambient;
	out_ambient = vec3(0.0);

	vec3 environment = out_specular;

	out_specular = vec3(0.0);

	gi_probe_compute(gi_probe1,gi_probe_xform1,gi_probe_bounds1,gi_probe_cell_size1,pos,ambient,environment,gi_probe_blend_ambient1,gi_probe_multiplier1,normal_mat,ref_vec,roughness,spec_accum,diff_accum);

	if (gi_probe2_enabled) {

		gi_probe_compute(gi_probe2,gi_probe_xform2,gi_probe_bounds2,gi_probe_cell_size2,pos,ambient,environment,gi_probe_blend_ambient2,gi_probe_multiplier2,normal_mat,ref_vec,roughness,spec_accum,diff_accum);
	}

	if (diff_accum.a>0.0) {
		diff_accum.rgb/=diff_accum.a;
	}

	if (spec_accum.a>0.0) {
		spec_accum.rgb/=spec_accum.a;
	}

	out_specular+=spec_accum.rgb;
	out_ambient+=diff_accum.rgb;

}

#endif


void main() {

#ifdef RENDER_DEPTH_DUAL_PARABOLOID

	if (dp_clip>0.0)
		discard;
#endif

	//lay out everything, whathever is unused is optimized away anyway
	highp vec3 vertex = vertex_interp;
	vec3 albedo = vec3(0.8,0.8,0.8);
	vec3 specular = vec3(0.2,0.2,0.2);
	vec3 emission = vec3(0.0,0.0,0.0);
	float roughness = 1.0;
	float rim = 0.0;
	float rim_tint = 0.0;
	float clearcoat=0.0;
	float clearcoat_gloss=0.0;
	float anisotropy = 1.0;
	vec2 anisotropy_flow = vec2(1.0,0.0);

#if defined(ENABLE_AO)
	float ao=1.0;
#endif

	float alpha = 1.0;

#ifdef METERIAL_DOUBLESIDED
	float side=float(gl_FrontFacing)*2.0-1.0;
#else
	float side=1.0;
#endif


#if defined(ENABLE_TANGENT_INTERP) || defined(ENABLE_NORMALMAP) || defined(LIGHT_USE_ANISOTROPY)
	vec3 binormal = normalize(binormal_interp)*side;
	vec3 tangent = normalize(tangent_interp)*side;
#else
	vec3 binormal = vec3(0.0);
	vec3 tangent = vec3(0.0);
#endif
	vec3 normal = normalize(normal_interp)*side;

#if defined(ENABLE_UV_INTERP)
	vec2 uv = uv_interp;
#endif

#if defined(ENABLE_UV2_INTERP)
	vec2 uv2 = uv2_interp;
#endif

#if defined(ENABLE_COLOR_INTERP)
	vec4 color = color_interp;
#endif

#if defined(ENABLE_NORMALMAP)

	vec3 normalmap = vec3(0.0);
#endif

	float normaldepth=1.0;



#if defined(ENABLE_DISCARD)
	bool discard_=false;
#endif

#if defined (ENABLE_SSS_MOTION)
	float sss_strength=0.0;
#endif

{


FRAGMENT_SHADER_CODE

}



#if defined(ENABLE_NORMALMAP)

	normalmap.xy=normalmap.xy*2.0-1.0;
	normalmap.z=sqrt(1.0-dot(normalmap.xy,normalmap.xy)); //always ignore Z, as it can be RG packed, Z may be pos/neg, etc.

	normal = normalize( mix(normal_interp,tangent * normalmap.x + binormal * normalmap.y + normal * normalmap.z,normaldepth) ) * side;

#endif

#if defined(LIGHT_USE_ANISOTROPY)

	if (anisotropy>0.01) {
		//rotation matrix
		mat3 rot = mat3( tangent, binormal, normal );
		//make local to space
		tangent = normalize(rot * vec3(anisotropy_flow.x,anisotropy_flow.y,0.0));
		binormal = normalize(rot * vec3(-anisotropy_flow.y,anisotropy_flow.x,0.0));
	}

#endif

#if defined(ENABLE_DISCARD)
	if (discard_) {
	//easy to eliminate dead code
		discard;
	}
#endif

#ifdef ENABLE_CLIP_ALPHA
	if (albedo.a<0.99) {
		//used for doublepass and shadowmapping
		discard;
	}
#endif

/////////////////////// LIGHTING //////////////////////////////

	//apply energy conservation

	vec3 specular_light = vec3(0.0,0.0,0.0);
	vec3 ambient_light;
	vec3 diffuse_light = vec3(0.0,0.0,0.0);

	vec3 eye_vec = -normalize( vertex_interp );

#ifndef RENDER_DEPTH
	float ndotv = clamp(dot(normal,eye_vec),0.0,1.0);

	vec2 brdf = texture(brdf_texture, vec2(roughness, ndotv)).xy;
#endif

#ifdef USE_RADIANCE_MAP

	if (no_ambient_light) {
		ambient_light=vec3(0.0,0.0,0.0);
	} else {
		{



			float lod = roughness * 5.0;

			{ //read radiance from dual paraboloid

				vec3 ref_vec = reflect(-eye_vec,normal); //2.0 * ndotv * normal - view; // reflect(v, n);
				ref_vec=normalize((radiance_inverse_xform * vec4(ref_vec,0.0)).xyz);

				vec3 norm = normalize(ref_vec);
				float y_ofs=0.0;
				if (norm.z>=0.0) {

					norm.z+=1.0;
					y_ofs+=0.5;
				} else {
					norm.z=1.0 - norm.z;
					norm.y=-norm.y;
				}

				norm.xy/=norm.z;
				norm.xy=norm.xy * vec2(0.5,0.25) + vec2(0.5,0.25+y_ofs);
				specular_light = textureLod(radiance_map, norm.xy, lod).xyz * brdf.x + brdf.y;

			}
			//no longer a cubemap
			//vec3 radiance = textureLod(radiance_cube, r, lod).xyz * ( brdf.x + brdf.y);

		}

		{

			/*vec3 ambient_dir=normalize((radiance_inverse_xform * vec4(normal,0.0)).xyz);
			vec3 env_ambient=textureLod(radiance_cube, ambient_dir, 5.0).xyz;

			ambient_light=mix(ambient_light_color.rgb,env_ambient,radiance_ambient_contribution);*/
			ambient_light=vec3(0.0,0.0,0.0);
		}
	}

#else

	if (no_ambient_light){
		ambient_light=vec3(0.0,0.0,0.0);
	} else {
		ambient_light=ambient_light_color.rgb;
	}
#endif


#ifdef USE_LIGHT_DIRECTIONAL

	vec3 light_attenuation=vec3(1.0);

#ifdef LIGHT_DIRECTIONAL_SHADOW

	if (gl_FragCoord.w > shadow_split_offsets.w) {

	vec3 pssm_coord;

#ifdef LIGHT_USE_PSSM_BLEND
	float pssm_blend;
	vec3 pssm_coord2;
	bool use_blend=true;
	vec3 light_pssm_split_inv = 1.0/shadow_split_offsets.xyz;
	float w_inv = 1.0/gl_FragCoord.w;
#endif


#ifdef LIGHT_USE_PSSM4


	if (gl_FragCoord.w > shadow_split_offsets.y) {

		if (gl_FragCoord.w > shadow_split_offsets.x) {

			highp vec4 splane=(shadow_matrix1 * vec4(vertex,1.0));
			pssm_coord=splane.xyz/splane.w;


#if defined(LIGHT_USE_PSSM_BLEND)

			splane=(shadow_matrix2 * vec4(vertex,1.0));
			pssm_coord2=splane.xyz/splane.w;
			pssm_blend=smoothstep(0.0,light_pssm_split_inv.x,w_inv);
#endif

		} else {

			highp vec4 splane=(shadow_matrix2 * vec4(vertex,1.0));
			pssm_coord=splane.xyz/splane.w;

#if defined(LIGHT_USE_PSSM_BLEND)
			splane=(shadow_matrix3 * vec4(vertex,1.0));
			pssm_coord2=splane.xyz/splane.w;
			pssm_blend=smoothstep(light_pssm_split_inv.x,light_pssm_split_inv.y,w_inv);
#endif

		}
	} else {


		if (gl_FragCoord.w > shadow_split_offsets.z) {

			highp vec4 splane=(shadow_matrix3 * vec4(vertex,1.0));
			pssm_coord=splane.xyz/splane.w;

#if defined(LIGHT_USE_PSSM_BLEND)
			splane=(shadow_matrix4 * vec4(vertex,1.0));
			pssm_coord2=splane.xyz/splane.w;
			pssm_blend=smoothstep(light_pssm_split_inv.y,light_pssm_split_inv.z,w_inv);
#endif

		} else {
			highp vec4 splane=(shadow_matrix4 * vec4(vertex,1.0));
			pssm_coord=splane.xyz/splane.w;

#if defined(LIGHT_USE_PSSM_BLEND)
			use_blend=false;

#endif

		}
	}

#endif //LIGHT_USE_PSSM4

#ifdef LIGHT_USE_PSSM2

	if (gl_FragCoord.w > shadow_split_offsets.x) {

		highp vec4 splane=(shadow_matrix1 * vec4(vertex,1.0));
		pssm_coord=splane.xyz/splane.w;


#if defined(LIGHT_USE_PSSM_BLEND)

		splane=(shadow_matrix2 * vec4(vertex,1.0));
		pssm_coord2=splane.xyz/splane.w;
		pssm_blend=smoothstep(0.0,light_pssm_split_inv.x,w_inv);
#endif

	} else {
		highp vec4 splane=(shadow_matrix2 * vec4(vertex,1.0));
		pssm_coord=splane.xyz/splane.w;
#if defined(LIGHT_USE_PSSM_BLEND)
		use_blend=false;

#endif

	}

#endif //LIGHT_USE_PSSM2

#if !defined(LIGHT_USE_PSSM4) && !defined(LIGHT_USE_PSSM2)
	{ //regular orthogonal
		highp vec4 splane=(shadow_matrix1 * vec4(vertex,1.0));
		pssm_coord=splane.xyz/splane.w;
	}
#endif


	//one one sample
	light_attenuation=mix(shadow_color.rgb,vec3(1.0),sample_shadow(directional_shadow,directional_shadow_pixel_size,pssm_coord.xy,pssm_coord.z,light_clamp));


#if defined(LIGHT_USE_PSSM_BLEND)
	if (use_blend) {
		vec3 light_attenuation2=mix(shadow_color.rgb,vec3(1.0),sample_shadow(directional_shadow,directional_shadow_pixel_size,pssm_coord2.xy,pssm_coord2.z,light_clamp));
		light_attenuation=mix(light_attenuation,light_attenuation2,pssm_blend);
	}
#endif

	}

#endif //LIGHT_DIRECTIONAL_SHADOW

	light_compute(normal,-light_direction_attenuation.xyz,eye_vec,binormal,tangent,light_color_energy.rgb*light_attenuation,albedo,specular,light_params.z,roughness,rim,rim_tint,clearcoat,clearcoat_gloss,anisotropy,diffuse_light,specular_light);


#endif //#USE_LIGHT_DIRECTIONAL

#ifdef USE_GI_PROBES
	gi_probes_compute(vertex,normal,roughness,specular,specular_light,ambient_light);
#endif


#ifdef USE_FORWARD_LIGHTING

	highp vec4 reflection_accum = vec4(0.0,0.0,0.0,0.0);
	highp vec4 ambient_accum = vec4(0.0,0.0,0.0,0.0);



	for(int i=0;i<reflection_count;i++) {
		reflection_process(reflection_indices[i],vertex,normal,binormal,tangent,roughness,anisotropy,ambient_light,specular_light,brdf,reflection_accum,ambient_accum);
	}

	if (reflection_accum.a>0.0) {
		specular_light+=reflection_accum.rgb/reflection_accum.a;
	}
	if (ambient_accum.a>0.0) {
		ambient_light+=ambient_accum.rgb/ambient_accum.a;
	}

	for(int i=0;i<omni_light_count;i++) {
		light_process_omni(omni_light_indices[i],vertex,eye_vec,normal,binormal,tangent,albedo,specular,roughness,rim,rim_tint,clearcoat,clearcoat_gloss,anisotropy,diffuse_light,specular_light);
	}

	for(int i=0;i<spot_light_count;i++) {
		light_process_spot(spot_light_indices[i],vertex,eye_vec,normal,binormal,tangent,albedo,specular,roughness,rim,rim_tint,clearcoat,clearcoat_gloss,anisotropy,diffuse_light,specular_light);
	}



#endif




#if defined(USE_LIGHT_SHADER_CODE)
//light is written by the light shader
{

LIGHT_SHADER_CODE

}
#endif

#ifdef RENDER_DEPTH
//nothing happens, so a tree-ssa optimizer will result in no fragment shader :)
#else

	specular_light*=reflection_multiplier;
	ambient_light*=albedo; //ambient must be multiplied by albedo at the end

#if defined(ENABLE_AO)
	ambient_light*=ao;
#endif

	//energy conservation
	diffuse_light=mix(diffuse_light,vec3(0.0),specular);
	ambient_light=mix(ambient_light,vec3(0.0),specular);
	specular_light *= max(vec3(0.04),specular);

#ifdef USE_MULTIPLE_RENDER_TARGETS

#if defined(ENABLE_AO)

	float ambient_scale=0.0; // AO is supplied by material
#else
	//approximate ambient scale for SSAO, since we will lack full ambient
	float max_emission=max(emission.r,max(emission.g,emission.b));
	float max_ambient=max(ambient_light.r,max(ambient_light.g,ambient_light.b));
	float max_diffuse=max(diffuse_light.r,max(diffuse_light.g,diffuse_light.b));
	float total_ambient = max_ambient+max_diffuse+max_emission;
	float ambient_scale = (total_ambient>0.0) ? (max_ambient+ambient_occlusion_affect_light*max_diffuse)/total_ambient : 0.0;
#endif //ENABLE_AO

	diffuse_buffer=vec4(emission+diffuse_light+ambient_light,ambient_scale);
	specular_buffer=vec4(specular_light,max(specular.r,max(specular.g,specular.b)));


	normal_mr_buffer=vec4(normalize(normal)*0.5+0.5,roughness);

#if defined (ENABLE_SSS_MOTION)
	motion_ssr_buffer = vec4(vec3(0.0),sss_strength);
#endif

#else


#ifdef SHADELESS
	frag_color=vec4(albedo,alpha);
#else
	frag_color=vec4(emission+ambient_light+diffuse_light+specular_light,alpha);
#endif //SHADELESS


#endif //USE_MULTIPLE_RENDER_TARGETS



#endif //RENDER_DEPTH


}