summaryrefslogtreecommitdiff
path: root/drivers/gles3/shaders/scene.glsl
blob: df1645db1fdb82d10fcb417d0bf03491931b9073 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
/* clang-format off */
[vertex]

#define M_PI 3.14159265359

#define SHADER_IS_SRGB false

/*
from VisualServer:

ARRAY_VERTEX=0,
ARRAY_NORMAL=1,
ARRAY_TANGENT=2,
ARRAY_COLOR=3,
ARRAY_TEX_UV=4,
ARRAY_TEX_UV2=5,
ARRAY_BONES=6,
ARRAY_WEIGHTS=7,
ARRAY_INDEX=8,
*/

// hack to use uv if no uv present so it works with lightmap

/* INPUT ATTRIBS */

layout(location = 0) in highp vec4 vertex_attrib;
/* clang-format on */
layout(location = 1) in vec3 normal_attrib;
#if defined(ENABLE_TANGENT_INTERP) || defined(ENABLE_NORMALMAP) || defined(LIGHT_USE_ANISOTROPY)
layout(location = 2) in vec4 tangent_attrib;
#endif

#if defined(ENABLE_COLOR_INTERP)
layout(location = 3) in vec4 color_attrib;
#endif

#if defined(ENABLE_UV_INTERP)
layout(location = 4) in vec2 uv_attrib;
#endif

#if defined(ENABLE_UV2_INTERP) || defined(USE_LIGHTMAP)
layout(location = 5) in vec2 uv2_attrib;
#endif

#ifdef USE_SKELETON
layout(location = 6) in uvec4 bone_indices; // attrib:6
layout(location = 7) in vec4 bone_weights; // attrib:7
#endif

#ifdef USE_INSTANCING

layout(location = 8) in highp vec4 instance_xform0;
layout(location = 9) in highp vec4 instance_xform1;
layout(location = 10) in highp vec4 instance_xform2;
layout(location = 11) in lowp vec4 instance_color;

#if defined(ENABLE_INSTANCE_CUSTOM)
layout(location = 12) in highp vec4 instance_custom_data;
#endif

#endif

layout(std140) uniform SceneData { // ubo:0

	highp mat4 projection_matrix;
	highp mat4 inv_projection_matrix;
	highp mat4 camera_inverse_matrix;
	highp mat4 camera_matrix;

	mediump vec4 ambient_light_color;
	mediump vec4 bg_color;

	mediump vec4 fog_color_enabled;
	mediump vec4 fog_sun_color_amount;

	mediump float ambient_energy;
	mediump float bg_energy;

	mediump float z_offset;
	mediump float z_slope_scale;
	highp float shadow_dual_paraboloid_render_zfar;
	highp float shadow_dual_paraboloid_render_side;

	highp vec2 viewport_size;
	highp vec2 screen_pixel_size;
	highp vec2 shadow_atlas_pixel_size;
	highp vec2 directional_shadow_pixel_size;

	highp float time;
	highp float z_far;
	mediump float reflection_multiplier;
	mediump float subsurface_scatter_width;
	mediump float ambient_occlusion_affect_light;
	mediump float ambient_occlusion_affect_ao_channel;
	mediump float opaque_prepass_threshold;

	bool fog_depth_enabled;
	highp float fog_depth_begin;
	highp float fog_depth_end;
	mediump float fog_density;
	highp float fog_depth_curve;
	bool fog_transmit_enabled;
	highp float fog_transmit_curve;
	bool fog_height_enabled;
	highp float fog_height_min;
	highp float fog_height_max;
	highp float fog_height_curve;
};

uniform highp mat4 world_transform;

#ifdef USE_LIGHT_DIRECTIONAL

layout(std140) uniform DirectionalLightData { //ubo:3

	highp vec4 light_pos_inv_radius;
	mediump vec4 light_direction_attenuation;
	mediump vec4 light_color_energy;
	mediump vec4 light_params; // cone attenuation, angle, specular, shadow enabled,
	mediump vec4 light_clamp;
	mediump vec4 shadow_color_contact;
	highp mat4 shadow_matrix1;
	highp mat4 shadow_matrix2;
	highp mat4 shadow_matrix3;
	highp mat4 shadow_matrix4;
	mediump vec4 shadow_split_offsets;
};

#endif

#ifdef USE_VERTEX_LIGHTING
//omni and spot

struct LightData {

	highp vec4 light_pos_inv_radius;
	mediump vec4 light_direction_attenuation;
	mediump vec4 light_color_energy;
	mediump vec4 light_params; // cone attenuation, angle, specular, shadow enabled,
	mediump vec4 light_clamp;
	mediump vec4 shadow_color_contact;
	highp mat4 shadow_matrix;
};

layout(std140) uniform OmniLightData { //ubo:4

	LightData omni_lights[MAX_LIGHT_DATA_STRUCTS];
};

layout(std140) uniform SpotLightData { //ubo:5

	LightData spot_lights[MAX_LIGHT_DATA_STRUCTS];
};

#ifdef USE_FORWARD_LIGHTING

uniform int omni_light_indices[MAX_FORWARD_LIGHTS];
uniform int omni_light_count;

uniform int spot_light_indices[MAX_FORWARD_LIGHTS];
uniform int spot_light_count;

#endif

out vec4 diffuse_light_interp;
out vec4 specular_light_interp;

void light_compute(vec3 N, vec3 L, vec3 V, vec3 light_color, float roughness, inout vec3 diffuse, inout vec3 specular) {

	float dotNL = max(dot(N, L), 0.0);
	diffuse += dotNL * light_color / M_PI;

	if (roughness > 0.0) {

		vec3 H = normalize(V + L);
		float dotNH = max(dot(N, H), 0.0);
		float intensity = (roughness >= 1.0 ? 1.0 : pow(dotNH, (1.0 - roughness) * 256.0));
		specular += light_color * intensity;
	}
}

void light_process_omni(int idx, vec3 vertex, vec3 eye_vec, vec3 normal, float roughness, inout vec3 diffuse, inout vec3 specular) {

	vec3 light_rel_vec = omni_lights[idx].light_pos_inv_radius.xyz - vertex;
	float light_length = length(light_rel_vec);
	float normalized_distance = light_length * omni_lights[idx].light_pos_inv_radius.w;
	vec3 light_attenuation = vec3(pow(max(1.0 - normalized_distance, 0.0), omni_lights[idx].light_direction_attenuation.w));

	light_compute(normal, normalize(light_rel_vec), eye_vec, omni_lights[idx].light_color_energy.rgb * light_attenuation, roughness, diffuse, specular);
}

void light_process_spot(int idx, vec3 vertex, vec3 eye_vec, vec3 normal, float roughness, inout vec3 diffuse, inout vec3 specular) {

	vec3 light_rel_vec = spot_lights[idx].light_pos_inv_radius.xyz - vertex;
	float light_length = length(light_rel_vec);
	float normalized_distance = light_length * spot_lights[idx].light_pos_inv_radius.w;
	vec3 light_attenuation = vec3(pow(max(1.0 - normalized_distance, 0.001), spot_lights[idx].light_direction_attenuation.w));
	vec3 spot_dir = spot_lights[idx].light_direction_attenuation.xyz;
	float spot_cutoff = spot_lights[idx].light_params.y;
	float scos = max(dot(-normalize(light_rel_vec), spot_dir), spot_cutoff);
	float spot_rim = (1.0 - scos) / (1.0 - spot_cutoff);
	light_attenuation *= 1.0 - pow(max(spot_rim, 0.001), spot_lights[idx].light_params.x);

	light_compute(normal, normalize(light_rel_vec), eye_vec, spot_lights[idx].light_color_energy.rgb * light_attenuation, roughness, diffuse, specular);
}

#endif

/* Varyings */

out highp vec3 vertex_interp;
out vec3 normal_interp;

#if defined(ENABLE_COLOR_INTERP)
out vec4 color_interp;
#endif

#if defined(ENABLE_UV_INTERP)
out vec2 uv_interp;
#endif

#if defined(ENABLE_UV2_INTERP) || defined(USE_LIGHTMAP)
out vec2 uv2_interp;
#endif

#if defined(ENABLE_TANGENT_INTERP) || defined(ENABLE_NORMALMAP) || defined(LIGHT_USE_ANISOTROPY)
out vec3 tangent_interp;
out vec3 binormal_interp;
#endif

#if defined(USE_MATERIAL)

/* clang-format off */
layout(std140) uniform UniformData { // ubo:1

MATERIAL_UNIFORMS

};
/* clang-format on */

#endif

/* clang-format off */

VERTEX_SHADER_GLOBALS

/* clang-format on */

#ifdef RENDER_DEPTH_DUAL_PARABOLOID

out highp float dp_clip;

#endif

#define SKELETON_TEXTURE_WIDTH 256

#ifdef USE_SKELETON
uniform highp sampler2D skeleton_texture; // texunit:-1
#endif

out highp vec4 position_interp;

// FIXME: This triggers a Mesa bug that breaks rendering, so disabled for now.
// See GH-13450 and https://bugs.freedesktop.org/show_bug.cgi?id=100316
//invariant gl_Position;

void main() {

	highp vec4 vertex = vertex_attrib; // vec4(vertex_attrib.xyz * data_attrib.x,1.0);

	mat4 world_matrix = world_transform;

#ifdef USE_INSTANCING

	{
		highp mat4 m = mat4(instance_xform0, instance_xform1, instance_xform2, vec4(0.0, 0.0, 0.0, 1.0));
		world_matrix = world_matrix * transpose(m);
	}
#endif

	vec3 normal = normal_attrib;

#if defined(ENABLE_TANGENT_INTERP) || defined(ENABLE_NORMALMAP) || defined(LIGHT_USE_ANISOTROPY)
	vec3 tangent = tangent_attrib.xyz;
	float binormalf = tangent_attrib.a;
#endif

#if defined(ENABLE_COLOR_INTERP)
	color_interp = color_attrib;
#if defined(USE_INSTANCING)
	color_interp *= instance_color;
#endif

#endif

#if defined(ENABLE_TANGENT_INTERP) || defined(ENABLE_NORMALMAP) || defined(LIGHT_USE_ANISOTROPY)

	vec3 binormal = normalize(cross(normal, tangent) * binormalf);
#endif

#if defined(ENABLE_UV_INTERP)
	uv_interp = uv_attrib;
#endif

#if defined(ENABLE_UV2_INTERP) || defined(USE_LIGHTMAP)
	uv2_interp = uv2_attrib;
#endif

#ifdef OVERRIDE_POSITION
	highp vec4 position;
#endif

#if defined(USE_INSTANCING) && defined(ENABLE_INSTANCE_CUSTOM)
	vec4 instance_custom = instance_custom_data;
#else
	vec4 instance_custom = vec4(0.0);
#endif

	highp mat4 local_projection = projection_matrix;

//using world coordinates
#if !defined(SKIP_TRANSFORM_USED) && defined(VERTEX_WORLD_COORDS_USED)

	vertex = world_matrix * vertex;

#if defined(ENSURE_CORRECT_NORMALS)
	mat3 normal_matrix = mat3(transpose(inverse(world_matrix)));
	normal = normal_matrix * normal;
#else
	normal = normalize((world_matrix * vec4(normal, 0.0)).xyz);
#endif

#if defined(ENABLE_TANGENT_INTERP) || defined(ENABLE_NORMALMAP) || defined(LIGHT_USE_ANISOTROPY)

	tangent = normalize((world_matrix * vec4(tangent, 0.0)).xyz);
	binormal = normalize((world_matrix * vec4(binormal, 0.0)).xyz);
#endif
#endif

	float roughness = 1.0;

//defines that make writing custom shaders easier
#define projection_matrix local_projection
#define world_transform world_matrix

#ifdef USE_SKELETON
	{
		//skeleton transform
		ivec4 bone_indicesi = ivec4(bone_indices); // cast to signed int

		ivec2 tex_ofs = ivec2(bone_indicesi.x % 256, (bone_indicesi.x / 256) * 3);
		highp mat3x4 m;
		m = mat3x4(
					texelFetch(skeleton_texture, tex_ofs, 0),
					texelFetch(skeleton_texture, tex_ofs + ivec2(0, 1), 0),
					texelFetch(skeleton_texture, tex_ofs + ivec2(0, 2), 0)) *
			bone_weights.x;

		tex_ofs = ivec2(bone_indicesi.y % 256, (bone_indicesi.y / 256) * 3);

		m += mat3x4(
					 texelFetch(skeleton_texture, tex_ofs, 0),
					 texelFetch(skeleton_texture, tex_ofs + ivec2(0, 1), 0),
					 texelFetch(skeleton_texture, tex_ofs + ivec2(0, 2), 0)) *
			 bone_weights.y;

		tex_ofs = ivec2(bone_indicesi.z % 256, (bone_indicesi.z / 256) * 3);

		m += mat3x4(
					 texelFetch(skeleton_texture, tex_ofs, 0),
					 texelFetch(skeleton_texture, tex_ofs + ivec2(0, 1), 0),
					 texelFetch(skeleton_texture, tex_ofs + ivec2(0, 2), 0)) *
			 bone_weights.z;

		tex_ofs = ivec2(bone_indicesi.w % 256, (bone_indicesi.w / 256) * 3);

		m += mat3x4(
					 texelFetch(skeleton_texture, tex_ofs, 0),
					 texelFetch(skeleton_texture, tex_ofs + ivec2(0, 1), 0),
					 texelFetch(skeleton_texture, tex_ofs + ivec2(0, 2), 0)) *
			 bone_weights.w;

		mat4 bone_matrix = transpose(mat4(m[0], m[1], m[2], vec4(0.0, 0.0, 0.0, 1.0)));

		world_matrix = bone_matrix * world_matrix;
	}
#endif

	mat4 modelview = camera_inverse_matrix * world_matrix;
	{
		/* clang-format off */

VERTEX_SHADER_CODE

		/* clang-format on */
	}

// using local coordinates (default)
#if !defined(SKIP_TRANSFORM_USED) && !defined(VERTEX_WORLD_COORDS_USED)

	vertex = modelview * vertex;

#if defined(ENSURE_CORRECT_NORMALS)
	mat3 normal_matrix = mat3(transpose(inverse(modelview)));
	normal = normal_matrix * normal;
#else
	normal = normalize((modelview * vec4(normal, 0.0)).xyz);
#endif

#if defined(ENABLE_TANGENT_INTERP) || defined(ENABLE_NORMALMAP) || defined(LIGHT_USE_ANISOTROPY)

	tangent = normalize((modelview * vec4(tangent, 0.0)).xyz);
	binormal = normalize((modelview * vec4(binormal, 0.0)).xyz);
#endif
#endif

//using world coordinates
#if !defined(SKIP_TRANSFORM_USED) && defined(VERTEX_WORLD_COORDS_USED)

	vertex = camera_inverse_matrix * vertex;
	normal = normalize((camera_inverse_matrix * vec4(normal, 0.0)).xyz);

#if defined(ENABLE_TANGENT_INTERP) || defined(ENABLE_NORMALMAP) || defined(LIGHT_USE_ANISOTROPY)

	tangent = normalize((camera_inverse_matrix * vec4(tangent, 0.0)).xyz);
	binormal = normalize((camera_inverse_matrix * vec4(binormal, 0.0)).xyz);
#endif
#endif

	vertex_interp = vertex.xyz;
	normal_interp = normal;

#if defined(ENABLE_TANGENT_INTERP) || defined(ENABLE_NORMALMAP) || defined(LIGHT_USE_ANISOTROPY)
	tangent_interp = tangent;
	binormal_interp = binormal;
#endif

#ifdef RENDER_DEPTH

#ifdef RENDER_DEPTH_DUAL_PARABOLOID

	vertex_interp.z *= shadow_dual_paraboloid_render_side;
	normal_interp.z *= shadow_dual_paraboloid_render_side;

	dp_clip = vertex_interp.z; //this attempts to avoid noise caused by objects sent to the other parabolloid side due to bias

	//for dual paraboloid shadow mapping, this is the fastest but least correct way, as it curves straight edges

	highp vec3 vtx = vertex_interp + normalize(vertex_interp) * z_offset;
	highp float distance = length(vtx);
	vtx = normalize(vtx);
	vtx.xy /= 1.0 - vtx.z;
	vtx.z = (distance / shadow_dual_paraboloid_render_zfar);
	vtx.z = vtx.z * 2.0 - 1.0;

	vertex_interp = vtx;

#else

	float z_ofs = z_offset;
	z_ofs += (1.0 - abs(normal_interp.z)) * z_slope_scale;
	vertex_interp.z -= z_ofs;

#endif //RENDER_DEPTH_DUAL_PARABOLOID

#endif //RENDER_DEPTH

#ifdef OVERRIDE_POSITION
	gl_Position = position;
#else
	gl_Position = projection_matrix * vec4(vertex_interp, 1.0);
#endif

	position_interp = gl_Position;

#ifdef USE_VERTEX_LIGHTING

	diffuse_light_interp = vec4(0.0);
	specular_light_interp = vec4(0.0);

#ifdef USE_FORWARD_LIGHTING

	for (int i = 0; i < omni_light_count; i++) {
		light_process_omni(omni_light_indices[i], vertex_interp, -normalize(vertex_interp), normal_interp, roughness, diffuse_light_interp.rgb, specular_light_interp.rgb);
	}

	for (int i = 0; i < spot_light_count; i++) {
		light_process_spot(spot_light_indices[i], vertex_interp, -normalize(vertex_interp), normal_interp, roughness, diffuse_light_interp.rgb, specular_light_interp.rgb);
	}
#endif

#ifdef USE_LIGHT_DIRECTIONAL

	vec3 directional_diffuse = vec3(0.0);
	vec3 directional_specular = vec3(0.0);
	light_compute(normal_interp, -light_direction_attenuation.xyz, -normalize(vertex_interp), light_color_energy.rgb, roughness, directional_diffuse, directional_specular);

	float diff_avg = dot(diffuse_light_interp.rgb, vec3(0.33333));
	float diff_dir_avg = dot(directional_diffuse, vec3(0.33333));
	if (diff_avg > 0.0) {
		diffuse_light_interp.a = diff_dir_avg / (diff_avg + diff_dir_avg);
	} else {
		diffuse_light_interp.a = 1.0;
	}

	diffuse_light_interp.rgb += directional_diffuse;

	float spec_avg = dot(specular_light_interp.rgb, vec3(0.33333));
	float spec_dir_avg = dot(directional_specular, vec3(0.33333));
	if (spec_avg > 0.0) {
		specular_light_interp.a = spec_dir_avg / (spec_avg + spec_dir_avg);
	} else {
		specular_light_interp.a = 1.0;
	}

	specular_light_interp.rgb += directional_specular;

#endif //USE_LIGHT_DIRECTIONAL

#endif // USE_VERTEX_LIGHTING
}

/* clang-format off */
[fragment]


/* texture unit usage, N is max_texture_unity-N

1-skeleton
2-radiance
3-reflection_atlas
4-directional_shadow
5-shadow_atlas
6-decal_atlas
7-screen
8-depth
9-probe1
10-probe2

*/

uniform highp mat4 world_transform;
/* clang-format on */

#define M_PI 3.14159265359
#define SHADER_IS_SRGB false

/* Varyings */

#if defined(ENABLE_COLOR_INTERP)
in vec4 color_interp;
#endif

#if defined(ENABLE_UV_INTERP)
in vec2 uv_interp;
#endif

#if defined(ENABLE_UV2_INTERP) || defined(USE_LIGHTMAP)
in vec2 uv2_interp;
#endif

#if defined(ENABLE_TANGENT_INTERP) || defined(ENABLE_NORMALMAP) || defined(LIGHT_USE_ANISOTROPY)
in vec3 tangent_interp;
in vec3 binormal_interp;
#endif

in highp vec3 vertex_interp;
in vec3 normal_interp;

/* PBR CHANNELS */

#ifdef USE_RADIANCE_MAP

layout(std140) uniform Radiance { // ubo:2

	mat4 radiance_inverse_xform;
	float radiance_ambient_contribution;
};

#define RADIANCE_MAX_LOD 5.0

#ifdef USE_RADIANCE_MAP_ARRAY

uniform sampler2DArray radiance_map; // texunit:-2

vec3 textureDualParaboloid(sampler2DArray p_tex, vec3 p_vec, float p_roughness) {

	vec3 norm = normalize(p_vec);
	norm.xy /= 1.0 + abs(norm.z);
	norm.xy = norm.xy * vec2(0.5, 0.25) + vec2(0.5, 0.25);

	// we need to lie the derivatives (normg) and assume that DP side is always the same
	// to get proper texture filtering
	vec2 normg = norm.xy;
	if (norm.z > 0.0) {
		norm.y = 0.5 - norm.y + 0.5;
	}

	// thanks to OpenGL spec using floor(layer + 0.5) for texture arrays,
	// it's easy to have precision errors using fract() to interpolate layers
	// as such, using fixed point to ensure it works.

	float index = p_roughness * RADIANCE_MAX_LOD;
	int indexi = int(index * 256.0);
	vec3 base = textureGrad(p_tex, vec3(norm.xy, float(indexi / 256)), dFdx(normg), dFdy(normg)).xyz;
	vec3 next = textureGrad(p_tex, vec3(norm.xy, float(indexi / 256 + 1)), dFdx(normg), dFdy(normg)).xyz;
	return mix(base, next, float(indexi % 256) / 256.0);
}

#else

uniform sampler2D radiance_map; // texunit:-2

vec3 textureDualParaboloid(sampler2D p_tex, vec3 p_vec, float p_roughness) {

	vec3 norm = normalize(p_vec);
	norm.xy /= 1.0 + abs(norm.z);
	norm.xy = norm.xy * vec2(0.5, 0.25) + vec2(0.5, 0.25);
	if (norm.z > 0.0) {
		norm.y = 0.5 - norm.y + 0.5;
	}
	return textureLod(p_tex, norm.xy, p_roughness * RADIANCE_MAX_LOD).xyz;
}

#endif

#endif

/* Material Uniforms */

#if defined(USE_MATERIAL)

/* clang-format off */
layout(std140) uniform UniformData {

MATERIAL_UNIFORMS

};
/* clang-format on */

#endif

/* clang-format off */

FRAGMENT_SHADER_GLOBALS

/* clang-format on */

layout(std140) uniform SceneData {

	highp mat4 projection_matrix;
	highp mat4 inv_projection_matrix;
	highp mat4 camera_inverse_matrix;
	highp mat4 camera_matrix;

	mediump vec4 ambient_light_color;
	mediump vec4 bg_color;

	mediump vec4 fog_color_enabled;
	mediump vec4 fog_sun_color_amount;

	mediump float ambient_energy;
	mediump float bg_energy;

	mediump float z_offset;
	mediump float z_slope_scale;
	highp float shadow_dual_paraboloid_render_zfar;
	highp float shadow_dual_paraboloid_render_side;

	highp vec2 viewport_size;
	highp vec2 screen_pixel_size;
	highp vec2 shadow_atlas_pixel_size;
	highp vec2 directional_shadow_pixel_size;

	highp float time;
	highp float z_far;
	mediump float reflection_multiplier;
	mediump float subsurface_scatter_width;
	mediump float ambient_occlusion_affect_light;
	mediump float ambient_occlusion_affect_ao_channel;
	mediump float opaque_prepass_threshold;

	bool fog_depth_enabled;
	highp float fog_depth_begin;
	highp float fog_depth_end;
	mediump float fog_density;
	highp float fog_depth_curve;
	bool fog_transmit_enabled;
	highp float fog_transmit_curve;
	bool fog_height_enabled;
	highp float fog_height_min;
	highp float fog_height_max;
	highp float fog_height_curve;
};

	//directional light data

#ifdef USE_LIGHT_DIRECTIONAL

layout(std140) uniform DirectionalLightData {

	highp vec4 light_pos_inv_radius;
	mediump vec4 light_direction_attenuation;
	mediump vec4 light_color_energy;
	mediump vec4 light_params; // cone attenuation, angle, specular, shadow enabled,
	mediump vec4 light_clamp;
	mediump vec4 shadow_color_contact;
	highp mat4 shadow_matrix1;
	highp mat4 shadow_matrix2;
	highp mat4 shadow_matrix3;
	highp mat4 shadow_matrix4;
	mediump vec4 shadow_split_offsets;
};

uniform highp sampler2DShadow directional_shadow; // texunit:-4

#endif

#ifdef USE_VERTEX_LIGHTING
in vec4 diffuse_light_interp;
in vec4 specular_light_interp;
#endif
// omni and spot

struct LightData {

	highp vec4 light_pos_inv_radius;
	mediump vec4 light_direction_attenuation;
	mediump vec4 light_color_energy;
	mediump vec4 light_params; // cone attenuation, angle, specular, shadow enabled,
	mediump vec4 light_clamp;
	mediump vec4 shadow_color_contact;
	highp mat4 shadow_matrix;
};

layout(std140) uniform OmniLightData { // ubo:4

	LightData omni_lights[MAX_LIGHT_DATA_STRUCTS];
};

layout(std140) uniform SpotLightData { // ubo:5

	LightData spot_lights[MAX_LIGHT_DATA_STRUCTS];
};

uniform highp sampler2DShadow shadow_atlas; // texunit:-5

struct ReflectionData {

	mediump vec4 box_extents;
	mediump vec4 box_offset;
	mediump vec4 params; // intensity, 0, interior , boxproject
	mediump vec4 ambient; // ambient color, energy
	mediump vec4 atlas_clamp;
	highp mat4 local_matrix; // up to here for spot and omni, rest is for directional
	// notes: for ambientblend, use distance to edge to blend between already existing global environment
};

layout(std140) uniform ReflectionProbeData { //ubo:6

	ReflectionData reflections[MAX_REFLECTION_DATA_STRUCTS];
};
uniform mediump sampler2D reflection_atlas; // texunit:-3

#ifdef USE_FORWARD_LIGHTING

uniform int omni_light_indices[MAX_FORWARD_LIGHTS];
uniform int omni_light_count;

uniform int spot_light_indices[MAX_FORWARD_LIGHTS];
uniform int spot_light_count;

uniform int reflection_indices[MAX_FORWARD_LIGHTS];
uniform int reflection_count;

#endif

#if defined(SCREEN_TEXTURE_USED)

uniform highp sampler2D screen_texture; // texunit:-7

#endif

#ifdef USE_MULTIPLE_RENDER_TARGETS

layout(location = 0) out vec4 diffuse_buffer;
layout(location = 1) out vec4 specular_buffer;
layout(location = 2) out vec4 normal_mr_buffer;
#if defined(ENABLE_SSS)
layout(location = 3) out float sss_buffer;
#endif

#else

layout(location = 0) out vec4 frag_color;

#endif

in highp vec4 position_interp;
uniform highp sampler2D depth_buffer; // texunit:-8

#ifdef USE_CONTACT_SHADOWS

float contact_shadow_compute(vec3 pos, vec3 dir, float max_distance) {

	if (abs(dir.z) > 0.99)
		return 1.0;

	vec3 endpoint = pos + dir * max_distance;
	vec4 source = position_interp;
	vec4 dest = projection_matrix * vec4(endpoint, 1.0);

	vec2 from_screen = (source.xy / source.w) * 0.5 + 0.5;
	vec2 to_screen = (dest.xy / dest.w) * 0.5 + 0.5;

	vec2 screen_rel = to_screen - from_screen;

	if (length(screen_rel) < 0.00001)
		return 1.0; // too small, don't do anything

	/*
	float pixel_size; // approximate pixel size

	if (screen_rel.x > screen_rel.y) {

		pixel_size = abs((pos.x - endpoint.x) / (screen_rel.x / screen_pixel_size.x));
	} else {
		pixel_size = abs((pos.y - endpoint.y) / (screen_rel.y / screen_pixel_size.y));
	}
	*/
	vec4 bias = projection_matrix * vec4(pos + vec3(0.0, 0.0, max_distance * 0.5), 1.0);

	vec2 pixel_incr = normalize(screen_rel) * screen_pixel_size;

	float steps = length(screen_rel) / length(pixel_incr);
	steps = min(2000.0, steps); // put a limit to avoid freezing in some strange situation
	//steps = 10.0;

	vec4 incr = (dest - source) / steps;
	float ratio = 0.0;
	float ratio_incr = 1.0 / steps;

	while (steps > 0.0) {
		source += incr * 2.0;
		bias += incr * 2.0;

		vec3 uv_depth = (source.xyz / source.w) * 0.5 + 0.5;
		float depth = texture(depth_buffer, uv_depth.xy).r;

		if (depth < uv_depth.z) {
			if (depth > (bias.z / bias.w) * 0.5 + 0.5) {
				return min(pow(ratio, 4.0), 1.0);
			} else {
				return 1.0;
			}
		}

		ratio += ratio_incr;
		steps -= 1.0;
	}

	return 1.0;
}

#endif

// This returns the G_GGX function divided by 2 cos_theta_m, where in practice cos_theta_m is either N.L or N.V.
// We're dividing this factor off because the overall term we'll end up looks like
// (see, for example, the first unnumbered equation in B. Burley, "Physically Based Shading at Disney", SIGGRAPH 2012):
//
//   F(L.V) D(N.H) G(N.L) G(N.V) / (4 N.L N.V)
//
// We're basically regouping this as
//
//   F(L.V) D(N.H) [G(N.L)/(2 N.L)] [G(N.V) / (2 N.V)]
//
// and thus, this function implements the [G(N.m)/(2 N.m)] part with m = L or V.
//
// The contents of the D and G (G1) functions (GGX) are taken from
// E. Heitz, "Understanding the Masking-Shadowing Function in Microfacet-Based BRDFs", J. Comp. Graph. Tech. 3 (2) (2014).
// Eqns 71-72 and 85-86 (see also Eqns 43 and 80).

float G_GGX_2cos(float cos_theta_m, float alpha) {
	// Schlick's approximation
	// C. Schlick, "An Inexpensive BRDF Model for Physically-based Rendering", Computer Graphics Forum. 13 (3): 233 (1994)
	// Eq. (19), although see Heitz (2014) the about the problems with his derivation.
	// It nevertheless approximates GGX well with k = alpha/2.
	float k = 0.5 * alpha;
	return 0.5 / (cos_theta_m * (1.0 - k) + k);

	// float cos2 = cos_theta_m * cos_theta_m;
	// float sin2 = (1.0 - cos2);
	// return 1.0 / (cos_theta_m + sqrt(cos2 + alpha * alpha * sin2));
}

float D_GGX(float cos_theta_m, float alpha) {
	float alpha2 = alpha * alpha;
	float d = 1.0 + (alpha2 - 1.0) * cos_theta_m * cos_theta_m;
	return alpha2 / (M_PI * d * d);
}

float G_GGX_anisotropic_2cos(float cos_theta_m, float alpha_x, float alpha_y, float cos_phi, float sin_phi) {
	float cos2 = cos_theta_m * cos_theta_m;
	float sin2 = (1.0 - cos2);
	float s_x = alpha_x * cos_phi;
	float s_y = alpha_y * sin_phi;
	return 1.0 / max(cos_theta_m + sqrt(cos2 + (s_x * s_x + s_y * s_y) * sin2), 0.001);
}

float D_GGX_anisotropic(float cos_theta_m, float alpha_x, float alpha_y, float cos_phi, float sin_phi) {
	float cos2 = cos_theta_m * cos_theta_m;
	float sin2 = (1.0 - cos2);
	float r_x = cos_phi / alpha_x;
	float r_y = sin_phi / alpha_y;
	float d = cos2 + sin2 * (r_x * r_x + r_y * r_y);
	return 1.0 / max(M_PI * alpha_x * alpha_y * d * d, 0.001);
}

float SchlickFresnel(float u) {
	float m = 1.0 - u;
	float m2 = m * m;
	return m2 * m2 * m; // pow(m,5)
}

float GTR1(float NdotH, float a) {
	if (a >= 1.0) return 1.0 / M_PI;
	float a2 = a * a;
	float t = 1.0 + (a2 - 1.0) * NdotH * NdotH;
	return (a2 - 1.0) / (M_PI * log(a2) * t);
}

vec3 F0(float metallic, float specular, vec3 albedo) {
	float dielectric = 0.16 * specular * specular;
	// use albedo * metallic as colored specular reflectance at 0 angle for metallic materials;
	// see https://google.github.io/filament/Filament.md.html
	return mix(vec3(dielectric), albedo, vec3(metallic));
}

void light_compute(vec3 N, vec3 L, vec3 V, vec3 B, vec3 T, vec3 light_color, vec3 attenuation, vec3 diffuse_color, vec3 transmission, float specular_blob_intensity, float roughness, float metallic, float specular, float rim, float rim_tint, float clearcoat, float clearcoat_gloss, float anisotropy, inout vec3 diffuse_light, inout vec3 specular_light) {

#if defined(USE_LIGHT_SHADER_CODE)
	// light is written by the light shader

	vec3 normal = N;
	vec3 albedo = diffuse_color;
	vec3 light = L;
	vec3 view = V;

	/* clang-format off */

LIGHT_SHADER_CODE

	/* clang-format on */

#else
	float NdotL = dot(N, L);
	float cNdotL = max(NdotL, 0.0); // clamped NdotL
	float NdotV = dot(N, V);
	float cNdotV = max(NdotV, 0.0);

#if defined(DIFFUSE_BURLEY) || defined(SPECULAR_BLINN) || defined(SPECULAR_SCHLICK_GGX) || defined(LIGHT_USE_CLEARCOAT)
	vec3 H = normalize(V + L);
#endif

#if defined(SPECULAR_BLINN) || defined(SPECULAR_SCHLICK_GGX) || defined(LIGHT_USE_CLEARCOAT)
	float cNdotH = max(dot(N, H), 0.0);
#endif

#if defined(DIFFUSE_BURLEY) || defined(SPECULAR_SCHLICK_GGX) || defined(LIGHT_USE_CLEARCOAT)
	float cLdotH = max(dot(L, H), 0.0);
#endif

	if (metallic < 1.0) {
#if defined(DIFFUSE_OREN_NAYAR)
		vec3 diffuse_brdf_NL;
#else
		float diffuse_brdf_NL; // BRDF times N.L for calculating diffuse radiance
#endif

#if defined(DIFFUSE_LAMBERT_WRAP)
		// energy conserving lambert wrap shader
		diffuse_brdf_NL = max(0.0, (NdotL + roughness) / ((1.0 + roughness) * (1.0 + roughness)));

#elif defined(DIFFUSE_OREN_NAYAR)

		{
			// see http://mimosa-pudica.net/improved-oren-nayar.html
			float LdotV = dot(L, V);

			float s = LdotV - NdotL * NdotV;
			float t = mix(1.0, max(NdotL, NdotV), step(0.0, s));

			float sigma2 = roughness * roughness; // TODO: this needs checking
			vec3 A = 1.0 + sigma2 * (-0.5 / (sigma2 + 0.33) + 0.17 * diffuse_color / (sigma2 + 0.13));
			float B = 0.45 * sigma2 / (sigma2 + 0.09);

			diffuse_brdf_NL = cNdotL * (A + vec3(B) * s / t) * (1.0 / M_PI);
		}

#elif defined(DIFFUSE_TOON)

		diffuse_brdf_NL = smoothstep(-roughness, max(roughness, 0.01), NdotL);

#elif defined(DIFFUSE_BURLEY)

		{
			float FD90_minus_1 = 2.0 * cLdotH * cLdotH * roughness - 0.5;
			float FdV = 1.0 + FD90_minus_1 * SchlickFresnel(cNdotV);
			float FdL = 1.0 + FD90_minus_1 * SchlickFresnel(cNdotL);
			diffuse_brdf_NL = (1.0 / M_PI) * FdV * FdL * cNdotL;
			/*
			float energyBias = mix(roughness, 0.0, 0.5);
			float energyFactor = mix(roughness, 1.0, 1.0 / 1.51);
			float fd90 = energyBias + 2.0 * VoH * VoH * roughness;
			float f0 = 1.0;
			float lightScatter = f0 + (fd90 - f0) * pow(1.0 - cNdotL, 5.0);
			float viewScatter = f0 + (fd90 - f0) * pow(1.0 - cNdotV, 5.0);

			diffuse_brdf_NL = lightScatter * viewScatter * energyFactor;
			*/
		}
#else
		// lambert
		diffuse_brdf_NL = cNdotL * (1.0 / M_PI);
#endif

		diffuse_light += light_color * diffuse_color * diffuse_brdf_NL * attenuation;

#if defined(TRANSMISSION_USED)
		diffuse_light += light_color * diffuse_color * (vec3(1.0 / M_PI) - diffuse_brdf_NL) * transmission * attenuation;
#endif

#if defined(LIGHT_USE_RIM)
		float rim_light = pow(max(0.0, 1.0 - cNdotV), max(0.0, (1.0 - roughness) * 16.0));
		diffuse_light += rim_light * rim * mix(vec3(1.0), diffuse_color, rim_tint) * light_color;
#endif
	}

	if (roughness > 0.0) { // FIXME: roughness == 0 should not disable specular light entirely

		// D

#if defined(SPECULAR_BLINN)

		//normalized blinn
		float shininess = exp2(15.0 * (1.0 - roughness) + 1.0) * 0.25;
		float blinn = pow(cNdotH, shininess);
		blinn *= (shininess + 8.0) * (1.0 / (8.0 * M_PI));
		float intensity = (blinn) / max(4.0 * cNdotV * cNdotL, 0.75);

		specular_light += light_color * intensity * specular_blob_intensity * attenuation;

#elif defined(SPECULAR_PHONG)

		vec3 R = normalize(-reflect(L, N));
		float cRdotV = max(0.0, dot(R, V));
		float shininess = exp2(15.0 * (1.0 - roughness) + 1.0) * 0.25;
		float phong = pow(cRdotV, shininess);
		phong *= (shininess + 8.0) * (1.0 / (8.0 * M_PI));
		float intensity = (phong) / max(4.0 * cNdotV * cNdotL, 0.75);

		specular_light += light_color * intensity * specular_blob_intensity * attenuation;

#elif defined(SPECULAR_TOON)

		vec3 R = normalize(-reflect(L, N));
		float RdotV = dot(R, V);
		float mid = 1.0 - roughness;
		mid *= mid;
		float intensity = smoothstep(mid - roughness * 0.5, mid + roughness * 0.5, RdotV) * mid;
		diffuse_light += light_color * intensity * specular_blob_intensity * attenuation; // write to diffuse_light, as in toon shading you generally want no reflection

#elif defined(SPECULAR_DISABLED)
		// none..

#elif defined(SPECULAR_SCHLICK_GGX)
		// shlick+ggx as default

#if defined(LIGHT_USE_ANISOTROPY)

		float alpha = roughness * roughness;
		float aspect = sqrt(1.0 - anisotropy * 0.9);
		float ax = alpha / aspect;
		float ay = alpha * aspect;
		float XdotH = dot(T, H);
		float YdotH = dot(B, H);
		float D = D_GGX_anisotropic(cNdotH, ax, ay, XdotH, YdotH);
		float G = G_GGX_anisotropic_2cos(cNdotL, ax, ay, XdotH, YdotH) * G_GGX_anisotropic_2cos(cNdotV, ax, ay, XdotH, YdotH);

#else
		float alpha = roughness * roughness;
		float D = D_GGX(cNdotH, alpha);
		float G = G_GGX_2cos(cNdotL, alpha) * G_GGX_2cos(cNdotV, alpha);
#endif
		// F
		vec3 f0 = F0(metallic, specular, diffuse_color);
		float cLdotH5 = SchlickFresnel(cLdotH);
		vec3 F = mix(vec3(cLdotH5), vec3(1.0), f0);

		vec3 specular_brdf_NL = cNdotL * D * F * G;

		specular_light += specular_brdf_NL * light_color * specular_blob_intensity * attenuation;
#endif

#if defined(LIGHT_USE_CLEARCOAT)

#if !defined(SPECULAR_SCHLICK_GGX)
		float cLdotH5 = SchlickFresnel(cLdotH);
#endif
		float Dr = GTR1(cNdotH, mix(.1, .001, clearcoat_gloss));
		float Fr = mix(.04, 1.0, cLdotH5);
		float Gr = G_GGX_2cos(cNdotL, .25) * G_GGX_2cos(cNdotV, .25);

		float clearcoat_specular_brdf_NL = 0.25 * clearcoat * Gr * Fr * Dr * cNdotL;

		specular_light += clearcoat_specular_brdf_NL * light_color * specular_blob_intensity * attenuation;
#endif
	}

#endif //defined(USE_LIGHT_SHADER_CODE)
}

float sample_shadow(highp sampler2DShadow shadow, vec2 shadow_pixel_size, vec2 pos, float depth, vec4 clamp_rect) {

#ifdef SHADOW_MODE_PCF_13

	float avg = textureProj(shadow, vec4(pos, depth, 1.0));
	avg += textureProj(shadow, vec4(pos + vec2(shadow_pixel_size.x, 0.0), depth, 1.0));
	avg += textureProj(shadow, vec4(pos + vec2(-shadow_pixel_size.x, 0.0), depth, 1.0));
	avg += textureProj(shadow, vec4(pos + vec2(0.0, shadow_pixel_size.y), depth, 1.0));
	avg += textureProj(shadow, vec4(pos + vec2(0.0, -shadow_pixel_size.y), depth, 1.0));
	avg += textureProj(shadow, vec4(pos + vec2(shadow_pixel_size.x, shadow_pixel_size.y), depth, 1.0));
	avg += textureProj(shadow, vec4(pos + vec2(-shadow_pixel_size.x, shadow_pixel_size.y), depth, 1.0));
	avg += textureProj(shadow, vec4(pos + vec2(shadow_pixel_size.x, -shadow_pixel_size.y), depth, 1.0));
	avg += textureProj(shadow, vec4(pos + vec2(-shadow_pixel_size.x, -shadow_pixel_size.y), depth, 1.0));
	avg += textureProj(shadow, vec4(pos + vec2(shadow_pixel_size.x * 2.0, 0.0), depth, 1.0));
	avg += textureProj(shadow, vec4(pos + vec2(-shadow_pixel_size.x * 2.0, 0.0), depth, 1.0));
	avg += textureProj(shadow, vec4(pos + vec2(0.0, shadow_pixel_size.y * 2.0), depth, 1.0));
	avg += textureProj(shadow, vec4(pos + vec2(0.0, -shadow_pixel_size.y * 2.0), depth, 1.0));
	return avg * (1.0 / 13.0);
#endif

#ifdef SHADOW_MODE_PCF_5

	float avg = textureProj(shadow, vec4(pos, depth, 1.0));
	avg += textureProj(shadow, vec4(pos + vec2(shadow_pixel_size.x, 0.0), depth, 1.0));
	avg += textureProj(shadow, vec4(pos + vec2(-shadow_pixel_size.x, 0.0), depth, 1.0));
	avg += textureProj(shadow, vec4(pos + vec2(0.0, shadow_pixel_size.y), depth, 1.0));
	avg += textureProj(shadow, vec4(pos + vec2(0.0, -shadow_pixel_size.y), depth, 1.0));
	return avg * (1.0 / 5.0);

#endif

#if !defined(SHADOW_MODE_PCF_5) || !defined(SHADOW_MODE_PCF_13)

	return textureProj(shadow, vec4(pos, depth, 1.0));

#endif
}

#ifdef RENDER_DEPTH_DUAL_PARABOLOID

in highp float dp_clip;

#endif

#if 0
// need to save texture depth for this
vec3 light_transmittance(float translucency,vec3 light_vec, vec3 normal, vec3 pos, float distance) {

	float scale = 8.25 * (1.0 - translucency) / subsurface_scatter_width;
	float d = scale * distance;

	/**
	* Armed with the thickness, we can now calculate the color by means of the
	* precalculated transmittance profile.
	* (It can be precomputed into a texture, for maximum performance):
	*/
	float dd = -d * d;
	vec3 profile =
			vec3(0.233, 0.455, 0.649) * exp(dd / 0.0064) +
			vec3(0.1,   0.336, 0.344) * exp(dd / 0.0484) +
			vec3(0.118, 0.198, 0.0)   * exp(dd / 0.187)  +
			vec3(0.113, 0.007, 0.007) * exp(dd / 0.567)  +
			vec3(0.358, 0.004, 0.0)   * exp(dd / 1.99)   +
			vec3(0.078, 0.0,   0.0)   * exp(dd / 7.41);

	/**
	* Using the profile, we finally approximate the transmitted lighting from
	* the back of the object:
	*/
	return profile * clamp(0.3 + dot(light_vec, normal),0.0,1.0);
}
#endif

void light_process_omni(int idx, vec3 vertex, vec3 eye_vec, vec3 normal, vec3 binormal, vec3 tangent, vec3 albedo, vec3 transmission, float roughness, float metallic, float specular, float rim, float rim_tint, float clearcoat, float clearcoat_gloss, float anisotropy, float p_blob_intensity, inout vec3 diffuse_light, inout vec3 specular_light) {

	vec3 light_rel_vec = omni_lights[idx].light_pos_inv_radius.xyz - vertex;
	float light_length = length(light_rel_vec);
	float normalized_distance = light_length * omni_lights[idx].light_pos_inv_radius.w;
	float omni_attenuation = pow(max(1.0 - normalized_distance, 0.0), omni_lights[idx].light_direction_attenuation.w);
	vec3 light_attenuation = vec3(omni_attenuation);

#if !defined(SHADOWS_DISABLED)
	if (omni_lights[idx].light_params.w > 0.5) {
		// there is a shadowmap

		highp vec3 splane = (omni_lights[idx].shadow_matrix * vec4(vertex, 1.0)).xyz;
		float shadow_len = length(splane);
		splane = normalize(splane);
		vec4 clamp_rect = omni_lights[idx].light_clamp;

		if (splane.z >= 0.0) {

			splane.z += 1.0;

			clamp_rect.y += clamp_rect.w;

		} else {

			splane.z = 1.0 - splane.z;

			/*
			if (clamp_rect.z < clamp_rect.w) {
				clamp_rect.x += clamp_rect.z;
			} else {
				clamp_rect.y += clamp_rect.w;
			}
			*/
		}

		splane.xy /= splane.z;
		splane.xy = splane.xy * 0.5 + 0.5;
		splane.z = shadow_len * omni_lights[idx].light_pos_inv_radius.w;

		splane.xy = clamp_rect.xy + splane.xy * clamp_rect.zw;
		float shadow = sample_shadow(shadow_atlas, shadow_atlas_pixel_size, splane.xy, splane.z, clamp_rect);

#ifdef USE_CONTACT_SHADOWS

		if (shadow > 0.01 && omni_lights[idx].shadow_color_contact.a > 0.0) {

			float contact_shadow = contact_shadow_compute(vertex, normalize(light_rel_vec), min(light_length, omni_lights[idx].shadow_color_contact.a));
			shadow = min(shadow, contact_shadow);
		}
#endif
		light_attenuation *= mix(omni_lights[idx].shadow_color_contact.rgb, vec3(1.0), shadow);
	}
#endif //SHADOWS_DISABLED
	light_compute(normal, normalize(light_rel_vec), eye_vec, binormal, tangent, omni_lights[idx].light_color_energy.rgb, light_attenuation, albedo, transmission, omni_lights[idx].light_params.z * p_blob_intensity, roughness, metallic, specular, rim * omni_attenuation, rim_tint, clearcoat, clearcoat_gloss, anisotropy, diffuse_light, specular_light);
}

void light_process_spot(int idx, vec3 vertex, vec3 eye_vec, vec3 normal, vec3 binormal, vec3 tangent, vec3 albedo, vec3 transmission, float roughness, float metallic, float specular, float rim, float rim_tint, float clearcoat, float clearcoat_gloss, float anisotropy, float p_blob_intensity, inout vec3 diffuse_light, inout vec3 specular_light) {

	vec3 light_rel_vec = spot_lights[idx].light_pos_inv_radius.xyz - vertex;
	float light_length = length(light_rel_vec);
	float normalized_distance = light_length * spot_lights[idx].light_pos_inv_radius.w;
	float spot_attenuation = pow(max(1.0 - normalized_distance, 0.001), spot_lights[idx].light_direction_attenuation.w);
	vec3 spot_dir = spot_lights[idx].light_direction_attenuation.xyz;
	float spot_cutoff = spot_lights[idx].light_params.y;
	float scos = max(dot(-normalize(light_rel_vec), spot_dir), spot_cutoff);
	float spot_rim = max(0.0001, (1.0 - scos) / (1.0 - spot_cutoff));
	spot_attenuation *= 1.0 - pow(spot_rim, spot_lights[idx].light_params.x);
	vec3 light_attenuation = vec3(spot_attenuation);

#if !defined(SHADOWS_DISABLED)
	if (spot_lights[idx].light_params.w > 0.5) {
		//there is a shadowmap
		highp vec4 splane = (spot_lights[idx].shadow_matrix * vec4(vertex, 1.0));
		splane.xyz /= splane.w;

		float shadow = sample_shadow(shadow_atlas, shadow_atlas_pixel_size, splane.xy, splane.z, spot_lights[idx].light_clamp);

#ifdef USE_CONTACT_SHADOWS
		if (shadow > 0.01 && spot_lights[idx].shadow_color_contact.a > 0.0) {

			float contact_shadow = contact_shadow_compute(vertex, normalize(light_rel_vec), min(light_length, spot_lights[idx].shadow_color_contact.a));
			shadow = min(shadow, contact_shadow);
		}
#endif
		light_attenuation *= mix(spot_lights[idx].shadow_color_contact.rgb, vec3(1.0), shadow);
	}
#endif //SHADOWS_DISABLED

	light_compute(normal, normalize(light_rel_vec), eye_vec, binormal, tangent, spot_lights[idx].light_color_energy.rgb, light_attenuation, albedo, transmission, spot_lights[idx].light_params.z * p_blob_intensity, roughness, metallic, specular, rim * spot_attenuation, rim_tint, clearcoat, clearcoat_gloss, anisotropy, diffuse_light, specular_light);
}

void reflection_process(int idx, vec3 vertex, vec3 normal, vec3 binormal, vec3 tangent, float roughness, float anisotropy, vec3 ambient, vec3 skybox, inout highp vec4 reflection_accum, inout highp vec4 ambient_accum) {

	vec3 ref_vec = normalize(reflect(vertex, normal));
	vec3 local_pos = (reflections[idx].local_matrix * vec4(vertex, 1.0)).xyz;
	vec3 box_extents = reflections[idx].box_extents.xyz;

	if (any(greaterThan(abs(local_pos), box_extents))) { //out of the reflection box
		return;
	}

	vec3 inner_pos = abs(local_pos / box_extents);
	float blend = max(inner_pos.x, max(inner_pos.y, inner_pos.z));
	//make blend more rounded
	blend = mix(length(inner_pos), blend, blend);
	blend *= blend;
	blend = max(0.0, 1.0 - blend);

	if (reflections[idx].params.x > 0.0) { // compute reflection

		vec3 local_ref_vec = (reflections[idx].local_matrix * vec4(ref_vec, 0.0)).xyz;

		if (reflections[idx].params.w > 0.5) { //box project

			vec3 nrdir = normalize(local_ref_vec);
			vec3 rbmax = (box_extents - local_pos) / nrdir;
			vec3 rbmin = (-box_extents - local_pos) / nrdir;

			vec3 rbminmax = mix(rbmin, rbmax, greaterThan(nrdir, vec3(0.0, 0.0, 0.0)));

			float fa = min(min(rbminmax.x, rbminmax.y), rbminmax.z);
			vec3 posonbox = local_pos + nrdir * fa;
			local_ref_vec = posonbox - reflections[idx].box_offset.xyz;
		}

		vec4 clamp_rect = reflections[idx].atlas_clamp;
		vec3 norm = normalize(local_ref_vec);
		norm.xy /= 1.0 + abs(norm.z);
		norm.xy = norm.xy * vec2(0.5, 0.25) + vec2(0.5, 0.25);
		if (norm.z > 0.0) {
			norm.y = 0.5 - norm.y + 0.5;
		}

		vec2 atlas_uv = norm.xy * clamp_rect.zw + clamp_rect.xy;
		atlas_uv = clamp(atlas_uv, clamp_rect.xy, clamp_rect.xy + clamp_rect.zw);

		highp vec4 reflection;
		reflection.rgb = textureLod(reflection_atlas, atlas_uv, roughness * 5.0).rgb;

		if (reflections[idx].params.z < 0.5) {
			reflection.rgb = mix(skybox, reflection.rgb, blend);
		}
		reflection.rgb *= reflections[idx].params.x;
		reflection.a = blend;
		reflection.rgb *= reflection.a;

		reflection_accum += reflection;
	}
#if !defined(USE_LIGHTMAP) && !defined(USE_LIGHTMAP_CAPTURE)
	if (reflections[idx].ambient.a > 0.0) { //compute ambient using skybox

		vec3 local_amb_vec = (reflections[idx].local_matrix * vec4(normal, 0.0)).xyz;

		vec3 splane = normalize(local_amb_vec);
		vec4 clamp_rect = reflections[idx].atlas_clamp;

		splane.z *= -1.0;
		if (splane.z >= 0.0) {
			splane.z += 1.0;
			clamp_rect.y += clamp_rect.w;
		} else {
			splane.z = 1.0 - splane.z;
			splane.y = -splane.y;
		}

		splane.xy /= splane.z;
		splane.xy = splane.xy * 0.5 + 0.5;

		splane.xy = splane.xy * clamp_rect.zw + clamp_rect.xy;
		splane.xy = clamp(splane.xy, clamp_rect.xy, clamp_rect.xy + clamp_rect.zw);

		highp vec4 ambient_out;
		ambient_out.a = blend;
		ambient_out.rgb = textureLod(reflection_atlas, splane.xy, 5.0).rgb;
		ambient_out.rgb = mix(reflections[idx].ambient.rgb, ambient_out.rgb, reflections[idx].ambient.a);
		if (reflections[idx].params.z < 0.5) {
			ambient_out.rgb = mix(ambient, ambient_out.rgb, blend);
		}

		ambient_out.rgb *= ambient_out.a;
		ambient_accum += ambient_out;
	} else {

		highp vec4 ambient_out;
		ambient_out.a = blend;
		ambient_out.rgb = reflections[idx].ambient.rgb;
		if (reflections[idx].params.z < 0.5) {
			ambient_out.rgb = mix(ambient, ambient_out.rgb, blend);
		}
		ambient_out.rgb *= ambient_out.a;
		ambient_accum += ambient_out;
	}
#endif
}

#ifdef USE_LIGHTMAP
uniform mediump sampler2D lightmap; //texunit:-9
uniform mediump float lightmap_energy;
#endif

#ifdef USE_LIGHTMAP_CAPTURE
uniform mediump vec4[12] lightmap_captures;
uniform bool lightmap_capture_sky;

#endif

#ifdef USE_GI_PROBES

uniform mediump sampler3D gi_probe1; //texunit:-9
uniform highp mat4 gi_probe_xform1;
uniform highp vec3 gi_probe_bounds1;
uniform highp vec3 gi_probe_cell_size1;
uniform highp float gi_probe_multiplier1;
uniform highp float gi_probe_bias1;
uniform highp float gi_probe_normal_bias1;
uniform bool gi_probe_blend_ambient1;

uniform mediump sampler3D gi_probe2; //texunit:-10
uniform highp mat4 gi_probe_xform2;
uniform highp vec3 gi_probe_bounds2;
uniform highp vec3 gi_probe_cell_size2;
uniform highp float gi_probe_multiplier2;
uniform highp float gi_probe_bias2;
uniform highp float gi_probe_normal_bias2;
uniform bool gi_probe2_enabled;
uniform bool gi_probe_blend_ambient2;

vec3 voxel_cone_trace(mediump sampler3D probe, vec3 cell_size, vec3 pos, vec3 ambient, bool blend_ambient, vec3 direction, float tan_half_angle, float max_distance, float p_bias) {

	float dist = p_bias; //1.0; //dot(direction,mix(vec3(-1.0),vec3(1.0),greaterThan(direction,vec3(0.0))))*2.0;
	float alpha = 0.0;
	vec3 color = vec3(0.0);

	while (dist < max_distance && alpha < 0.95) {
		float diameter = max(1.0, 2.0 * tan_half_angle * dist);
		vec4 scolor = textureLod(probe, (pos + dist * direction) * cell_size, log2(diameter));
		float a = (1.0 - alpha);
		color += scolor.rgb * a;
		alpha += a * scolor.a;
		dist += diameter * 0.5;
	}

	if (blend_ambient) {
		color.rgb = mix(ambient, color.rgb, min(1.0, alpha / 0.95));
	}

	return color;
}

void gi_probe_compute(mediump sampler3D probe, mat4 probe_xform, vec3 bounds, vec3 cell_size, vec3 pos, vec3 ambient, vec3 environment, bool blend_ambient, float multiplier, mat3 normal_mtx, vec3 ref_vec, float roughness, float p_bias, float p_normal_bias, inout vec4 out_spec, inout vec4 out_diff) {

	vec3 probe_pos = (probe_xform * vec4(pos, 1.0)).xyz;
	vec3 ref_pos = (probe_xform * vec4(pos + ref_vec, 1.0)).xyz;
	ref_vec = normalize(ref_pos - probe_pos);

	probe_pos += (probe_xform * vec4(normal_mtx[2], 0.0)).xyz * p_normal_bias;

	/*	out_diff.rgb = voxel_cone_trace(probe,cell_size,probe_pos,normalize((probe_xform * vec4(ref_vec,0.0)).xyz),0.0 ,100.0);
	out_diff.a = 1.0;
	return;*/
	//out_diff = vec4(textureLod(probe,probe_pos*cell_size,3.0).rgb,1.0);
	//return;

	//this causes corrupted pixels, i have no idea why..
	if (any(bvec2(any(lessThan(probe_pos, vec3(0.0))), any(greaterThan(probe_pos, bounds))))) {
		return;
	}

	vec3 blendv = abs(probe_pos / bounds * 2.0 - 1.0);
	float blend = clamp(1.0 - max(blendv.x, max(blendv.y, blendv.z)), 0.0, 1.0);
	//float blend=1.0;

	float max_distance = length(bounds);

	//radiance
#ifdef VCT_QUALITY_HIGH

#define MAX_CONE_DIRS 6
	vec3 cone_dirs[MAX_CONE_DIRS] = vec3[](
			vec3(0, 0, 1),
			vec3(0.866025, 0, 0.5),
			vec3(0.267617, 0.823639, 0.5),
			vec3(-0.700629, 0.509037, 0.5),
			vec3(-0.700629, -0.509037, 0.5),
			vec3(0.267617, -0.823639, 0.5));

	float cone_weights[MAX_CONE_DIRS] = float[](0.25, 0.15, 0.15, 0.15, 0.15, 0.15);
	float cone_angle_tan = 0.577;
	float min_ref_tan = 0.0;
#else

#define MAX_CONE_DIRS 4

	vec3 cone_dirs[MAX_CONE_DIRS] = vec3[](
			vec3(0.707107, 0, 0.707107),
			vec3(0, 0.707107, 0.707107),
			vec3(-0.707107, 0, 0.707107),
			vec3(0, -0.707107, 0.707107));

	float cone_weights[MAX_CONE_DIRS] = float[](0.25, 0.25, 0.25, 0.25);
	float cone_angle_tan = 0.98269;
	max_distance *= 0.5;
	float min_ref_tan = 0.2;

#endif
	vec3 light = vec3(0.0);
	for (int i = 0; i < MAX_CONE_DIRS; i++) {

		vec3 dir = normalize((probe_xform * vec4(pos + normal_mtx * cone_dirs[i], 1.0)).xyz - probe_pos);
		light += cone_weights[i] * voxel_cone_trace(probe, cell_size, probe_pos, ambient, blend_ambient, dir, cone_angle_tan, max_distance, p_bias);
	}

	light *= multiplier;

	out_diff += vec4(light * blend, blend);

	//irradiance

	vec3 irr_light = voxel_cone_trace(probe, cell_size, probe_pos, environment, blend_ambient, ref_vec, max(min_ref_tan, tan(roughness * 0.5 * M_PI * 0.99)), max_distance, p_bias);

	irr_light *= multiplier;
	//irr_light=vec3(0.0);

	out_spec += vec4(irr_light * blend, blend);
}

void gi_probes_compute(vec3 pos, vec3 normal, float roughness, inout vec3 out_specular, inout vec3 out_ambient) {

	roughness = roughness * roughness;

	vec3 ref_vec = normalize(reflect(normalize(pos), normal));

	//find arbitrary tangent and bitangent, then build a matrix
	vec3 v0 = abs(normal.z) < 0.999 ? vec3(0, 0, 1) : vec3(0, 1, 0);
	vec3 tangent = normalize(cross(v0, normal));
	vec3 bitangent = normalize(cross(tangent, normal));
	mat3 normal_mat = mat3(tangent, bitangent, normal);

	vec4 diff_accum = vec4(0.0);
	vec4 spec_accum = vec4(0.0);

	vec3 ambient = out_ambient;
	out_ambient = vec3(0.0);

	vec3 environment = out_specular;

	out_specular = vec3(0.0);

	gi_probe_compute(gi_probe1, gi_probe_xform1, gi_probe_bounds1, gi_probe_cell_size1, pos, ambient, environment, gi_probe_blend_ambient1, gi_probe_multiplier1, normal_mat, ref_vec, roughness, gi_probe_bias1, gi_probe_normal_bias1, spec_accum, diff_accum);

	if (gi_probe2_enabled) {

		gi_probe_compute(gi_probe2, gi_probe_xform2, gi_probe_bounds2, gi_probe_cell_size2, pos, ambient, environment, gi_probe_blend_ambient2, gi_probe_multiplier2, normal_mat, ref_vec, roughness, gi_probe_bias2, gi_probe_normal_bias2, spec_accum, diff_accum);
	}

	if (diff_accum.a > 0.0) {
		diff_accum.rgb /= diff_accum.a;
	}

	if (spec_accum.a > 0.0) {
		spec_accum.rgb /= spec_accum.a;
	}

	out_specular += spec_accum.rgb;
	out_ambient += diff_accum.rgb;
}

#endif

void main() {

#ifdef RENDER_DEPTH_DUAL_PARABOLOID

	if (dp_clip > 0.0)
		discard;
#endif

	//lay out everything, whathever is unused is optimized away anyway
	highp vec3 vertex = vertex_interp;
	vec3 view = -normalize(vertex_interp);
	vec3 albedo = vec3(1.0);
	vec3 transmission = vec3(0.0);
	float metallic = 0.0;
	float specular = 0.5;
	vec3 emission = vec3(0.0);
	float roughness = 1.0;
	float rim = 0.0;
	float rim_tint = 0.0;
	float clearcoat = 0.0;
	float clearcoat_gloss = 0.0;
	float anisotropy = 0.0;
	vec2 anisotropy_flow = vec2(1.0, 0.0);

#if defined(ENABLE_AO)
	float ao = 1.0;
	float ao_light_affect = 0.0;
#endif

	float alpha = 1.0;

#if defined(ALPHA_SCISSOR_USED)
	float alpha_scissor = 0.5;
#endif

#if defined(ENABLE_TANGENT_INTERP) || defined(ENABLE_NORMALMAP) || defined(LIGHT_USE_ANISOTROPY)
	vec3 binormal = normalize(binormal_interp);
	vec3 tangent = normalize(tangent_interp);
#else
	vec3 binormal = vec3(0.0);
	vec3 tangent = vec3(0.0);
#endif
	vec3 normal = normalize(normal_interp);

#if defined(DO_SIDE_CHECK)
	if (!gl_FrontFacing) {
		normal = -normal;
	}
#endif

#if defined(ENABLE_UV_INTERP)
	vec2 uv = uv_interp;
#endif

#if defined(ENABLE_UV2_INTERP) || defined(USE_LIGHTMAP)
	vec2 uv2 = uv2_interp;
#endif

#if defined(ENABLE_COLOR_INTERP)
	vec4 color = color_interp;
#endif

#if defined(ENABLE_NORMALMAP)

	vec3 normalmap = vec3(0.5);
#endif

	float normaldepth = 1.0;

#if defined(SCREEN_UV_USED)
	vec2 screen_uv = gl_FragCoord.xy * screen_pixel_size;
#endif

#if defined(ENABLE_SSS)
	float sss_strength = 0.0;
#endif

	{
		/* clang-format off */

FRAGMENT_SHADER_CODE

		/* clang-format on */
	}

#if defined(ALPHA_SCISSOR_USED)
	if (alpha < alpha_scissor) {
		discard;
	}
#endif

#ifdef USE_OPAQUE_PREPASS

	if (alpha < opaque_prepass_threshold) {
		discard;
	}

#endif

#if defined(ENABLE_NORMALMAP)

	normalmap.xy = normalmap.xy * 2.0 - 1.0;
	normalmap.z = sqrt(max(0.0, 1.0 - dot(normalmap.xy, normalmap.xy))); //always ignore Z, as it can be RG packed, Z may be pos/neg, etc.

	normal = normalize(mix(normal, tangent * normalmap.x + binormal * normalmap.y + normal * normalmap.z, normaldepth));

#endif

#if defined(LIGHT_USE_ANISOTROPY)

	if (anisotropy > 0.01) {
		//rotation matrix
		mat3 rot = mat3(tangent, binormal, normal);
		//make local to space
		tangent = normalize(rot * vec3(anisotropy_flow.x, anisotropy_flow.y, 0.0));
		binormal = normalize(rot * vec3(-anisotropy_flow.y, anisotropy_flow.x, 0.0));
	}

#endif

#ifdef ENABLE_CLIP_ALPHA
	if (albedo.a < 0.99) {
		//used for doublepass and shadowmapping
		discard;
	}
#endif

	/////////////////////// LIGHTING //////////////////////////////

	//apply energy conservation

#ifdef USE_VERTEX_LIGHTING

	vec3 specular_light = specular_light_interp.rgb;
	vec3 diffuse_light = diffuse_light_interp.rgb;
#else

	vec3 specular_light = vec3(0.0, 0.0, 0.0);
	vec3 diffuse_light = vec3(0.0, 0.0, 0.0);

#endif

	vec3 ambient_light;
	vec3 env_reflection_light = vec3(0.0, 0.0, 0.0);

	vec3 eye_vec = view;

#ifdef USE_RADIANCE_MAP

#ifdef AMBIENT_LIGHT_DISABLED
	ambient_light = vec3(0.0, 0.0, 0.0);
#else
	{

		{ //read radiance from dual paraboloid

			vec3 ref_vec = reflect(-eye_vec, normal); //2.0 * ndotv * normal - view; // reflect(v, n);
			ref_vec = normalize((radiance_inverse_xform * vec4(ref_vec, 0.0)).xyz);
			vec3 radiance = textureDualParaboloid(radiance_map, ref_vec, roughness) * bg_energy;
			env_reflection_light = radiance;
		}
		//no longer a cubemap
		//vec3 radiance = textureLod(radiance_cube, r, lod).xyz * ( brdf.x + brdf.y);
	}
#ifndef USE_LIGHTMAP
	{

		vec3 ambient_dir = normalize((radiance_inverse_xform * vec4(normal, 0.0)).xyz);
		vec3 env_ambient = textureDualParaboloid(radiance_map, ambient_dir, 1.0) * bg_energy;

		ambient_light = mix(ambient_light_color.rgb, env_ambient, radiance_ambient_contribution);
		//ambient_light=vec3(0.0,0.0,0.0);
	}
#endif
#endif //AMBIENT_LIGHT_DISABLED

#else

#ifdef AMBIENT_LIGHT_DISABLED
	ambient_light = vec3(0.0, 0.0, 0.0);
#else
	ambient_light = ambient_light_color.rgb;
#endif //AMBIENT_LIGHT_DISABLED

#endif

	ambient_light *= ambient_energy;

	float specular_blob_intensity = 1.0;
#if defined(SPECULAR_TOON)
	specular_blob_intensity *= specular * 2.0;
#endif

#if defined(USE_LIGHT_DIRECTIONAL)

	vec3 light_attenuation = vec3(1.0);

	float depth_z = -vertex.z;
#ifdef LIGHT_DIRECTIONAL_SHADOW
#if !defined(SHADOWS_DISABLED)

#ifdef LIGHT_USE_PSSM4
	if (depth_z < shadow_split_offsets.w) {
#elif defined(LIGHT_USE_PSSM2)
	if (depth_z < shadow_split_offsets.y) {
#else
	if (depth_z < shadow_split_offsets.x) {
#endif //LIGHT_USE_PSSM4

		vec3 pssm_coord;
		float pssm_fade = 0.0;

#ifdef LIGHT_USE_PSSM_BLEND
		float pssm_blend;
		vec3 pssm_coord2;
		bool use_blend = true;
#endif

#ifdef LIGHT_USE_PSSM4

		if (depth_z < shadow_split_offsets.y) {

			if (depth_z < shadow_split_offsets.x) {

				highp vec4 splane = (shadow_matrix1 * vec4(vertex, 1.0));
				pssm_coord = splane.xyz / splane.w;

#if defined(LIGHT_USE_PSSM_BLEND)

				splane = (shadow_matrix2 * vec4(vertex, 1.0));
				pssm_coord2 = splane.xyz / splane.w;
				pssm_blend = smoothstep(0.0, shadow_split_offsets.x, depth_z);
#endif

			} else {

				highp vec4 splane = (shadow_matrix2 * vec4(vertex, 1.0));
				pssm_coord = splane.xyz / splane.w;

#if defined(LIGHT_USE_PSSM_BLEND)
				splane = (shadow_matrix3 * vec4(vertex, 1.0));
				pssm_coord2 = splane.xyz / splane.w;
				pssm_blend = smoothstep(shadow_split_offsets.x, shadow_split_offsets.y, depth_z);
#endif
			}
		} else {

			if (depth_z < shadow_split_offsets.z) {

				highp vec4 splane = (shadow_matrix3 * vec4(vertex, 1.0));
				pssm_coord = splane.xyz / splane.w;

#if defined(LIGHT_USE_PSSM_BLEND)
				splane = (shadow_matrix4 * vec4(vertex, 1.0));
				pssm_coord2 = splane.xyz / splane.w;
				pssm_blend = smoothstep(shadow_split_offsets.y, shadow_split_offsets.z, depth_z);
#endif

			} else {

				highp vec4 splane = (shadow_matrix4 * vec4(vertex, 1.0));
				pssm_coord = splane.xyz / splane.w;
				pssm_fade = smoothstep(shadow_split_offsets.z, shadow_split_offsets.w, depth_z);

#if defined(LIGHT_USE_PSSM_BLEND)
				use_blend = false;

#endif
			}
		}

#endif //LIGHT_USE_PSSM4

#ifdef LIGHT_USE_PSSM2

		if (depth_z < shadow_split_offsets.x) {

			highp vec4 splane = (shadow_matrix1 * vec4(vertex, 1.0));
			pssm_coord = splane.xyz / splane.w;

#if defined(LIGHT_USE_PSSM_BLEND)

			splane = (shadow_matrix2 * vec4(vertex, 1.0));
			pssm_coord2 = splane.xyz / splane.w;
			pssm_blend = smoothstep(0.0, shadow_split_offsets.x, depth_z);
#endif

		} else {
			highp vec4 splane = (shadow_matrix2 * vec4(vertex, 1.0));
			pssm_coord = splane.xyz / splane.w;
			pssm_fade = smoothstep(shadow_split_offsets.x, shadow_split_offsets.y, depth_z);
#if defined(LIGHT_USE_PSSM_BLEND)
			use_blend = false;

#endif
		}

#endif //LIGHT_USE_PSSM2

#if !defined(LIGHT_USE_PSSM4) && !defined(LIGHT_USE_PSSM2)
		{ //regular orthogonal
			highp vec4 splane = (shadow_matrix1 * vec4(vertex, 1.0));
			pssm_coord = splane.xyz / splane.w;
		}
#endif

		//one one sample

		float shadow = sample_shadow(directional_shadow, directional_shadow_pixel_size, pssm_coord.xy, pssm_coord.z, light_clamp);

#if defined(LIGHT_USE_PSSM_BLEND)

		if (use_blend) {
			shadow = mix(shadow, sample_shadow(directional_shadow, directional_shadow_pixel_size, pssm_coord2.xy, pssm_coord2.z, light_clamp), pssm_blend);
		}
#endif

#ifdef USE_CONTACT_SHADOWS
		if (shadow > 0.01 && shadow_color_contact.a > 0.0) {

			float contact_shadow = contact_shadow_compute(vertex, -light_direction_attenuation.xyz, shadow_color_contact.a);
			shadow = min(shadow, contact_shadow);
		}
#endif
		light_attenuation = mix(mix(shadow_color_contact.rgb, vec3(1.0), shadow), vec3(1.0), pssm_fade);
	}

#endif // !defined(SHADOWS_DISABLED)
#endif //LIGHT_DIRECTIONAL_SHADOW

#ifdef USE_VERTEX_LIGHTING
	diffuse_light *= mix(vec3(1.0), light_attenuation, diffuse_light_interp.a);
	specular_light *= mix(vec3(1.0), light_attenuation, specular_light_interp.a);

#else
	light_compute(normal, -light_direction_attenuation.xyz, eye_vec, binormal, tangent, light_color_energy.rgb, light_attenuation, albedo, transmission, light_params.z * specular_blob_intensity, roughness, metallic, specular, rim, rim_tint, clearcoat, clearcoat_gloss, anisotropy, diffuse_light, specular_light);
#endif

#endif //#USE_LIGHT_DIRECTIONAL

#ifdef USE_GI_PROBES
	gi_probes_compute(vertex, normal, roughness, env_reflection_light, ambient_light);

#endif

#ifdef USE_LIGHTMAP
	ambient_light = texture(lightmap, uv2).rgb * lightmap_energy;
#endif

#ifdef USE_LIGHTMAP_CAPTURE
	{
		vec3 cone_dirs[12] = vec3[](
				vec3(0, 0, 1),
				vec3(0.866025, 0, 0.5),
				vec3(0.267617, 0.823639, 0.5),
				vec3(-0.700629, 0.509037, 0.5),
				vec3(-0.700629, -0.509037, 0.5),
				vec3(0.267617, -0.823639, 0.5),
				vec3(0, 0, -1),
				vec3(0.866025, 0, -0.5),
				vec3(0.267617, 0.823639, -0.5),
				vec3(-0.700629, 0.509037, -0.5),
				vec3(-0.700629, -0.509037, -0.5),
				vec3(0.267617, -0.823639, -0.5));

		vec3 local_normal = normalize(camera_matrix * vec4(normal, 0.0)).xyz;
		vec4 captured = vec4(0.0);
		float sum = 0.0;
		for (int i = 0; i < 12; i++) {
			float amount = max(0.0, dot(local_normal, cone_dirs[i])); //not correct, but creates a nice wrap around effect
			captured += lightmap_captures[i] * amount;
			sum += amount;
		}

		captured /= sum;

		if (lightmap_capture_sky) {
			ambient_light = mix(ambient_light, captured.rgb, captured.a);
		} else {
			ambient_light = captured.rgb;
		}
	}
#endif

#ifdef USE_FORWARD_LIGHTING

	highp vec4 reflection_accum = vec4(0.0, 0.0, 0.0, 0.0);
	highp vec4 ambient_accum = vec4(0.0, 0.0, 0.0, 0.0);
	for (int i = 0; i < reflection_count; i++) {
		reflection_process(reflection_indices[i], vertex, normal, binormal, tangent, roughness, anisotropy, ambient_light, env_reflection_light, reflection_accum, ambient_accum);
	}

	if (reflection_accum.a > 0.0) {
		specular_light += reflection_accum.rgb / reflection_accum.a;
	} else {
		specular_light += env_reflection_light;
	}
#if !defined(USE_LIGHTMAP) && !defined(USE_LIGHTMAP_CAPTURE)
	if (ambient_accum.a > 0.0) {
		ambient_light = ambient_accum.rgb / ambient_accum.a;
	}
#endif

#ifdef USE_VERTEX_LIGHTING

	diffuse_light *= albedo;
#else

	for (int i = 0; i < omni_light_count; i++) {
		light_process_omni(omni_light_indices[i], vertex, eye_vec, normal, binormal, tangent, albedo, transmission, roughness, metallic, specular, rim, rim_tint, clearcoat, clearcoat_gloss, anisotropy, specular_blob_intensity, diffuse_light, specular_light);
	}

	for (int i = 0; i < spot_light_count; i++) {
		light_process_spot(spot_light_indices[i], vertex, eye_vec, normal, binormal, tangent, albedo, transmission, roughness, metallic, specular, rim, rim_tint, clearcoat, clearcoat_gloss, anisotropy, specular_blob_intensity, diffuse_light, specular_light);
	}

#endif //USE_VERTEX_LIGHTING

#endif

#ifdef RENDER_DEPTH
//nothing happens, so a tree-ssa optimizer will result in no fragment shader :)
#else

	specular_light *= reflection_multiplier;
	ambient_light *= albedo; //ambient must be multiplied by albedo at the end

#if defined(ENABLE_AO)
	ambient_light *= ao;
	ao_light_affect = mix(1.0, ao, ao_light_affect);
	specular_light *= ao_light_affect;
	diffuse_light *= ao_light_affect;
#endif

	// base color remapping
	diffuse_light *= 1.0 - metallic; // TODO: avoid all diffuse and ambient light calculations when metallic == 1 up to this point
	ambient_light *= 1.0 - metallic;

	{

#if defined(DIFFUSE_TOON)
		//simplify for toon, as
		specular_light *= specular * metallic * albedo * 2.0;
#else
		// Environment brdf approximation (Lazarov 2013)
		// see https://www.unrealengine.com/en-US/blog/physically-based-shading-on-mobile
		const vec4 c0 = vec4(-1.0, -0.0275, -0.572, 0.022);
		const vec4 c1 = vec4(1.0, 0.0425, 1.04, -0.04);
		vec4 r = roughness * c0 + c1;
		float ndotv = clamp(dot(normal, eye_vec), 0.0, 1.0);
		float a004 = min(r.x * r.x, exp2(-9.28 * ndotv)) * r.x + r.y;
		vec2 env = vec2(-1.04, 1.04) * a004 + r.zw;

		vec3 f0 = F0(metallic, specular, albedo);
		specular_light *= env.x * f0 + env.y;
#endif
	}

	if (fog_color_enabled.a > 0.5) {

		float fog_amount = 0.0;

#ifdef USE_LIGHT_DIRECTIONAL

		vec3 fog_color = mix(fog_color_enabled.rgb, fog_sun_color_amount.rgb, fog_sun_color_amount.a * pow(max(dot(normalize(vertex), -light_direction_attenuation.xyz), 0.0), 8.0));
#else

		vec3 fog_color = fog_color_enabled.rgb;
#endif

		//apply fog

		if (fog_depth_enabled) {
			float fog_far = fog_depth_end > 0.0 ? fog_depth_end : z_far;

			float fog_z = smoothstep(fog_depth_begin, fog_far, length(vertex));

			fog_amount = pow(fog_z, fog_depth_curve) * fog_density;
			if (fog_transmit_enabled) {
				vec3 total_light = emission + ambient_light + specular_light + diffuse_light;
				float transmit = pow(fog_z, fog_transmit_curve);
				fog_color = mix(max(total_light, fog_color), fog_color, transmit);
			}
		}

		if (fog_height_enabled) {
			float y = (camera_matrix * vec4(vertex, 1.0)).y;
			fog_amount = max(fog_amount, pow(smoothstep(fog_height_min, fog_height_max, y), fog_height_curve));
		}

		float rev_amount = 1.0 - fog_amount;

		emission = emission * rev_amount + fog_color * fog_amount;
		ambient_light *= rev_amount;
		specular_light *= rev_amount;
		diffuse_light *= rev_amount;
	}

#ifdef USE_MULTIPLE_RENDER_TARGETS

#ifdef SHADELESS
	diffuse_buffer = vec4(albedo.rgb, 0.0);
	specular_buffer = vec4(0.0);

#else

	//approximate ambient scale for SSAO, since we will lack full ambient
	float max_emission = max(emission.r, max(emission.g, emission.b));
	float max_ambient = max(ambient_light.r, max(ambient_light.g, ambient_light.b));
	float max_diffuse = max(diffuse_light.r, max(diffuse_light.g, diffuse_light.b));
	float total_ambient = max_ambient + max_diffuse + max_emission;
	float ambient_scale = (total_ambient > 0.0) ? (max_ambient + ambient_occlusion_affect_light * max_diffuse) / total_ambient : 0.0;

#if defined(ENABLE_AO)
	ambient_scale = mix(0.0, ambient_scale, ambient_occlusion_affect_ao_channel);
#endif
	diffuse_buffer = vec4(emission + diffuse_light + ambient_light, ambient_scale);
	specular_buffer = vec4(specular_light, metallic);

#endif //SHADELESS

	normal_mr_buffer = vec4(normalize(normal) * 0.5 + 0.5, roughness);

#if defined(ENABLE_SSS)
	sss_buffer = sss_strength;
#endif

#else //USE_MULTIPLE_RENDER_TARGETS

#ifdef SHADELESS
	frag_color = vec4(albedo, alpha);
#else
	frag_color = vec4(emission + ambient_light + diffuse_light + specular_light, alpha);
#endif //SHADELESS

#endif //USE_MULTIPLE_RENDER_TARGETS

#endif //RENDER_DEPTH
}