summaryrefslogtreecommitdiff
path: root/drivers/gles3/shaders/scene.glsl
blob: c7fdd6ebd88b42e82631d9d094fba9ed0a5df31b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
/* clang-format off */
#[modes]

mode_color = #define BASE_PASS
mode_color_instancing = #define BASE_PASS \n#define USE_INSTANCING
mode_additive = #define USE_ADDITIVE_LIGHTING
mode_additive_instancing = #define USE_ADDITIVE_LIGHTING \n#define USE_INSTANCING
mode_depth = #define MODE_RENDER_DEPTH
mode_depth_instancing = #define MODE_RENDER_DEPTH \n#define USE_INSTANCING

#[specializations]

DISABLE_LIGHTMAP = false
DISABLE_LIGHT_DIRECTIONAL = false
DISABLE_LIGHT_OMNI = false
DISABLE_LIGHT_SPOT = false
DISABLE_FOG = false
USE_RADIANCE_MAP = true


#[vertex]

#define M_PI 3.14159265359

#define SHADER_IS_SRGB true

#include "stdlib_inc.glsl"

#if !defined(MODE_RENDER_DEPTH) || defined(TANGENT_USED) || defined(NORMAL_MAP_USED) || defined(LIGHT_ANISOTROPY_USED) ||defined(LIGHT_CLEARCOAT_USED)
#ifndef NORMAL_USED
#define NORMAL_USED
#endif
#endif

/*
from RenderingServer:
ARRAY_VERTEX = 0, // RG32F or RGB32F (depending on 2D bit)
ARRAY_NORMAL = 1, // RG16 octahedral compression
ARRAY_TANGENT = 2, // RG16 octahedral compression, sign stored in sign of G
ARRAY_COLOR = 3, // RGBA8
ARRAY_TEX_UV = 4, // RG32F
ARRAY_TEX_UV2 = 5, // RG32F
ARRAY_CUSTOM0 = 6, // Depends on ArrayCustomFormat.
ARRAY_CUSTOM1 = 7,
ARRAY_CUSTOM2 = 8,
ARRAY_CUSTOM3 = 9,
ARRAY_BONES = 10, // RGBA16UI (x2 if 8 weights)
ARRAY_WEIGHTS = 11, // RGBA16UNORM (x2 if 8 weights)
*/

/* INPUT ATTRIBS */

layout(location = 0) in highp vec3 vertex_attrib;
/* clang-format on */

#ifdef NORMAL_USED
layout(location = 1) in vec2 normal_attrib;
#endif

#if defined(TANGENT_USED) || defined(NORMAL_MAP_USED) || defined(LIGHT_ANISOTROPY_USED)
layout(location = 2) in vec2 tangent_attrib;
#endif

#if defined(COLOR_USED)
layout(location = 3) in vec4 color_attrib;
#endif

#ifdef UV_USED
layout(location = 4) in vec2 uv_attrib;
#endif

#if defined(UV2_USED) || defined(USE_LIGHTMAP)
layout(location = 5) in vec2 uv2_attrib;
#endif

#if defined(CUSTOM0_USED)
layout(location = 6) in vec4 custom0_attrib;
#endif

#if defined(CUSTOM1_USED)
layout(location = 7) in vec4 custom1_attrib;
#endif

#if defined(CUSTOM2_USED)
layout(location = 8) in vec4 custom2_attrib;
#endif

#if defined(CUSTOM3_USED)
layout(location = 9) in vec4 custom3_attrib;
#endif

#if defined(BONES_USED)
layout(location = 10) in uvec4 bone_attrib;
#endif

#if defined(WEIGHTS_USED)
layout(location = 11) in vec4 weight_attrib;
#endif

vec3 oct_to_vec3(vec2 e) {
	vec3 v = vec3(e.xy, 1.0 - abs(e.x) - abs(e.y));
	float t = max(-v.z, 0.0);
	v.xy += t * -sign(v.xy);
	return v;
}

#ifdef USE_INSTANCING
layout(location = 12) in highp vec4 instance_xform0;
layout(location = 13) in highp vec4 instance_xform1;
layout(location = 14) in highp vec4 instance_xform2;
layout(location = 15) in highp uvec4 instance_color_custom_data; // Color packed into xy, Custom data into zw.
#endif

layout(std140) uniform GlobalShaderUniformData { //ubo:1
	vec4 global_shader_uniforms[MAX_GLOBAL_SHADER_UNIFORMS];
};

layout(std140) uniform SceneData { // ubo:2
	highp mat4 projection_matrix;
	highp mat4 inv_projection_matrix;
	highp mat4 inv_view_matrix;
	highp mat4 view_matrix;

	vec2 viewport_size;
	vec2 screen_pixel_size;

	mediump vec4 ambient_light_color_energy;

	mediump float ambient_color_sky_mix;
	bool material_uv2_mode;
	float pad2;
	bool use_ambient_light;
	bool use_ambient_cubemap;
	bool use_reflection_cubemap;

	float fog_aerial_perspective;
	float time;

	mat3 radiance_inverse_xform;

	uint directional_light_count;
	float z_far;
	float z_near;
	float pad;

	bool fog_enabled;
	float fog_density;
	float fog_height;
	float fog_height_density;

	vec3 fog_light_color;
	float fog_sun_scatter;
}
scene_data;

uniform highp mat4 world_transform;

#ifdef USE_LIGHTMAP
uniform highp vec4 lightmap_uv_rect;
#endif

/* Varyings */

out highp vec3 vertex_interp;
#ifdef NORMAL_USED
out vec3 normal_interp;
#endif

#if defined(COLOR_USED)
out vec4 color_interp;
#endif

#if defined(UV_USED)
out vec2 uv_interp;
#endif

#if defined(UV2_USED)
out vec2 uv2_interp;
#else
#ifdef USE_LIGHTMAP
out vec2 uv2_interp;
#endif
#endif

#if defined(TANGENT_USED) || defined(NORMAL_MAP_USED) || defined(LIGHT_ANISOTROPY_USED)
out vec3 tangent_interp;
out vec3 binormal_interp;
#endif

#if defined(MATERIAL_UNIFORMS_USED)

/* clang-format off */
layout(std140) uniform MaterialUniforms { // ubo:3

#MATERIAL_UNIFORMS

};
/* clang-format on */

#endif

/* clang-format off */

#GLOBALS

/* clang-format on */
invariant gl_Position;

void main() {
	highp vec3 vertex = vertex_attrib;

	highp mat4 model_matrix = world_transform;
#ifdef USE_INSTANCING
	highp mat4 m = mat4(instance_xform0, instance_xform1, instance_xform2, vec4(0.0, 0.0, 0.0, 1.0));
	model_matrix = model_matrix * transpose(m);
#endif

#ifdef NORMAL_USED
	vec3 normal = oct_to_vec3(normal_attrib * 2.0 - 1.0);
#endif
	highp mat3 model_normal_matrix = mat3(model_matrix);

#if defined(TANGENT_USED) || defined(NORMAL_MAP_USED) || defined(LIGHT_ANISOTROPY_USED)
	vec2 signed_tangent_attrib = tangent_attrib * 2.0 - 1.0;
	vec3 tangent = oct_to_vec3(vec2(signed_tangent_attrib.x, abs(signed_tangent_attrib.y) * 2.0 - 1.0));
	float binormalf = sign(signed_tangent_attrib.y);
	vec3 binormal = normalize(cross(normal, tangent) * binormalf);
#endif

#if defined(COLOR_USED)
	color_interp = color_attrib;
#ifdef USE_INSTANCING
	vec4 instance_color = vec4(unpackHalf2x16(instance_color_custom_data.x), unpackHalf2x16(instance_color_custom_data.y));
	color_interp *= instance_color;
#endif
#endif

#if defined(UV_USED)
	uv_interp = uv_attrib;
#endif

#ifdef USE_LIGHTMAP
	uv2_interp = lightmap_uv_rect.zw * uv2_attrib + lightmap_uv_rect.xy;
#else
#if defined(UV2_USED)
	uv2_interp = uv2_attrib;
#endif
#endif

#if defined(OVERRIDE_POSITION)
	highp vec4 position;
#endif
	highp mat4 projection_matrix = scene_data.projection_matrix;
	highp mat4 inv_projection_matrix = scene_data.inv_projection_matrix;

#ifdef USE_INSTANCING
	vec4 instance_custom = vec4(unpackHalf2x16(instance_color_custom_data.z), unpackHalf2x16(instance_color_custom_data.w));
#else
	vec4 instance_custom = vec4(0.0);
#endif

	// Using world coordinates
#if !defined(SKIP_TRANSFORM_USED) && defined(VERTEX_WORLD_COORDS_USED)

	vertex = (model_matrix * vec4(vertex, 1.0)).xyz;

#ifdef NORMAL_USED
	normal = model_normal_matrix * normal;
#endif

#if defined(TANGENT_USED) || defined(NORMAL_MAP_USED) || defined(LIGHT_ANISOTROPY_USED)

	tangent = model_normal_matrix * tangent;
	binormal = model_normal_matrix * binormal;

#endif
#endif

	float roughness = 1.0;

	highp mat4 modelview = scene_data.view_matrix * model_matrix;
	highp mat3 modelview_normal = mat3(scene_data.view_matrix) * model_normal_matrix;

	float point_size = 1.0;

	{
#CODE : VERTEX
	}

	gl_PointSize = point_size;

	// Using local coordinates (default)
#if !defined(SKIP_TRANSFORM_USED) && !defined(VERTEX_WORLD_COORDS_USED)

	vertex = (modelview * vec4(vertex, 1.0)).xyz;
#ifdef NORMAL_USED
	normal = modelview_normal * normal;
#endif

#endif

#if defined(TANGENT_USED) || defined(NORMAL_MAP_USED) || defined(LIGHT_ANISOTROPY_USED)

	binormal = modelview_normal * binormal;
	tangent = modelview_normal * tangent;
#endif

	// Using world coordinates
#if !defined(SKIP_TRANSFORM_USED) && defined(VERTEX_WORLD_COORDS_USED)

	vertex = (scene_data.view_matrix * vec4(vertex, 1.0)).xyz;
#ifdef NORMAL_USED
	normal = (scene_data.view_matrix * vec4(normal, 0.0)).xyz;
#endif

#if defined(TANGENT_USED) || defined(NORMAL_MAP_USED) || defined(LIGHT_ANISOTROPY_USED)
	binormal = (scene_data.view_matrix * vec4(binormal, 0.0)).xyz;
	tangent = (scene_data.view_matrix * vec4(tangent, 0.0)).xyz;
#endif
#endif

	vertex_interp = vertex;
#ifdef NORMAL_USED
	normal_interp = normal;
#endif

#if defined(TANGENT_USED) || defined(NORMAL_MAP_USED) || defined(LIGHT_ANISOTROPY_USED)
	tangent_interp = tangent;
	binormal_interp = binormal;
#endif

#if defined(OVERRIDE_POSITION)
	gl_Position = position;
#else
	gl_Position = projection_matrix * vec4(vertex_interp, 1.0);
#endif
}

/* clang-format off */
#[fragment]


// Default to SPECULAR_SCHLICK_GGX.
#if !defined(SPECULAR_DISABLED) && !defined(SPECULAR_SCHLICK_GGX) && !defined(SPECULAR_TOON)
#define SPECULAR_SCHLICK_GGX
#endif

#if !defined(MODE_RENDER_DEPTH) || defined(TANGENT_USED) || defined(NORMAL_MAP_USED) || defined(LIGHT_ANISOTROPY_USED) ||defined(LIGHT_CLEARCOAT_USED)
#ifndef NORMAL_USED
#define NORMAL_USED
#endif
#endif

#include "tonemap_inc.glsl"
#include "stdlib_inc.glsl"

/* texture unit usage, N is max_texture_unity-N

1-color correction // In tonemap_inc.glsl
2-radiance
3-directional_shadow
4-positional_shadow
5-screen
6-depth

*/

#define M_PI 3.14159265359
/* clang-format on */

#define SHADER_IS_SRGB true

/* Varyings */

#if defined(COLOR_USED)
in vec4 color_interp;
#endif

#if defined(UV_USED)
in vec2 uv_interp;
#endif

#if defined(UV2_USED)
in vec2 uv2_interp;
#else
#ifdef USE_LIGHTMAP
in vec2 uv2_interp;
#endif
#endif

#if defined(TANGENT_USED) || defined(NORMAL_MAP_USED) || defined(LIGHT_ANISOTROPY_USED)
in vec3 tangent_interp;
in vec3 binormal_interp;
#endif

#ifdef NORMAL_USED
in vec3 normal_interp;
#endif

in highp vec3 vertex_interp;

#ifdef USE_RADIANCE_MAP

#define RADIANCE_MAX_LOD 5.0

uniform samplerCube radiance_map; // texunit:-2

#endif

layout(std140) uniform GlobalShaderUniformData { //ubo:1
	vec4 global_shader_uniforms[MAX_GLOBAL_SHADER_UNIFORMS];
};

	/* Material Uniforms */

#if defined(MATERIAL_UNIFORMS_USED)

/* clang-format off */
layout(std140) uniform MaterialUniforms { // ubo:3

#MATERIAL_UNIFORMS

};
/* clang-format on */

#endif

layout(std140) uniform SceneData { // ubo:2
	highp mat4 projection_matrix;
	highp mat4 inv_projection_matrix;
	highp mat4 inv_view_matrix;
	highp mat4 view_matrix;

	vec2 viewport_size;
	vec2 screen_pixel_size;

	mediump vec4 ambient_light_color_energy;

	mediump float ambient_color_sky_mix;
	bool material_uv2_mode;
	float pad2;
	bool use_ambient_light;
	bool use_ambient_cubemap;
	bool use_reflection_cubemap;

	float fog_aerial_perspective;
	float time;

	mat3 radiance_inverse_xform;

	uint directional_light_count;
	float z_far;
	float z_near;
	float pad;

	bool fog_enabled;
	float fog_density;
	float fog_height;
	float fog_height_density;

	vec3 fog_light_color;
	float fog_sun_scatter;
}
scene_data;

/* clang-format off */

#GLOBALS

/* clang-format on */

//directional light data

#ifndef DISABLE_LIGHT_DIRECTIONAL

struct DirectionalLightData {
	mediump vec3 direction;
	mediump float energy;
	mediump vec3 color;
	mediump float size;
	mediump vec3 pad;
	mediump float specular;
};

layout(std140) uniform DirectionalLights { // ubo:7
	DirectionalLightData directional_lights[MAX_DIRECTIONAL_LIGHT_DATA_STRUCTS];
};

#endif

// omni and spot
#if !defined(DISABLE_LIGHT_OMNI) && !defined(DISABLE_LIGHT_SPOT)
struct LightData { //this structure needs to be as packed as possible
	highp vec3 position;
	highp float inv_radius;

	mediump vec3 direction;
	highp float size;

	mediump vec3 color;
	mediump float attenuation;

	mediump float cone_attenuation;
	mediump float cone_angle;
	mediump float specular_amount;
	mediump float shadow_opacity;
};
#ifndef DISABLE_LIGHT_OMNI
layout(std140) uniform OmniLightData { // ubo:5

	LightData omni_lights[MAX_LIGHT_DATA_STRUCTS];
};
uniform uint omni_light_indices[MAX_FORWARD_LIGHTS];
uniform int omni_light_count;
#endif

#ifndef DISABLE_LIGHT_SPOT

layout(std140) uniform SpotLightData { // ubo:6

	LightData spot_lights[MAX_LIGHT_DATA_STRUCTS];
};
uniform uint spot_light_indices[MAX_FORWARD_LIGHTS];
uniform int spot_light_count;
#endif

#ifdef USE_ADDITIVE_LIGHTING
uniform highp samplerCubeShadow positional_shadow; // texunit:-4
#endif

#endif // !defined(DISABLE_LIGHT_OMNI) && !defined(DISABLE_LIGHT_SPOT)

uniform highp sampler2D screen_texture; // texunit:-5
uniform highp sampler2D depth_buffer; // texunit:-6

uniform highp mat4 world_transform;
uniform mediump float opaque_prepass_threshold;

layout(location = 0) out vec4 frag_color;

vec3 F0(float metallic, float specular, vec3 albedo) {
	float dielectric = 0.16 * specular * specular;
	// use albedo * metallic as colored specular reflectance at 0 angle for metallic materials;
	// see https://google.github.io/filament/Filament.md.html
	return mix(vec3(dielectric), albedo, vec3(metallic));
}

#if !defined(DISABLE_LIGHT_DIRECTIONAL) || !defined(DISABLE_LIGHT_OMNI) || !defined(DISABLE_LIGHT_SPOT)
float D_GGX(float cos_theta_m, float alpha) {
	float a = cos_theta_m * alpha;
	float k = alpha / (1.0 - cos_theta_m * cos_theta_m + a * a);
	return k * k * (1.0 / M_PI);
}

// From Earl Hammon, Jr. "PBR Diffuse Lighting for GGX+Smith Microsurfaces" https://www.gdcvault.com/play/1024478/PBR-Diffuse-Lighting-for-GGX
float V_GGX(float NdotL, float NdotV, float alpha) {
	return 0.5 / mix(2.0 * NdotL * NdotV, NdotL + NdotV, alpha);
}

float D_GGX_anisotropic(float cos_theta_m, float alpha_x, float alpha_y, float cos_phi, float sin_phi) {
	float alpha2 = alpha_x * alpha_y;
	highp vec3 v = vec3(alpha_y * cos_phi, alpha_x * sin_phi, alpha2 * cos_theta_m);
	highp float v2 = dot(v, v);
	float w2 = alpha2 / v2;
	float D = alpha2 * w2 * w2 * (1.0 / M_PI);
	return D;
}

float V_GGX_anisotropic(float alpha_x, float alpha_y, float TdotV, float TdotL, float BdotV, float BdotL, float NdotV, float NdotL) {
	float Lambda_V = NdotL * length(vec3(alpha_x * TdotV, alpha_y * BdotV, NdotV));
	float Lambda_L = NdotV * length(vec3(alpha_x * TdotL, alpha_y * BdotL, NdotL));
	return 0.5 / (Lambda_V + Lambda_L);
}

float SchlickFresnel(float u) {
	float m = 1.0 - u;
	float m2 = m * m;
	return m2 * m2 * m; // pow(m,5)
}

void light_compute(vec3 N, vec3 L, vec3 V, float A, vec3 light_color, float attenuation, vec3 f0, float roughness, float metallic, float specular_amount, vec3 albedo, inout float alpha,
#ifdef LIGHT_BACKLIGHT_USED
		vec3 backlight,
#endif
#ifdef LIGHT_RIM_USED
		float rim, float rim_tint,
#endif
#ifdef LIGHT_CLEARCOAT_USED
		float clearcoat, float clearcoat_roughness, vec3 vertex_normal,
#endif
#ifdef LIGHT_ANISOTROPY_USED
		vec3 B, vec3 T, float anisotropy,
#endif
		inout vec3 diffuse_light, inout vec3 specular_light) {

#if defined(USE_LIGHT_SHADER_CODE)
	// light is written by the light shader

	vec3 normal = N;
	vec3 light = L;
	vec3 view = V;

	/* clang-format off */


#CODE : LIGHT

	/* clang-format on */

#else
	float NdotL = min(A + dot(N, L), 1.0);
	float cNdotL = max(NdotL, 0.0); // clamped NdotL
	float NdotV = dot(N, V);
	float cNdotV = max(NdotV, 1e-4);

#if defined(DIFFUSE_BURLEY) || defined(SPECULAR_SCHLICK_GGX) || defined(LIGHT_CLEARCOAT_USED)
	vec3 H = normalize(V + L);
#endif

#if defined(SPECULAR_SCHLICK_GGX)
	float cNdotH = clamp(A + dot(N, H), 0.0, 1.0);
#endif

#if defined(DIFFUSE_BURLEY) || defined(SPECULAR_SCHLICK_GGX) || defined(LIGHT_CLEARCOAT_USED)
	float cLdotH = clamp(A + dot(L, H), 0.0, 1.0);
#endif

	if (metallic < 1.0) {
		float diffuse_brdf_NL; // BRDF times N.L for calculating diffuse radiance

#if defined(DIFFUSE_LAMBERT_WRAP)
		// energy conserving lambert wrap shader
		diffuse_brdf_NL = max(0.0, (NdotL + roughness) / ((1.0 + roughness) * (1.0 + roughness)));
#elif defined(DIFFUSE_TOON)

		diffuse_brdf_NL = smoothstep(-roughness, max(roughness, 0.01), NdotL);

#elif defined(DIFFUSE_BURLEY)

		{
			float FD90_minus_1 = 2.0 * cLdotH * cLdotH * roughness - 0.5;
			float FdV = 1.0 + FD90_minus_1 * SchlickFresnel(cNdotV);
			float FdL = 1.0 + FD90_minus_1 * SchlickFresnel(cNdotL);
			diffuse_brdf_NL = (1.0 / M_PI) * FdV * FdL * cNdotL;
		}
#else
		// lambert
		diffuse_brdf_NL = cNdotL * (1.0 / M_PI);
#endif

		diffuse_light += light_color * diffuse_brdf_NL * attenuation;

#if defined(LIGHT_BACKLIGHT_USED)
		diffuse_light += light_color * (vec3(1.0 / M_PI) - diffuse_brdf_NL) * backlight * attenuation;
#endif

#if defined(LIGHT_RIM_USED)
		float rim_light = pow(max(0.0, 1.0 - cNdotV), max(0.0, (1.0 - roughness) * 16.0));
		diffuse_light += rim_light * rim * mix(vec3(1.0), albedo, rim_tint) * light_color;
#endif
	}

	if (roughness > 0.0) { // FIXME: roughness == 0 should not disable specular light entirely

		// D

#if defined(SPECULAR_TOON)

		vec3 R = normalize(-reflect(L, N));
		float RdotV = dot(R, V);
		float mid = 1.0 - roughness;
		mid *= mid;
		float intensity = smoothstep(mid - roughness * 0.5, mid + roughness * 0.5, RdotV) * mid;
		diffuse_light += light_color * intensity * attenuation * specular_amount; // write to diffuse_light, as in toon shading you generally want no reflection

#elif defined(SPECULAR_DISABLED)
		// none..

#elif defined(SPECULAR_SCHLICK_GGX)
		// shlick+ggx as default
		float alpha_ggx = roughness * roughness;
#if defined(LIGHT_ANISOTROPY_USED)

		float aspect = sqrt(1.0 - anisotropy * 0.9);
		float ax = alpha_ggx / aspect;
		float ay = alpha_ggx * aspect;
		float XdotH = dot(T, H);
		float YdotH = dot(B, H);
		float D = D_GGX_anisotropic(cNdotH, ax, ay, XdotH, YdotH);
		float G = V_GGX_anisotropic(ax, ay, dot(T, V), dot(T, L), dot(B, V), dot(B, L), cNdotV, cNdotL);
#else // LIGHT_ANISOTROPY_USED
		float D = D_GGX(cNdotH, alpha_ggx);
		float G = V_GGX(cNdotL, cNdotV, alpha_ggx);
#endif // LIGHT_ANISOTROPY_USED
	   // F
		float cLdotH5 = SchlickFresnel(cLdotH);
		// Calculate Fresnel using cheap approximate specular occlusion term from Filament:
		// https://google.github.io/filament/Filament.html#lighting/occlusion/specularocclusion
		float f90 = clamp(50.0 * f0.g, 0.0, 1.0);
		vec3 F = f0 + (f90 - f0) * cLdotH5;

		vec3 specular_brdf_NL = cNdotL * D * F * G;

		specular_light += specular_brdf_NL * light_color * attenuation * specular_amount;
#endif

#if defined(LIGHT_CLEARCOAT_USED)
		// Clearcoat ignores normal_map, use vertex normal instead
		float ccNdotL = max(min(A + dot(vertex_normal, L), 1.0), 0.0);
		float ccNdotH = clamp(A + dot(vertex_normal, H), 0.0, 1.0);
		float ccNdotV = max(dot(vertex_normal, V), 1e-4);

#if !defined(SPECULAR_SCHLICK_GGX)
		float cLdotH5 = SchlickFresnel(cLdotH);
#endif
		float Dr = D_GGX(ccNdotH, mix(0.001, 0.1, clearcoat_roughness));
		float Gr = 0.25 / (cLdotH * cLdotH);
		float Fr = mix(.04, 1.0, cLdotH5);
		float clearcoat_specular_brdf_NL = clearcoat * Gr * Fr * Dr * cNdotL;

		specular_light += clearcoat_specular_brdf_NL * light_color * attenuation * specular_amount;
		// TODO: Clearcoat adds light to the scene right now (it is non-energy conserving), both diffuse and specular need to be scaled by (1.0 - FR)
		// but to do so we need to rearrange this entire function
#endif // LIGHT_CLEARCOAT_USED
	}

#ifdef USE_SHADOW_TO_OPACITY
	alpha = min(alpha, clamp(1.0 - attenuation, 0.0, 1.0));
#endif

#endif //defined(LIGHT_CODE_USED)
}

float get_omni_attenuation(float distance, float inv_range, float decay) {
	float nd = distance * inv_range;
	nd *= nd;
	nd *= nd; // nd^4
	nd = max(1.0 - nd, 0.0);
	nd *= nd; // nd^2
	return nd * pow(max(distance, 0.0001), -decay);
}

void light_process_omni(uint idx, vec3 vertex, vec3 eye_vec, vec3 normal, vec3 f0, float roughness, float metallic, float shadow, vec3 albedo, inout float alpha,
#ifdef LIGHT_BACKLIGHT_USED
		vec3 backlight,
#endif
#ifdef LIGHT_RIM_USED
		float rim, float rim_tint,
#endif
#ifdef LIGHT_CLEARCOAT_USED
		float clearcoat, float clearcoat_roughness, vec3 vertex_normal,
#endif
#ifdef LIGHT_ANISOTROPY_USED
		vec3 binormal, vec3 tangent, float anisotropy,
#endif
		inout vec3 diffuse_light, inout vec3 specular_light) {
	vec3 light_rel_vec = omni_lights[idx].position - vertex;
	float light_length = length(light_rel_vec);
	float omni_attenuation = get_omni_attenuation(light_length, omni_lights[idx].inv_radius, omni_lights[idx].attenuation);
	vec3 color = omni_lights[idx].color;
	float size_A = 0.0;

	if (omni_lights[idx].size > 0.0) {
		float t = omni_lights[idx].size / max(0.001, light_length);
		size_A = max(0.0, 1.0 - 1.0 / sqrt(1.0 + t * t));
	}

	light_compute(normal, normalize(light_rel_vec), eye_vec, size_A, color, omni_attenuation, f0, roughness, metallic, omni_lights[idx].specular_amount, albedo, alpha,
#ifdef LIGHT_BACKLIGHT_USED
			backlight,
#endif
#ifdef LIGHT_RIM_USED
			rim * omni_attenuation, rim_tint,
#endif
#ifdef LIGHT_CLEARCOAT_USED
			clearcoat, clearcoat_roughness, vertex_normal,
#endif
#ifdef LIGHT_ANISOTROPY_USED
			binormal, tangent, anisotropy,
#endif
			diffuse_light,
			specular_light);
}

void light_process_spot(uint idx, vec3 vertex, vec3 eye_vec, vec3 normal, vec3 f0, float roughness, float metallic, float shadow, vec3 albedo, inout float alpha,
#ifdef LIGHT_BACKLIGHT_USED
		vec3 backlight,
#endif
#ifdef LIGHT_RIM_USED
		float rim, float rim_tint,
#endif
#ifdef LIGHT_CLEARCOAT_USED
		float clearcoat, float clearcoat_roughness, vec3 vertex_normal,
#endif
#ifdef LIGHT_ANISOTROPY_USED
		vec3 binormal, vec3 tangent, float anisotropy,
#endif
		inout vec3 diffuse_light,
		inout vec3 specular_light) {

	vec3 light_rel_vec = spot_lights[idx].position - vertex;
	float light_length = length(light_rel_vec);
	float spot_attenuation = get_omni_attenuation(light_length, spot_lights[idx].inv_radius, spot_lights[idx].attenuation);
	vec3 spot_dir = spot_lights[idx].direction;
	float scos = max(dot(-normalize(light_rel_vec), spot_dir), spot_lights[idx].cone_angle);
	float spot_rim = max(0.0001, (1.0 - scos) / (1.0 - spot_lights[idx].cone_angle));
	spot_attenuation *= 1.0 - pow(spot_rim, spot_lights[idx].cone_attenuation);
	vec3 color = spot_lights[idx].color;

	float size_A = 0.0;

	if (spot_lights[idx].size > 0.0) {
		float t = spot_lights[idx].size / max(0.001, light_length);
		size_A = max(0.0, 1.0 - 1.0 / sqrt(1.0 + t * t));
	}

	light_compute(normal, normalize(light_rel_vec), eye_vec, size_A, color, spot_attenuation, f0, roughness, metallic, spot_lights[idx].specular_amount, albedo, alpha,
#ifdef LIGHT_BACKLIGHT_USED
			backlight,
#endif
#ifdef LIGHT_RIM_USED
			rim * spot_attenuation, rim_tint,
#endif
#ifdef LIGHT_CLEARCOAT_USED
			clearcoat, clearcoat_roughness, vertex_normal,
#endif
#ifdef LIGHT_ANISOTROPY_USED
			binormal, tangent, anisotropy,
#endif
			diffuse_light, specular_light);
}
#endif // !defined(DISABLE_LIGHT_DIRECTIONAL) || !defined(DISABLE_LIGHT_OMNI) && !defined(DISABLE_LIGHT_SPOT)

#ifndef MODE_RENDER_DEPTH
vec4 fog_process(vec3 vertex) {
	vec3 fog_color = scene_data.fog_light_color;

#ifdef USE_RADIANCE_MAP
/*
		if (scene_data.fog_aerial_perspective > 0.0) {
		vec3 sky_fog_color = vec3(0.0);
		vec3 cube_view = scene_data.radiance_inverse_xform * vertex;
		// mip_level always reads from the second mipmap and higher so the fog is always slightly blurred
		float mip_level = mix(1.0 / MAX_ROUGHNESS_LOD, 1.0, 1.0 - (abs(vertex.z) - scene_data.z_near) / (scene_data.z_far - scene_data.z_near));

		sky_fog_color = textureLod(radiance_map, cube_view, mip_level * RADIANCE_MAX_LOD).rgb;

		fog_color = mix(fog_color, sky_fog_color, scene_data.fog_aerial_perspective);
	}
	*/
#endif

#ifndef DISABLE_LIGHT_DIRECTIONAL
	if (scene_data.fog_sun_scatter > 0.001) {
		vec4 sun_scatter = vec4(0.0);
		float sun_total = 0.0;
		vec3 view = normalize(vertex);
		for (uint i = uint(0); i < scene_data.directional_light_count; i++) {
			vec3 light_color = directional_lights[i].color * directional_lights[i].energy;
			float light_amount = pow(max(dot(view, directional_lights[i].direction), 0.0), 8.0);
			fog_color += light_color * light_amount * scene_data.fog_sun_scatter;
		}
	}
#endif // !DISABLE_LIGHT_DIRECTIONAL

	float fog_amount = 1.0 - exp(min(0.0, -length(vertex) * scene_data.fog_density));

	if (abs(scene_data.fog_height_density) >= 0.0001) {
		float y = (scene_data.inv_view_matrix * vec4(vertex, 1.0)).y;

		float y_dist = y - scene_data.fog_height;

		float vfog_amount = 1.0 - exp(min(0.0, y_dist * scene_data.fog_height_density));

		fog_amount = max(vfog_amount, fog_amount);
	}

	return vec4(fog_color, fog_amount);
}

#endif // !MODE_RENDER_DEPTH

void main() {
	//lay out everything, whatever is unused is optimized away anyway
	vec3 vertex = vertex_interp;
	vec3 view = -normalize(vertex_interp);
	vec3 albedo = vec3(1.0);
	vec3 backlight = vec3(0.0);
	vec4 transmittance_color = vec4(0.0, 0.0, 0.0, 1.0);
	float transmittance_depth = 0.0;
	float transmittance_boost = 0.0;
	float metallic = 0.0;
	float specular = 0.5;
	vec3 emission = vec3(0.0);
	float roughness = 1.0;
	float rim = 0.0;
	float rim_tint = 0.0;
	float clearcoat = 0.0;
	float clearcoat_roughness = 0.0;
	float anisotropy = 0.0;
	vec2 anisotropy_flow = vec2(1.0, 0.0);
	vec4 fog = vec4(0.0);
#if defined(CUSTOM_RADIANCE_USED)
	vec4 custom_radiance = vec4(0.0);
#endif
#if defined(CUSTOM_IRRADIANCE_USED)
	vec4 custom_irradiance = vec4(0.0);
#endif

	float ao = 1.0;
	float ao_light_affect = 0.0;

	float alpha = 1.0;

#if defined(TANGENT_USED) || defined(NORMAL_MAP_USED) || defined(LIGHT_ANISOTROPY_USED)
	vec3 binormal = normalize(binormal_interp);
	vec3 tangent = normalize(tangent_interp);
#else
	vec3 binormal = vec3(0.0);
	vec3 tangent = vec3(0.0);
#endif

#ifdef NORMAL_USED
	vec3 normal = normalize(normal_interp);

#if defined(DO_SIDE_CHECK)
	if (!gl_FrontFacing) {
		normal = -normal;
	}
#endif

#endif //NORMAL_USED

#ifdef UV_USED
	vec2 uv = uv_interp;
#endif

#if defined(UV2_USED) || defined(USE_LIGHTMAP)
	vec2 uv2 = uv2_interp;
#endif

#if defined(COLOR_USED)
	vec4 color = color_interp;
#endif

#if defined(NORMAL_MAP_USED)

	vec3 normal_map = vec3(0.5);
#endif

	float normal_map_depth = 1.0;

	vec2 screen_uv = gl_FragCoord.xy * scene_data.screen_pixel_size;

	float sss_strength = 0.0;

#ifdef ALPHA_SCISSOR_USED
	float alpha_scissor_threshold = 1.0;
#endif // ALPHA_SCISSOR_USED

#ifdef ALPHA_HASH_USED
	float alpha_hash_scale = 1.0;
#endif // ALPHA_HASH_USED

#ifdef ALPHA_ANTIALIASING_EDGE_USED
	float alpha_antialiasing_edge = 0.0;
	vec2 alpha_texture_coordinate = vec2(0.0, 0.0);
#endif // ALPHA_ANTIALIASING_EDGE_USED
	{
#CODE : FRAGMENT
	}

#ifndef USE_SHADOW_TO_OPACITY

#if defined(ALPHA_SCISSOR_USED)
	if (alpha < alpha_scissor_threshold) {
		discard;
	}
#endif // ALPHA_SCISSOR_USED

#ifdef USE_OPAQUE_PREPASS
#if !defined(ALPHA_SCISSOR_USED)

	if (alpha < opaque_prepass_threshold) {
		discard;
	}

#endif // not ALPHA_SCISSOR_USED
#endif // USE_OPAQUE_PREPASS

#endif // !USE_SHADOW_TO_OPACITY

#ifdef NORMAL_MAP_USED

	normal_map.xy = normal_map.xy * 2.0 - 1.0;
	normal_map.z = sqrt(max(0.0, 1.0 - dot(normal_map.xy, normal_map.xy))); //always ignore Z, as it can be RG packed, Z may be pos/neg, etc.

	normal = normalize(mix(normal, tangent * normal_map.x + binormal * normal_map.y + normal * normal_map.z, normal_map_depth));

#endif

#ifdef LIGHT_ANISOTROPY_USED

	if (anisotropy > 0.01) {
		//rotation matrix
		mat3 rot = mat3(tangent, binormal, normal);
		//make local to space
		tangent = normalize(rot * vec3(anisotropy_flow.x, anisotropy_flow.y, 0.0));
		binormal = normalize(rot * vec3(-anisotropy_flow.y, anisotropy_flow.x, 0.0));
	}

#endif

#ifndef MODE_RENDER_DEPTH

#ifndef CUSTOM_FOG_USED
#ifndef DISABLE_FOG
	// fog must be processed as early as possible and then packed.
	// to maximize VGPR usage

	if (scene_data.fog_enabled) {
		fog = fog_process(vertex);
	}
#endif // !DISABLE_FOG
#endif //!CUSTOM_FOG_USED

	uint fog_rg = packHalf2x16(fog.rg);
	uint fog_ba = packHalf2x16(fog.ba);

#endif //!MODE_RENDER_DEPTH

#ifndef MODE_RENDER_DEPTH

	// Convert colors to linear
	albedo = srgb_to_linear(albedo);
	emission = srgb_to_linear(emission);
	// TODO Backlight and transmittance when used
#ifndef MODE_UNSHADED
	vec3 f0 = F0(metallic, specular, albedo);
	vec3 specular_light = vec3(0.0, 0.0, 0.0);
	vec3 diffuse_light = vec3(0.0, 0.0, 0.0);
	vec3 ambient_light = vec3(0.0, 0.0, 0.0);

#ifdef BASE_PASS
	/////////////////////// LIGHTING //////////////////////////////

	// IBL precalculations
	float ndotv = clamp(dot(normal, view), 0.0, 1.0);
	vec3 F = f0 + (max(vec3(1.0 - roughness), f0) - f0) * pow(1.0 - ndotv, 5.0);

#ifdef USE_RADIANCE_MAP
	if (scene_data.use_reflection_cubemap) {
#ifdef LIGHT_ANISOTROPY_USED
		// https://google.github.io/filament/Filament.html#lighting/imagebasedlights/anisotropy
		vec3 anisotropic_direction = anisotropy >= 0.0 ? binormal : tangent;
		vec3 anisotropic_tangent = cross(anisotropic_direction, view);
		vec3 anisotropic_normal = cross(anisotropic_tangent, anisotropic_direction);
		vec3 bent_normal = normalize(mix(normal, anisotropic_normal, abs(anisotropy) * clamp(5.0 * roughness, 0.0, 1.0)));
		vec3 ref_vec = reflect(-view, bent_normal);
#else
		vec3 ref_vec = reflect(-view, normal);
#endif
		ref_vec = mix(ref_vec, normal, roughness * roughness);
		float horizon = min(1.0 + dot(ref_vec, normal), 1.0);
		ref_vec = scene_data.radiance_inverse_xform * ref_vec;
		specular_light = textureLod(radiance_map, ref_vec, roughness * RADIANCE_MAX_LOD).rgb;
		specular_light = srgb_to_linear(specular_light);
		specular_light *= horizon * horizon;
		specular_light *= scene_data.ambient_light_color_energy.a;
	}
#endif

	// Calculate Reflection probes
	// Calculate Lightmaps

#if defined(CUSTOM_RADIANCE_USED)
	specular_light = mix(specular_light, custom_radiance.rgb, custom_radiance.a);
#endif // CUSTOM_RADIANCE_USED

#ifndef USE_LIGHTMAP
	//lightmap overrides everything
	if (scene_data.use_ambient_light) {
		ambient_light = scene_data.ambient_light_color_energy.rgb;
#ifdef USE_RADIANCE_MAP
		if (scene_data.use_ambient_cubemap) {
			vec3 ambient_dir = scene_data.radiance_inverse_xform * normal;
			vec3 cubemap_ambient = textureLod(radiance_map, ambient_dir, RADIANCE_MAX_LOD).rgb;
			cubemap_ambient = srgb_to_linear(cubemap_ambient);
			ambient_light = mix(ambient_light, cubemap_ambient * scene_data.ambient_light_color_energy.a, scene_data.ambient_color_sky_mix);
		}
#endif
	}
#endif // USE_LIGHTMAP

#if defined(CUSTOM_IRRADIANCE_USED)
	ambient_light = mix(ambient_light, custom_irradiance.rgb, custom_irradiance.a);
#endif // CUSTOM_IRRADIANCE_USED
	ambient_light *= albedo.rgb;

	ambient_light *= ao;

	// convert ao to direct light ao
	ao = mix(1.0, ao, ao_light_affect);

	{
#if defined(DIFFUSE_TOON)
		//simplify for toon, as
		specular_light *= specular * metallic * albedo * 2.0;
#else

		// scales the specular reflections, needs to be be computed before lighting happens,
		// but after environment, GI, and reflection probes are added
		// Environment brdf approximation (Lazarov 2013)
		// see https://www.unrealengine.com/en-US/blog/physically-based-shading-on-mobile
		const vec4 c0 = vec4(-1.0, -0.0275, -0.572, 0.022);
		const vec4 c1 = vec4(1.0, 0.0425, 1.04, -0.04);
		vec4 r = roughness * c0 + c1;
		float ndotv = clamp(dot(normal, view), 0.0, 1.0);

		float a004 = min(r.x * r.x, exp2(-9.28 * ndotv)) * r.x + r.y;
		vec2 env = vec2(-1.04, 1.04) * a004 + r.zw;
		specular_light *= env.x * f0 + env.y * clamp(50.0 * f0.g, 0.0, 1.0);
#endif
	}

#endif // BASE_PASS

#ifndef DISABLE_LIGHT_DIRECTIONAL
	//diffuse_light = normal; //
	for (uint i = uint(0); i < scene_data.directional_light_count; i++) {
		light_compute(normal, normalize(directional_lights[i].direction), normalize(view), directional_lights[i].size, directional_lights[i].color * directional_lights[i].energy, 1.0, f0, roughness, metallic, 1.0, albedo, alpha,
#ifdef LIGHT_BACKLIGHT_USED
				backlight,
#endif
#ifdef LIGHT_RIM_USED
				rim, rim_tint,
#endif
#ifdef LIGHT_CLEARCOAT_USED
				clearcoat, clearcoat_roughness, normalize(normal_interp),
#endif
#ifdef LIGHT_ANISOTROPY_USED
				binormal,
				tangent, anisotropy,
#endif
				diffuse_light,
				specular_light);
	}
#endif //!DISABLE_LIGHT_DIRECTIONAL

#ifndef DISABLE_LIGHT_OMNI
	for (int i = 0; i < MAX_FORWARD_LIGHTS; i++) {
		if (i >= omni_light_count) {
			break;
		}
		light_process_omni(omni_light_indices[i], vertex, view, normal, f0, roughness, metallic, 0.0, albedo, alpha,
#ifdef LIGHT_BACKLIGHT_USED
				backlight,
#endif
#ifdef LIGHT_RIM_USED
				rim,
				rim_tint,
#endif
#ifdef LIGHT_CLEARCOAT_USED
				clearcoat, clearcoat_roughness, normalize(normal_interp),
#endif
#ifdef LIGHT_ANISOTROPY_USED
				binormal, tangent, anisotropy,
#endif
				diffuse_light, specular_light);
	}
#endif // !DISABLE_LIGHT_OMNI

#ifndef DISABLE_LIGHT_SPOT
	for (int i = 0; i < MAX_FORWARD_LIGHTS; i++) {
		if (i >= spot_light_count) {
			break;
		}
		light_process_spot(spot_light_indices[i], vertex, view, normal, f0, roughness, metallic, 0.0, albedo, alpha,
#ifdef LIGHT_BACKLIGHT_USED
				backlight,
#endif
#ifdef LIGHT_RIM_USED
				rim,
				rim_tint,
#endif
#ifdef LIGHT_CLEARCOAT_USED
				clearcoat, clearcoat_roughness, normalize(normal_interp),
#endif
#ifdef LIGHT_ANISOTROPY_USED
				tangent,
				binormal, anisotropy,
#endif
				diffuse_light, specular_light);
	}

#endif // !DISABLE_LIGHT_SPOT
#endif // !MODE_UNSHADED
#endif // !MODE_RENDER_DEPTH

#if defined(USE_SHADOW_TO_OPACITY)
	alpha = min(alpha, clamp(length(ambient_light), 0.0, 1.0));

#if defined(ALPHA_SCISSOR_USED)
	if (alpha < alpha_scissor) {
		discard;
	}
#endif // ALPHA_SCISSOR_USED

#ifdef USE_OPAQUE_PREPASS
#if !defined(ALPHA_SCISSOR_USED)

	if (alpha < opaque_prepass_threshold) {
		discard;
	}

#endif // not ALPHA_SCISSOR_USED
#endif // USE_OPAQUE_PREPASS

#endif // USE_SHADOW_TO_OPACITY

#ifdef MODE_RENDER_DEPTH
//nothing happens, so a tree-ssa optimizer will result in no fragment shader :)
#else // !MODE_RENDER_DEPTH

#ifdef MODE_UNSHADED
	frag_color = vec4(albedo, alpha);
#else

	diffuse_light *= albedo;

	diffuse_light *= 1.0 - metallic;
	ambient_light *= 1.0 - metallic;

	frag_color = vec4(diffuse_light + specular_light, alpha);
#ifdef BASE_PASS
	frag_color.rgb += emission + ambient_light;
#endif
#endif //MODE_UNSHADED
	fog = vec4(unpackHalf2x16(fog_rg), unpackHalf2x16(fog_ba));

#ifndef DISABLE_FOG
	if (scene_data.fog_enabled) {
#ifdef BASE_PASS
		frag_color.rgb = mix(frag_color.rgb, fog.rgb, fog.a);
#else
		frag_color.rgb *= (1.0 - fog.a);
#endif // BASE_PASS
	}
#endif

	// Tonemap before writing as we are writing to an sRGB framebuffer
	frag_color.rgb *= exposure;
	frag_color.rgb = apply_tonemapping(frag_color.rgb, white);
	frag_color.rgb = linear_to_srgb(frag_color.rgb);

#ifdef USE_BCS
	frag_color.rgb = apply_bcs(frag_color.rgb, bcs);
#endif

#ifdef USE_COLOR_CORRECTION
	frag_color.rgb = apply_color_correction(frag_color.rgb, color_correction);
#endif

#endif //!MODE_RENDER_DEPTH
}