summaryrefslogtreecommitdiff
path: root/drivers/gles3/shaders/copy.glsl
blob: a5637537d2ee4a3aaeac949ce75ea1402368c21f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
/* clang-format off */
[vertex]

layout(location = 0) in highp vec4 vertex_attrib;
/* clang-format on */
#if defined(USE_CUBEMAP) || defined(USE_PANORAMA)
layout(location = 4) in vec3 cube_in;
#else
layout(location = 4) in vec2 uv_in;
#endif
layout(location = 5) in vec2 uv2_in;

#if defined(USE_CUBEMAP) || defined(USE_PANORAMA)
out vec3 cube_interp;
#else
out vec2 uv_interp;
#endif

out vec2 uv2_interp;

#ifdef USE_COPY_SECTION

uniform vec4 copy_section;

#endif

void main() {

#if defined(USE_CUBEMAP) || defined(USE_PANORAMA)
	cube_interp = cube_in;
#elif defined(USE_ASYM_PANO)
	uv_interp = vertex_attrib.xy;
#else
	uv_interp = uv_in;
#ifdef V_FLIP
	uv_interp.y = 1.0 - uv_interp.y;
#endif

#endif
	uv2_interp = uv2_in;
	gl_Position = vertex_attrib;

#ifdef USE_COPY_SECTION

	uv_interp = copy_section.xy + uv_interp * copy_section.zw;
	gl_Position.xy = (copy_section.xy + (gl_Position.xy * 0.5 + 0.5) * copy_section.zw) * 2.0 - 1.0;
#endif
}

/* clang-format off */
[fragment]

#define M_PI 3.14159265359

#if !defined(USE_GLES_OVER_GL)
precision mediump float;
#endif

#if defined(USE_CUBEMAP) || defined(USE_PANORAMA)
in vec3 cube_interp;
#else
in vec2 uv_interp;
#endif
/* clang-format on */

#ifdef USE_ASYM_PANO
uniform highp mat4 pano_transform;
uniform highp vec4 asym_proj;
#endif

#ifdef USE_CUBEMAP
uniform samplerCube source_cube; //texunit:0
#else
uniform sampler2D source; //texunit:0
#endif

#ifdef USE_MULTIPLIER
uniform float multiplier;
#endif

#if defined(USE_PANORAMA) || defined(USE_ASYM_PANO)

vec4 texturePanorama(vec3 normal, sampler2D pano) {

	vec2 st = vec2(
			atan(normal.x, normal.z),
			acos(normal.y));

	if (st.x < 0.0)
		st.x += M_PI * 2.0;

	st /= vec2(M_PI * 2.0, M_PI);

	return textureLod(pano, st, 0.0);
}

#endif

uniform float stuff;
uniform vec2 pixel_size;

in vec2 uv2_interp;

#ifdef USE_BCS

uniform vec3 bcs;

#endif

#ifdef USE_COLOR_CORRECTION

uniform sampler2D color_correction; //texunit:1

#endif

layout(location = 0) out vec4 frag_color;

void main() {

	//vec4 color = color_interp;

#ifdef USE_PANORAMA

	vec4 color = texturePanorama(normalize(cube_interp), source);

#elif defined(USE_ASYM_PANO)

	// When an asymmetrical projection matrix is used (applicable for stereoscopic rendering i.e. VR) we need to do this calculation per fragment to get a perspective correct result.
	// Note that we're ignoring the x-offset for IPD, with Z sufficiently in the distance it becomes neglectible, as a result we could probably just set cube_normal.z to -1.
	// The Matrix[2][0] (= asym_proj.x) and Matrix[2][1] (= asym_proj.z) values are what provide the right shift in the image.

	vec3 cube_normal;
	cube_normal.z = -1000000.0;
	cube_normal.x = (cube_normal.z * (-uv_interp.x - asym_proj.x)) / asym_proj.y;
	cube_normal.y = (cube_normal.z * (-uv_interp.y - asym_proj.z)) / asym_proj.a;
	cube_normal = mat3(pano_transform) * cube_normal;
	cube_normal.z = -cube_normal.z;

	vec4 color = texturePanorama(normalize(cube_normal.xyz), source);

#elif defined(USE_CUBEMAP)
	vec4 color = texture(source_cube, normalize(cube_interp));

#else
	vec4 color = textureLod(source, uv_interp, 0.0);
#endif

#ifdef LINEAR_TO_SRGB
	//regular Linear -> SRGB conversion
	vec3 a = vec3(0.055);
	color.rgb = mix((vec3(1.0) + a) * pow(color.rgb, vec3(1.0 / 2.4)) - a, 12.92 * color.rgb, lessThan(color.rgb, vec3(0.0031308)));
#endif

#ifdef SRGB_TO_LINEAR

	color.rgb = mix(pow((color.rgb + vec3(0.055)) * (1.0 / (1.0 + 0.055)), vec3(2.4)), color.rgb * (1.0 / 12.92), lessThan(color.rgb, vec3(0.04045)));
#endif

#ifdef DEBUG_GRADIENT
	color.rg = uv_interp;
	color.b = 0.0;
#endif

#ifdef DISABLE_ALPHA
	color.a = 1.0;
#endif

#ifdef GAUSSIAN_HORIZONTAL
	color *= 0.38774;
	color += texture(source, uv_interp + vec2(1.0, 0.0) * pixel_size) * 0.24477;
	color += texture(source, uv_interp + vec2(2.0, 0.0) * pixel_size) * 0.06136;
	color += texture(source, uv_interp + vec2(-1.0, 0.0) * pixel_size) * 0.24477;
	color += texture(source, uv_interp + vec2(-2.0, 0.0) * pixel_size) * 0.06136;
#endif

#ifdef GAUSSIAN_VERTICAL
	color *= 0.38774;
	color += texture(source, uv_interp + vec2(0.0, 1.0) * pixel_size) * 0.24477;
	color += texture(source, uv_interp + vec2(0.0, 2.0) * pixel_size) * 0.06136;
	color += texture(source, uv_interp + vec2(0.0, -1.0) * pixel_size) * 0.24477;
	color += texture(source, uv_interp + vec2(0.0, -2.0) * pixel_size) * 0.06136;
#endif

#ifdef USE_BCS

	color.rgb = mix(vec3(0.0), color.rgb, bcs.x);
	color.rgb = mix(vec3(0.5), color.rgb, bcs.y);
	color.rgb = mix(vec3(dot(vec3(1.0), color.rgb) * 0.33333), color.rgb, bcs.z);

#endif

#ifdef USE_COLOR_CORRECTION

	color.r = texture(color_correction, vec2(color.r, 0.0)).r;
	color.g = texture(color_correction, vec2(color.g, 0.0)).g;
	color.b = texture(color_correction, vec2(color.b, 0.0)).b;
#endif

#ifdef USE_MULTIPLIER
	color.rgb *= multiplier;
#endif
	frag_color = color;
}