summaryrefslogtreecommitdiff
path: root/drivers/gles3/rasterizer_canvas_batcher.h
blob: c7345824abaf91a35d2ddabcad6c8b1b758cfb27 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
/*************************************************************************/
/*  rasterizer_canvas_batcher.h                                          */
/*************************************************************************/
/*                       This file is part of:                           */
/*                           GODOT ENGINE                                */
/*                      https://godotengine.org                          */
/*************************************************************************/
/* Copyright (c) 2007-2021 Juan Linietsky, Ariel Manzur.                 */
/* Copyright (c) 2014-2021 Godot Engine contributors (cf. AUTHORS.md).   */
/*                                                                       */
/* Permission is hereby granted, free of charge, to any person obtaining */
/* a copy of this software and associated documentation files (the       */
/* "Software"), to deal in the Software without restriction, including   */
/* without limitation the rights to use, copy, modify, merge, publish,   */
/* distribute, sublicense, and/or sell copies of the Software, and to    */
/* permit persons to whom the Software is furnished to do so, subject to */
/* the following conditions:                                             */
/*                                                                       */
/* The above copyright notice and this permission notice shall be        */
/* included in all copies or substantial portions of the Software.       */
/*                                                                       */
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,       */
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF    */
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY  */
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,  */
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE     */
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.                */
/*************************************************************************/

#ifndef RASTERIZER_CANVAS_BATCHER_H
#define RASTERIZER_CANVAS_BATCHER_H

#include "core/os/os.h"
#include "core/templates/local_vector.h"
#include "rasterizer_array.h"
#include "rasterizer_asserts.h"
#include "rasterizer_storage_common.h"

#include "core/config/project_settings.h"
#include "servers/rendering/renderer_compositor.h"

// We are using the curiously recurring template pattern
// https://en.wikipedia.org/wiki/Curiously_recurring_template_pattern
// For static polymorphism.

// This makes it super easy to access
// data / call funcs in the derived rasterizers from the base without writing and
// maintaining a boatload of virtual functions.
// In addition it assures that vtable will not be used and the function calls can be optimized,
// because it gives compile time static polymorphism.

// These macros makes it simpler and less verbose to define (and redefine) the inline functions
// template preamble
#define T_PREAMBLE template <class T, typename T_STORAGE>
// class preamble
#define C_PREAMBLE RasterizerCanvasBatcher<T, T_STORAGE>
// generic preamble
#define PREAMBLE(RET_T) \
	T_PREAMBLE          \
	RET_T C_PREAMBLE

template <class T, typename T_STORAGE>
class RasterizerCanvasBatcher {
public:
	// used to determine whether we use hardware transform (none)
	// software transform all verts, or software transform just a translate
	// (no rotate or scale)
	enum TransformMode {
		TM_NONE,
		TM_ALL,
		TM_TRANSLATE,
	};

	// pod versions of vector and color and RID, need to be 32 bit for vertex format
	struct BatchVector2 {
		float x, y;
		void set(float xx, float yy) {
			x = xx;
			y = yy;
		}
		void set(const Vector2 &p_o) {
			x = p_o.x;
			y = p_o.y;
		}
		void to(Vector2 &r_o) const {
			r_o.x = x;
			r_o.y = y;
		}
	};

	struct BatchColor {
		float r, g, b, a;
		void set_white() {
			r = 1.0f;
			g = 1.0f;
			b = 1.0f;
			a = 1.0f;
		}
		void set(const Color &p_c) {
			r = p_c.r;
			g = p_c.g;
			b = p_c.b;
			a = p_c.a;
		}
		void set(float rr, float gg, float bb, float aa) {
			r = rr;
			g = gg;
			b = bb;
			a = aa;
		}
		bool operator==(const BatchColor &p_c) const {
			return (r == p_c.r) && (g == p_c.g) && (b == p_c.b) && (a == p_c.a);
		}
		bool operator!=(const BatchColor &p_c) const { return (*this == p_c) == false; }
		bool equals(const Color &p_c) const {
			return (r == p_c.r) && (g == p_c.g) && (b == p_c.b) && (a == p_c.a);
		}
		const float *get_data() const { return &r; }
		String to_string() const {
			String sz = "{";
			const float *data = get_data();
			for (int c = 0; c < 4; c++) {
				float f = data[c];
				int val = ((f * 255.0f) + 0.5f);
				sz += String(Variant(val)) + " ";
			}
			sz += "}";
			return sz;
		}
	};

	// simplest FVF - local or baked position
	struct BatchVertex {
		// must be 32 bit pod
		BatchVector2 pos;
		BatchVector2 uv;
	};

	// simple FVF but also incorporating baked color
	struct BatchVertexColored : public BatchVertex {
		// must be 32 bit pod
		BatchColor col;
	};

	// if we are using normal mapping, we need light angles to be sent
	struct BatchVertexLightAngled : public BatchVertexColored {
		// must be pod
		float light_angle;
	};

	// CUSTOM SHADER vertex formats. These are larger but will probably
	// be needed with custom shaders in order to have the data accessible in the shader.

	// if we are using COLOR in vertex shader but not position (VERTEX)
	struct BatchVertexModulated : public BatchVertexLightAngled {
		BatchColor modulate;
	};

	struct BatchTransform {
		BatchVector2 translate;
		BatchVector2 basis[2];
	};

	// last resort, specially for custom shader, we put everything possible into a huge FVF
	// not very efficient, but better than no batching at all.
	struct BatchVertexLarge : public BatchVertexModulated {
		// must be pod
		BatchTransform transform;
	};

	// Batch should be as small as possible, and ideally nicely aligned (is 32 bytes at the moment)
	struct Batch {
		RasterizerStorageCommon::BatchType type; // should be 16 bit
		uint16_t batch_texture_id;

		// also item reference number
		uint32_t first_command;

		// in the case of DEFAULT, this is num commands.
		// with rects, is number of command and rects.
		// with lines, is number of lines
		uint32_t num_commands;

		// first vertex of this batch in the vertex lists
		uint32_t first_vert;

		BatchColor color;
	};

	struct BatchTex {
		enum TileMode : uint32_t {
			TILE_OFF,
			TILE_NORMAL,
			TILE_FORCE_REPEAT,
		};
		RID RID_texture;
		RID RID_normal;
		TileMode tile_mode;
		BatchVector2 tex_pixel_size;
		uint32_t flags;
	};

	// items in a list to be sorted prior to joining
	struct BSortItem {
		// have a function to keep as pod, rather than operator
		void assign(const BSortItem &o) {
			item = o.item;
			z_index = o.z_index;
		}
		RendererCanvasRender::Item *item;
		int z_index;
	};

	// batch item may represent 1 or more items
	struct BItemJoined {
		uint32_t first_item_ref;
		uint32_t num_item_refs;

		Rect2 bounding_rect;

		// note the z_index  may only be correct for the first of the joined item references
		// this has implications for light culling with z ranged lights.
		int16_t z_index;

		// these are defined in RasterizerStorageCommon::BatchFlags
		uint16_t flags;

		// we are always splitting items with lots of commands,
		// and items with unhandled primitives (default)
		bool use_hardware_transform() const { return num_item_refs == 1; }
	};

	struct BItemRef {
		RendererCanvasRender::Item *item;
		Color final_modulate;
	};

	struct BLightRegion {
		void reset() {
			light_bitfield = 0;
			shadow_bitfield = 0;
			too_many_lights = false;
		}
		uint64_t light_bitfield;
		uint64_t shadow_bitfield;
		bool too_many_lights; // we can only do light region optimization if there are 64 or less lights
	};

	struct BatchData {
		BatchData() {
			reset_flush();
			reset_joined_item();

			gl_vertex_buffer = 0;
			gl_index_buffer = 0;
			max_quads = 0;
			vertex_buffer_size_units = 0;
			vertex_buffer_size_bytes = 0;
			index_buffer_size_units = 0;
			index_buffer_size_bytes = 0;

			use_colored_vertices = false;

			settings_use_batching = false;
			settings_max_join_item_commands = 0;
			settings_colored_vertex_format_threshold = 0.0f;
			settings_batch_buffer_num_verts = 0;
			scissor_threshold_area = 0.0f;
			joined_item_batch_flags = 0;
			diagnose_frame = false;
			next_diagnose_tick = 10000;
			diagnose_frame_number = 9999999999; // some high number
			join_across_z_indices = true;
			settings_item_reordering_lookahead = 0;

			settings_use_batching_original_choice = false;
			settings_flash_batching = false;
			settings_diagnose_frame = false;
			settings_scissor_lights = false;
			settings_scissor_threshold = -1.0f;
			settings_use_single_rect_fallback = false;
			settings_use_software_skinning = true;
			settings_ninepatch_mode = 0; // default
			settings_light_max_join_items = 16;

			settings_uv_contract = false;
			settings_uv_contract_amount = 0.0f;

			buffer_mode_batch_upload_send_null = true;
			buffer_mode_batch_upload_flag_stream = false;

			stats_items_sorted = 0;
			stats_light_items_joined = 0;
		}

		// called for each joined item
		void reset_joined_item() {
			// noop but left in as a stub
		}

		// called after each flush
		void reset_flush() {
			batches.reset();
			batch_textures.reset();

			vertices.reset();
			light_angles.reset();
			vertex_colors.reset();
			vertex_modulates.reset();
			vertex_transforms.reset();

			total_quads = 0;
			total_verts = 0;
			total_color_changes = 0;

			use_light_angles = false;
			use_modulate = false;
			use_large_verts = false;
			fvf = RasterizerStorageCommon::FVF_REGULAR;
		}

		unsigned int gl_vertex_buffer;
		unsigned int gl_index_buffer;

		uint32_t max_quads;
		uint32_t vertex_buffer_size_units;
		uint32_t vertex_buffer_size_bytes;
		uint32_t index_buffer_size_units;
		uint32_t index_buffer_size_bytes;

		// small vertex FVF type - pos and UV.
		// This will always be written to initially, but can be translated
		// to larger FVFs if necessary.
		RasterizerArray<BatchVertex> vertices;

		// extra data which can be stored during prefilling, for later translation to larger FVFs
		RasterizerArray<float> light_angles;
		RasterizerArray<BatchColor> vertex_colors; // these aren't usually used, but are for polys
		RasterizerArray<BatchColor> vertex_modulates;
		RasterizerArray<BatchTransform> vertex_transforms;

		// instead of having a different buffer for each vertex FVF type
		// we have a special array big enough for the biggest FVF
		// which can have a changeable unit size, and reuse it.
		RasterizerUnitArray unit_vertices;

		RasterizerArray<Batch> batches;
		RasterizerArray<Batch> batches_temp; // used for translating to colored vertex batches
		RasterizerArray_non_pod<BatchTex> batch_textures; // the only reason this is non-POD is because of RIDs

		// SHOULD THESE BE IN FILLSTATE?
		// flexible vertex format.
		// all verts have pos and UV.
		// some have color, some light angles etc.
		RasterizerStorageCommon::FVF fvf;
		bool use_colored_vertices;
		bool use_light_angles;
		bool use_modulate;
		bool use_large_verts;

		// if the shader is using MODULATE, we prevent baking color so the final_modulate can
		// be read in the shader.
		// if the shader is reading VERTEX, we prevent baking vertex positions with extra matrices etc
		// to prevent the read position being incorrect.
		// These flags are defined in RasterizerStorageCommon::BatchFlags
		uint32_t joined_item_batch_flags;

		RasterizerArray<BItemJoined> items_joined;
		RasterizerArray<BItemRef> item_refs;

		// items are sorted prior to joining
		RasterizerArray<BSortItem> sort_items;

		// new for Godot 4 .. the client outputs a linked list so we need to convert this
		// to a linear array
		LocalVector<RendererCanvasRender::Item::Command *> command_shortlist;

		// counts
		int total_quads;
		int total_verts;

		// we keep a record of how many color changes caused new batches
		// if the colors are causing an excessive number of batches, we switch
		// to alternate batching method and add color to the vertex format.
		int total_color_changes;

		// measured in pixels, recalculated each frame
		float scissor_threshold_area;

		// diagnose this frame, every nTh frame when settings_diagnose_frame is on
		bool diagnose_frame;
		String frame_string;
		uint32_t next_diagnose_tick;
		uint64_t diagnose_frame_number;

		// whether to join items across z_indices - this can interfere with z ranged lights,
		// so has to be disabled in some circumstances
		bool join_across_z_indices;

		// global settings
		bool settings_use_batching; // the current use_batching (affected by flash)
		bool settings_use_batching_original_choice; // the choice entered in project settings
		bool settings_flash_batching; // for regression testing, flash between non-batched and batched renderer
		bool settings_diagnose_frame; // print out batches to help optimize / regression test
		int settings_max_join_item_commands;
		float settings_colored_vertex_format_threshold;
		int settings_batch_buffer_num_verts;
		bool settings_scissor_lights;
		float settings_scissor_threshold; // 0.0 to 1.0
		int settings_item_reordering_lookahead;
		bool settings_use_single_rect_fallback;
		bool settings_use_software_skinning;
		int settings_light_max_join_items;
		int settings_ninepatch_mode;

		// buffer orphaning modes
		bool buffer_mode_batch_upload_send_null;
		bool buffer_mode_batch_upload_flag_stream;

		// uv contraction
		bool settings_uv_contract;
		float settings_uv_contract_amount;

		// only done on diagnose frame
		void reset_stats() {
			stats_items_sorted = 0;
			stats_light_items_joined = 0;
		}

		// frame stats (just for monitoring and debugging)
		int stats_items_sorted;
		int stats_light_items_joined;
	} bdata;

	struct FillState {
		void reset_flush() {
			// don't reset members that need to be preserved after flushing
			// half way through a list of commands
			curr_batch = 0;
			batch_tex_id = -1;
			texpixel_size = Vector2(1, 1);
			contract_uvs = false;

			sequence_batch_type_flags = 0;
		}

		void reset_joined_item(bool p_use_hardware_transform) {
			reset_flush();
			use_hardware_transform = p_use_hardware_transform;
			extra_matrix_sent = false;
		}

		// for batching multiple types, we don't allow mixing RECTs / LINEs etc.
		// using flags allows quicker rejection of sequences with different batch types
		uint32_t sequence_batch_type_flags;

		Batch *curr_batch;
		int batch_tex_id;
		bool use_hardware_transform;
		bool contract_uvs;
		Vector2 texpixel_size;
		Color final_modulate;
		TransformMode transform_mode;
		TransformMode orig_transform_mode;

		// support for extra matrices
		bool extra_matrix_sent; // whether sent on this item (in which case sofware transform can't be used untl end of item)
		int transform_extra_command_number_p1; // plus one to allow fast checking against zero
		Transform2D transform_combined; // final * extra
	};

	// used during try_join
	struct RenderItemState {
		RenderItemState() { reset(); }
		void reset() {
			current_clip = nullptr;
			shader_cache = nullptr;
			rebind_shader = true;
			prev_use_skeleton = false;
			last_blend_mode = -1;
			canvas_last_material = RID();
			item_group_z = 0;
			item_group_light = nullptr;
			final_modulate = Color(-1.0, -1.0, -1.0, -1.0); // just something unlikely

			joined_item_batch_type_flags_curr = 0;
			joined_item_batch_type_flags_prev = 0;

			joined_item = nullptr;
		}

		RendererCanvasRender::Item *current_clip;
		typename T_STORAGE::Shader *shader_cache;
		bool rebind_shader;
		bool prev_use_skeleton;
		bool prev_distance_field;
		int last_blend_mode;
		RID canvas_last_material;
		Color final_modulate;

		// used for joining items only
		BItemJoined *joined_item;
		bool join_batch_break;
		BLightRegion light_region;

		// we need some logic to prevent joining items that have vastly different batch types
		// these are defined in RasterizerStorageCommon::BatchTypeFlags
		uint32_t joined_item_batch_type_flags_curr;
		uint32_t joined_item_batch_type_flags_prev;

		// 'item group' is data over a single call to canvas_render_items
		int item_group_z;
		Color item_group_modulate;
		RendererCanvasRender::Light *item_group_light;
		Transform2D item_group_base_transform;
	} _render_item_state;

	bool use_nvidia_rect_workaround;

	//////////////////////////////////////////////////////////////////////////////
	// End of structs used by the batcher. Beginning of funcs.
private:
	// curiously recurring template pattern - allows access to functions in the DERIVED class
	// this is kind of like using virtual functions but more efficient as they are resolved at compile time
	T_STORAGE *get_storage() { return static_cast<const T *>(this)->storage; }
	const T_STORAGE *get_storage() const { return static_cast<const T *>(this)->storage; }
	T *get_this() { return static_cast<T *>(this); }
	const T *get_this() const { return static_cast<const T *>(this); }

protected:
	// main functions called from the rasterizer canvas
	void batch_constructor();
	void batch_initialize();

	void batch_canvas_begin();
	void batch_canvas_end();
	void batch_canvas_render_items_begin(const Color &p_modulate, RendererCanvasRender::Light *p_light, const Transform2D &p_base_transform);
	void batch_canvas_render_items_end();
	void batch_canvas_render_items(RendererCanvasRender::Item *p_item_list, int p_z, const Color &p_modulate, RendererCanvasRender::Light *p_light, const Transform2D &p_base_transform);

	// recording and sorting items from the initial pass
	void record_items(RendererCanvasRender::Item *p_item_list, int p_z);
	void join_sorted_items();
	void sort_items();
	bool _sort_items_match(const BSortItem &p_a, const BSortItem &p_b) const;
	bool sort_items_from(int p_start);

	// joining logic
	bool _disallow_item_join_if_batch_types_too_different(RenderItemState &r_ris, uint32_t btf_allowed);
	bool _detect_item_batch_break(RenderItemState &r_ris, RendererCanvasRender::Item *p_ci, bool &r_batch_break);

	// drives the loop filling batches and flushing
	void render_joined_item_commands(const BItemJoined &p_bij, RendererCanvasRender::Item *p_current_clip, bool &r_reclip, typename T_STORAGE::Material *p_material, bool p_lit);

private:
	// flush once full or end of joined item
	void flush_render_batches(RendererCanvasRender::Item *p_first_item, RendererCanvasRender::Item *p_current_clip, bool &r_reclip, typename T_STORAGE::Material *p_material, uint32_t p_sequence_batch_type_flags);

	// a single joined item can contain multiple itemrefs, and thus create lots of batches
	// command start given a separate name to make easier to tell apart godot 3 and 4
	bool prefill_joined_item(FillState &r_fill_state, RendererCanvasRender::Item::Command **r_first_command, RendererCanvasRender::Item *p_item, RendererCanvasRender::Item *p_current_clip, bool &r_reclip, typename T_STORAGE::Material *p_material);

	// prefilling different types of batch

	// default batch is an 'unhandled' legacy type batch that will be drawn with the legacy path,
	// all other batches are accelerated.
	void _prefill_default_batch(FillState &r_fill_state, int p_command_num, const RendererCanvasRender::Item &p_item);

	// accelerated batches
	bool _prefill_rect(RendererCanvasRender::Item::CommandRect *rect, FillState &r_fill_state, int &r_command_start, int command_num, int command_count, RendererCanvasRender::Item::Command *const *commands, RendererCanvasRender::Item *p_item, bool multiply_final_modulate);

	// dealing with textures
	int _batch_find_or_create_tex(const RID &p_texture, const RID &p_normal, bool p_tile, int p_previous_match);

protected:
	// legacy support for non batched mode
	void _legacy_canvas_item_render_commands(RendererCanvasRender::Item *p_item, RendererCanvasRender::Item *p_current_clip, bool &r_reclip, typename T_STORAGE::Material *p_material);

	// light scissoring
	bool _light_scissor_begin(const Rect2 &p_item_rect, const Transform2D &p_light_xform, const Rect2 &p_light_rect) const;
	bool _light_find_intersection(const Rect2 &p_item_rect, const Transform2D &p_light_xform, const Rect2 &p_light_rect, Rect2 &r_cliprect) const;
	void _calculate_scissor_threshold_area();

private:
	// translating vertex formats prior to rendering
	void _translate_batches_to_vertex_colored_FVF();
	template <class BATCH_VERTEX_TYPE, bool INCLUDE_LIGHT_ANGLES, bool INCLUDE_MODULATE, bool INCLUDE_LARGE>
	void _translate_batches_to_larger_FVF(uint32_t p_sequence_batch_type_flags);

protected:
	// accessory funcs
	void _software_transform_vertex(BatchVector2 &r_v, const Transform2D &p_tr) const;
	void _software_transform_vertex(Vector2 &r_v, const Transform2D &p_tr) const;
	TransformMode _find_transform_mode(const Transform2D &p_tr) const {
		// decided whether to do translate only for software transform
		if ((p_tr.elements[0].x == 1.0f) &&
				(p_tr.elements[0].y == 0.0f) &&
				(p_tr.elements[1].x == 0.0f) &&
				(p_tr.elements[1].y == 1.0f)) {
			return TM_TRANSLATE;
		}

		return TM_ALL;
	}

	typename T_STORAGE::Texture *_get_canvas_texture(const RID &p_texture) const {
		if (p_texture.is_valid()) {
			typename T_STORAGE::Texture *texture = get_storage()->texture_owner.get_or_null(p_texture);

			if (texture) {
				return texture->get_ptr();
			}
		}

		return 0;
	}

public:
	Batch *_batch_request_new(bool p_blank = true) {
		Batch *batch = bdata.batches.request();
		if (!batch) {
			// grow the batches
			bdata.batches.grow();

			// and the temporary batches (used for color verts)
			bdata.batches_temp.reset();
			bdata.batches_temp.grow();

			// this should always succeed after growing
			batch = bdata.batches.request();
			RAST_DEBUG_ASSERT(batch);
		}

		if (p_blank)
			memset(batch, 0, sizeof(Batch));

		return batch;
	}

	BatchVertex *_batch_vertex_request_new() {
		return bdata.vertices.request();
	}

protected:
	int godot4_commands_count(RendererCanvasRender::Item::Command *p_comm) const {
		int count = 0;
		while (p_comm) {
			count++;
			p_comm = p_comm->next;
		}
		return count;
	}

	unsigned int godot4_commands_to_vector(RendererCanvasRender::Item::Command *p_comm, LocalVector<RendererCanvasRender::Item::Command *> &p_list) {
		p_list.clear();
		while (p_comm) {
			p_list.push_back(p_comm);
			p_comm = p_comm->next;
		}
		return p_list.size();
	}
};

PREAMBLE(void)::batch_canvas_begin() {
	// diagnose_frame?
	bdata.frame_string = ""; // just in case, always set this as we don't want a string leak in release...
#if defined(TOOLS_ENABLED) && defined(DEBUG_ENABLED)
	if (bdata.settings_diagnose_frame) {
		bdata.diagnose_frame = false;

		uint32_t tick = OS::get_singleton()->get_ticks_msec();
		uint64_t frame = Engine::get_singleton()->get_frames_drawn();

		if (tick >= bdata.next_diagnose_tick) {
			bdata.next_diagnose_tick = tick + 10000;

			// the plus one is prevent starting diagnosis half way through frame
			bdata.diagnose_frame_number = frame + 1;
		}

		if (frame == bdata.diagnose_frame_number) {
			bdata.diagnose_frame = true;
			bdata.reset_stats();
		}

		if (bdata.diagnose_frame) {
			bdata.frame_string = "canvas_begin FRAME " + itos(frame) + "\n";
		}
	}
#endif
}

PREAMBLE(void)::batch_canvas_end() {
#if defined(TOOLS_ENABLED) && defined(DEBUG_ENABLED)
	if (bdata.diagnose_frame) {
		bdata.frame_string += "canvas_end\n";
		if (bdata.stats_items_sorted) {
			bdata.frame_string += "\titems reordered: " + itos(bdata.stats_items_sorted) + "\n";
		}
		if (bdata.stats_light_items_joined) {
			bdata.frame_string += "\tlight items joined: " + itos(bdata.stats_light_items_joined) + "\n";
		}

		print_line(bdata.frame_string);
	}
#endif
}

PREAMBLE(void)::batch_canvas_render_items_begin(const Color &p_modulate, RendererCanvasRender::Light *p_light, const Transform2D &p_base_transform) {
	// if we are debugging, flash each frame between batching renderer and old version to compare for regressions
	if (bdata.settings_flash_batching) {
		if ((Engine::get_singleton()->get_frames_drawn() % 2) == 0)
			bdata.settings_use_batching = true;
		else
			bdata.settings_use_batching = false;
	}

	if (!bdata.settings_use_batching) {
		return;
	}

	// this only needs to be done when screen size changes, but this should be
	// infrequent enough
	_calculate_scissor_threshold_area();

	// set up render item state for all the z_indexes (this is common to all z_indexes)
	_render_item_state.reset();
	_render_item_state.item_group_modulate = p_modulate;
	_render_item_state.item_group_light = p_light;
	_render_item_state.item_group_base_transform = p_base_transform;
	_render_item_state.light_region.reset();

	// batch break must be preserved over the different z indices,
	// to prevent joining to an item on a previous index if not allowed
	_render_item_state.join_batch_break = false;

	// whether to join across z indices depends on whether there are z ranged lights.
	// joined z_index items can be wrongly classified with z ranged lights.
	bdata.join_across_z_indices = true;

	int light_count = 0;
	while (p_light) {
		light_count++;

		if ((p_light->z_min != RS::CANVAS_ITEM_Z_MIN) || (p_light->z_max != RS::CANVAS_ITEM_Z_MAX)) {
			// prevent joining across z indices. This would have caused visual regressions
			bdata.join_across_z_indices = false;
		}

		p_light = p_light->next_ptr;
	}

	// can't use the light region bitfield if there are too many lights
	// hopefully most games won't blow this limit..
	// if they do they will work but it won't batch join items just in case
	if (light_count > 64) {
		_render_item_state.light_region.too_many_lights = true;
	}
}

PREAMBLE(void)::batch_canvas_render_items_end() {
	if (!bdata.settings_use_batching) {
		return;
	}

	join_sorted_items();

#if defined(TOOLS_ENABLED) && defined(DEBUG_ENABLED)
	if (bdata.diagnose_frame) {
		bdata.frame_string += "items\n";
	}
#endif

	// batching render is deferred until after going through all the z_indices, joining all the items
	get_this()->canvas_render_items_implementation(0, 0, _render_item_state.item_group_modulate,
			_render_item_state.item_group_light,
			_render_item_state.item_group_base_transform);

	bdata.items_joined.reset();
	bdata.item_refs.reset();
	bdata.sort_items.reset();
}

PREAMBLE(void)::batch_canvas_render_items(RendererCanvasRender::Item *p_item_list, int p_z, const Color &p_modulate, RendererCanvasRender::Light *p_light, const Transform2D &p_base_transform) {
	// stage 1 : join similar items, so that their state changes are not repeated,
	// and commands from joined items can be batched together
	if (bdata.settings_use_batching) {
		record_items(p_item_list, p_z);
		return;
	}

	// only legacy renders at this stage, batched renderer doesn't render until canvas_render_items_end()
	get_this()->canvas_render_items_implementation(p_item_list, p_z, p_modulate, p_light, p_base_transform);
}

// Default batches will not occur in software transform only items
// EXCEPT IN THE CASE OF SINGLE RECTS (and this may well not occur, check the logic in prefill_join_item TYPE_RECT)
// but can occur where transform commands have been sent during hardware batch
PREAMBLE(void)::_prefill_default_batch(FillState &r_fill_state, int p_command_num, const RendererCanvasRender::Item &p_item) {
	if (r_fill_state.curr_batch->type == RasterizerStorageCommon::BT_DEFAULT) {
		// don't need to flush an extra transform command?
		if (!r_fill_state.transform_extra_command_number_p1) {
			// another default command, just add to the existing batch
			r_fill_state.curr_batch->num_commands++;
		} else {
#if defined(TOOLS_ENABLED) && defined(DEBUG_ENABLED)
			if (r_fill_state.transform_extra_command_number_p1 != p_command_num) {
				WARN_PRINT_ONCE("_prefill_default_batch : transform_extra_command_number_p1 != p_command_num");
			}
#endif
			// if the first member of the batch is a transform we have to be careful
			if (!r_fill_state.curr_batch->num_commands) {
				// there can be leading useless extra transforms (sometimes happens with debug collision polys)
				// we need to rejig the first_command for the first useful transform
				r_fill_state.curr_batch->first_command += r_fill_state.transform_extra_command_number_p1 - 1;
			}

			// we do have a pending extra transform command to flush
			// either the extra transform is in the prior command, or not, in which case we need 2 batches
			r_fill_state.curr_batch->num_commands += 2;

			r_fill_state.transform_extra_command_number_p1 = 0; // mark as sent
			r_fill_state.extra_matrix_sent = true;

			// the original mode should always be hardware transform ..
			// test this assumption
			//CRASH_COND(r_fill_state.orig_transform_mode != TM_NONE);
			r_fill_state.transform_mode = r_fill_state.orig_transform_mode;

			// do we need to restore anything else?
		}
	} else {
		// end of previous different type batch, so start new default batch

		// first consider whether there is a dirty extra matrix to send
		if (r_fill_state.transform_extra_command_number_p1) {
			// get which command the extra is in, and blank all the records as it no longer is stored CPU side
			int extra_command = r_fill_state.transform_extra_command_number_p1 - 1; // plus 1 based
			r_fill_state.transform_extra_command_number_p1 = 0;
			r_fill_state.extra_matrix_sent = true;

			// send the extra to the GPU in a batch
			r_fill_state.curr_batch = _batch_request_new();
			r_fill_state.curr_batch->type = RasterizerStorageCommon::BT_DEFAULT;
			r_fill_state.curr_batch->first_command = extra_command;
			r_fill_state.curr_batch->num_commands = 1;

			// revert to the original transform mode
			// e.g. go back to NONE if we were in hardware transform mode
			r_fill_state.transform_mode = r_fill_state.orig_transform_mode;

			// reset the original transform if we are going back to software mode,
			// because the extra is now done on the GPU...
			// (any subsequent extras are sent directly to the GPU, no deferring)
			if (r_fill_state.orig_transform_mode != TM_NONE) {
				r_fill_state.transform_combined = p_item.final_transform;
			}

			// can possibly combine batch with the next one in some cases
			// this is more efficient than having an extra batch especially for the extra
			if ((extra_command + 1) == p_command_num) {
				r_fill_state.curr_batch->num_commands = 2;
				return;
			}
		}

		// start default batch
		r_fill_state.curr_batch = _batch_request_new();
		r_fill_state.curr_batch->type = RasterizerStorageCommon::BT_DEFAULT;
		r_fill_state.curr_batch->first_command = p_command_num;
		r_fill_state.curr_batch->num_commands = 1;
	}
}

PREAMBLE(int)::_batch_find_or_create_tex(const RID &p_texture, const RID &p_normal, bool p_tile, int p_previous_match) {
	// optimization .. in 99% cases the last matched value will be the same, so no need to traverse the list
	if (p_previous_match > 0) // if it is zero, it will get hit first in the linear search anyway
	{
		const BatchTex &batch_texture = bdata.batch_textures[p_previous_match];

		// note for future reference, if RID implementation changes, this could become more expensive
		if ((batch_texture.RID_texture == p_texture) && (batch_texture.RID_normal == p_normal)) {
			// tiling mode must also match
			bool tiles = batch_texture.tile_mode != BatchTex::TILE_OFF;

			if (tiles == p_tile)
				// match!
				return p_previous_match;
		}
	}

	// not the previous match .. we will do a linear search ... slower, but should happen
	// not very often except with non-batchable runs, which are going to be slow anyway
	// n.b. could possibly be replaced later by a fast hash table
	for (int n = 0; n < bdata.batch_textures.size(); n++) {
		const BatchTex &batch_texture = bdata.batch_textures[n];
		if ((batch_texture.RID_texture == p_texture) && (batch_texture.RID_normal == p_normal)) {
			// tiling mode must also match
			bool tiles = batch_texture.tile_mode != BatchTex::TILE_OFF;

			if (tiles == p_tile)
				// match!
				return n;
		}
	}

	// pushing back from local variable .. not ideal but has to use a Vector because non pod
	// due to RIDs
	BatchTex new_batch_tex;
	new_batch_tex.RID_texture = p_texture;
	new_batch_tex.RID_normal = p_normal;

	// get the texture
	typename T_STORAGE::Texture *texture = _get_canvas_texture(p_texture);

	if (texture) {
		// special case, there can be textures with no width or height
		int w = texture->width;
		int h = texture->height;

		if (!w || !h) {
			w = 1;
			h = 1;
		}

		new_batch_tex.tex_pixel_size.x = 1.0 / w;
		new_batch_tex.tex_pixel_size.y = 1.0 / h;
		new_batch_tex.flags = texture->flags;
	} else {
		// maybe doesn't need doing...
		new_batch_tex.tex_pixel_size.x = 1.0f;
		new_batch_tex.tex_pixel_size.y = 1.0f;
		new_batch_tex.flags = 0;
	}

	if (p_tile) {
		if (texture) {
			// default
			new_batch_tex.tile_mode = BatchTex::TILE_NORMAL;

			// no hardware support for non power of 2 tiling
			if (!get_storage()->config.support_npot_repeat_mipmap) {
				if (next_power_of_2(texture->alloc_width) != (unsigned int)texture->alloc_width && next_power_of_2(texture->alloc_height) != (unsigned int)texture->alloc_height) {
					new_batch_tex.tile_mode = BatchTex::TILE_FORCE_REPEAT;
				}
			}
		} else {
			// this should not happen?
			new_batch_tex.tile_mode = BatchTex::TILE_OFF;
		}
	} else {
		new_batch_tex.tile_mode = BatchTex::TILE_OFF;
	}

	// push back
	bdata.batch_textures.push_back(new_batch_tex);

	return bdata.batch_textures.size() - 1;
}

PREAMBLE(void)::batch_constructor() {
	bdata.settings_use_batching = false;

#ifdef GLES_OVER_GL
	use_nvidia_rect_workaround = GLOBAL_GET("rendering/quality/2d/use_nvidia_rect_flicker_workaround");
#else
	// Not needed (a priori) on GLES devices
	use_nvidia_rect_workaround = false;
#endif
}

PREAMBLE(void)::batch_initialize() {
#define BATCHING_LOAD_PROJECT_SETTINGS

#ifdef BATCHING_LOAD_PROJECT_SETTINGS
	bdata.settings_use_batching = GLOBAL_GET("rendering/batching/options/use_batching");
	bdata.settings_max_join_item_commands = GLOBAL_GET("rendering/batching/parameters/max_join_item_commands");
	bdata.settings_colored_vertex_format_threshold = GLOBAL_GET("rendering/batching/parameters/colored_vertex_format_threshold");
	bdata.settings_item_reordering_lookahead = GLOBAL_GET("rendering/batching/parameters/item_reordering_lookahead");
	bdata.settings_light_max_join_items = GLOBAL_GET("rendering/batching/lights/max_join_items");
	bdata.settings_use_single_rect_fallback = GLOBAL_GET("rendering/batching/options/single_rect_fallback");
	bdata.settings_use_software_skinning = GLOBAL_GET("rendering/quality/2d/use_software_skinning");
	bdata.settings_ninepatch_mode = GLOBAL_GET("rendering/quality/2d/ninepatch_mode");

	// alternatively only enable uv contract if pixel snap in use,
	// but with this enable bool, it should not be necessary
	bdata.settings_uv_contract = GLOBAL_GET("rendering/batching/precision/uv_contract");
	bdata.settings_uv_contract_amount = (float)GLOBAL_GET("rendering/batching/precision/uv_contract_amount") / 1000000.0f;

	// we can use the threshold to determine whether to turn scissoring off or on
	bdata.settings_scissor_threshold = GLOBAL_GET("rendering/batching/lights/scissor_area_threshold");
#endif

	if (bdata.settings_scissor_threshold > 0.999f) {
		bdata.settings_scissor_lights = false;
	} else {
		bdata.settings_scissor_lights = true;

		// apply power of 4 relationship for the area, as most of the important changes
		// will be happening at low values of scissor threshold
		bdata.settings_scissor_threshold *= bdata.settings_scissor_threshold;
		bdata.settings_scissor_threshold *= bdata.settings_scissor_threshold;
	}

	// The sweet spot on my desktop for cache is actually smaller than the max, and this
	// is the default. This saves memory too so we will use it for now, needs testing to see whether this varies according
	// to device / platform.
#ifdef BATCHING_LOAD_PROJECT_SETTINGS
	bdata.settings_batch_buffer_num_verts = GLOBAL_GET("rendering/batching/parameters/batch_buffer_size");

	// override the use_batching setting in the editor
	// (note that if the editor can't start, you can't change the use_batching project setting!)
	if (Engine::get_singleton()->is_editor_hint()) {
		bool use_in_editor = GLOBAL_GET("rendering/batching/options/use_batching_in_editor");
		bdata.settings_use_batching = use_in_editor;

		// fix some settings in the editor, as the performance not worth the risk
		bdata.settings_use_single_rect_fallback = false;
	}
#endif

	// if we are using batching, we will purposefully disable the nvidia workaround.
	// This is because the only reason to use the single rect fallback is the approx 2x speed
	// of the uniform drawing technique. If we used nvidia workaround, speed would be
	// approx equal to the batcher drawing technique (indexed primitive + VB).
	if (bdata.settings_use_batching) {
		use_nvidia_rect_workaround = false;
	}

	// For debugging, if flash is set in project settings, it will flash on alternate frames
	// between the non-batched renderer and the batched renderer,
	// in order to find regressions.
	// This should not be used except during development.
	// make a note of the original choice in case we are flashing on and off the batching
	bdata.settings_use_batching_original_choice = bdata.settings_use_batching;

#ifdef BATCHING_LOAD_PROJECT_SETTINGS
	bdata.settings_flash_batching = GLOBAL_GET("rendering/batching/debug/flash_batching");
#endif
	if (!bdata.settings_use_batching) {
		// no flash when batching turned off
		bdata.settings_flash_batching = false;
	}

	// frame diagnosis. print out the batches every nth frame
	bdata.settings_diagnose_frame = false;
	if (!Engine::get_singleton()->is_editor_hint() && bdata.settings_use_batching) {
#ifdef BATCHING_LOAD_PROJECT_SETTINGS
		bdata.settings_diagnose_frame = GLOBAL_GET("rendering/batching/debug/diagnose_frame");
#endif
	}

	// the maximum num quads in a batch is limited by GLES2. We can have only 16 bit indices,
	// which means we can address a vertex buffer of max size 65535. 4 vertices are needed per quad.

	// Note this determines the memory use by the vertex buffer vector. max quads (65536/4)-1
	// but can be reduced to save memory if really required (will result in more batches though)
	const int max_possible_quads = (65536 / 4) - 1;
	const int min_possible_quads = 8; // some reasonable small value

	// value from project settings
	int max_quads = bdata.settings_batch_buffer_num_verts / 4;

	// sanity checks
	max_quads = CLAMP(max_quads, min_possible_quads, max_possible_quads);
	bdata.settings_max_join_item_commands = CLAMP(bdata.settings_max_join_item_commands, 0, 65535);
	bdata.settings_colored_vertex_format_threshold = CLAMP(bdata.settings_colored_vertex_format_threshold, 0.0f, 1.0f);
	bdata.settings_scissor_threshold = CLAMP(bdata.settings_scissor_threshold, 0.0f, 1.0f);
	bdata.settings_light_max_join_items = CLAMP(bdata.settings_light_max_join_items, 0, 65535);
	bdata.settings_item_reordering_lookahead = CLAMP(bdata.settings_item_reordering_lookahead, 0, 65535);

	// allow user to override the api usage techniques using project settings
	//	bdata.buffer_mode_batch_upload_send_null = GLOBAL_GET("rendering/options/api_usage_batching/send_null");
	//	bdata.buffer_mode_batch_upload_flag_stream = GLOBAL_GET("rendering/options/api_usage_batching/flag_stream");

	// for debug purposes, output a string with the batching options
	String batching_options_string = "OpenGL ES Batching: ";
	if (bdata.settings_use_batching) {
		batching_options_string += "ON";

		if (OS::get_singleton()->is_stdout_verbose()) {
			batching_options_string += "\n\tOPTIONS\n";
			batching_options_string += "\tmax_join_item_commands " + itos(bdata.settings_max_join_item_commands) + "\n";
			batching_options_string += "\tcolored_vertex_format_threshold " + String(Variant(bdata.settings_colored_vertex_format_threshold)) + "\n";
			batching_options_string += "\tbatch_buffer_size " + itos(bdata.settings_batch_buffer_num_verts) + "\n";
			batching_options_string += "\tlight_scissor_area_threshold " + String(Variant(bdata.settings_scissor_threshold)) + "\n";

			batching_options_string += "\titem_reordering_lookahead " + itos(bdata.settings_item_reordering_lookahead) + "\n";
			batching_options_string += "\tlight_max_join_items " + itos(bdata.settings_light_max_join_items) + "\n";
			batching_options_string += "\tsingle_rect_fallback " + String(Variant(bdata.settings_use_single_rect_fallback)) + "\n";

			batching_options_string += "\tdebug_flash " + String(Variant(bdata.settings_flash_batching)) + "\n";
			batching_options_string += "\tdiagnose_frame " + String(Variant(bdata.settings_diagnose_frame));
		}

		print_line(batching_options_string);
	}

	// special case, for colored vertex format threshold.
	// as the comparison is >=, we want to be able to totally turn on or off
	// conversion to colored vertex format at the extremes, so we will force
	// 1.0 to be just above 1.0
	if (bdata.settings_colored_vertex_format_threshold > 0.995f) {
		bdata.settings_colored_vertex_format_threshold = 1.01f;
	}

	// save memory when batching off
	if (!bdata.settings_use_batching) {
		max_quads = 0;
	}

	uint32_t sizeof_batch_vert = sizeof(BatchVertex);

	bdata.max_quads = max_quads;

	// 4 verts per quad
	bdata.vertex_buffer_size_units = max_quads * 4;

	// the index buffer can be longer than 65535, only the indices need to be within this range
	bdata.index_buffer_size_units = max_quads * 6;

	const int max_verts = bdata.vertex_buffer_size_units;

	// this comes out at approx 64K for non-colored vertex buffer, and 128K for colored vertex buffer
	bdata.vertex_buffer_size_bytes = max_verts * sizeof_batch_vert;
	bdata.index_buffer_size_bytes = bdata.index_buffer_size_units * 2; // 16 bit inds

	// create equal number of normal and (max) unit sized verts (as the normal may need to be translated to a larger FVF)
	bdata.vertices.create(max_verts); // 512k
	bdata.unit_vertices.create(max_verts, sizeof(BatchVertexLarge));

	// extra data per vert needed for larger FVFs
	bdata.light_angles.create(max_verts);
	bdata.vertex_colors.create(max_verts);
	bdata.vertex_modulates.create(max_verts);
	bdata.vertex_transforms.create(max_verts);

	// num batches will be auto increased dynamically if required
	bdata.batches.create(1024);
	bdata.batches_temp.create(bdata.batches.max_size());

	// batch textures can also be increased dynamically
	bdata.batch_textures.create(32);
}

PREAMBLE(bool)::_light_scissor_begin(const Rect2 &p_item_rect, const Transform2D &p_light_xform, const Rect2 &p_light_rect) const {
	float area_item = p_item_rect.size.x * p_item_rect.size.y; // double check these are always positive

	// quick reject .. the area of pixels saved can never be more than the area of the item
	if (area_item < bdata.scissor_threshold_area) {
		return false;
	}

	Rect2 cliprect;
	if (!_light_find_intersection(p_item_rect, p_light_xform, p_light_rect, cliprect)) {
		// should not really occur .. but just in case
		cliprect = Rect2(0, 0, 0, 0);
	} else {
		// some conditions not to scissor
		// determine the area (fill rate) that will be saved
		float area_cliprect = cliprect.size.x * cliprect.size.y;
		float area_saved = area_item - area_cliprect;

		// if area saved is too small, don't scissor
		if (area_saved < bdata.scissor_threshold_area) {
			return false;
		}
	}

	int rh = get_storage()->frame.current_rt->height;

	int y = rh - (cliprect.position.y + cliprect.size.y);
	get_this()->gl_enable_scissor(cliprect.position.x, y, cliprect.size.width, cliprect.size.height);

	return true;
}

PREAMBLE(bool)::_light_find_intersection(const Rect2 &p_item_rect, const Transform2D &p_light_xform, const Rect2 &p_light_rect, Rect2 &r_cliprect) const {
	// transform light to world space (note this is done in the earlier intersection test, so could
	// be made more efficient)
	Vector2 pts[4] = {
		p_light_xform.xform(p_light_rect.position),
		p_light_xform.xform(Vector2(p_light_rect.position.x + p_light_rect.size.x, p_light_rect.position.y)),
		p_light_xform.xform(Vector2(p_light_rect.position.x, p_light_rect.position.y + p_light_rect.size.y)),
		p_light_xform.xform(Vector2(p_light_rect.position.x + p_light_rect.size.x, p_light_rect.position.y + p_light_rect.size.y)),
	};

	// calculate the light bound rect in world space
	Rect2 lrect(pts[0].x, pts[0].y, 0, 0);
	for (int n = 1; n < 4; n++) {
		lrect.expand_to(pts[n]);
	}

	// intersection between the 2 rects
	// they should probably always intersect, because of earlier check, but just in case...
	if (!p_item_rect.intersects(lrect))
		return false;

	// note this does almost the same as Rect2.clip but slightly more efficient for our use case
	r_cliprect.position.x = MAX(p_item_rect.position.x, lrect.position.x);
	r_cliprect.position.y = MAX(p_item_rect.position.y, lrect.position.y);

	Point2 item_rect_end = p_item_rect.position + p_item_rect.size;
	Point2 lrect_end = lrect.position + lrect.size;

	r_cliprect.size.x = MIN(item_rect_end.x, lrect_end.x) - r_cliprect.position.x;
	r_cliprect.size.y = MIN(item_rect_end.y, lrect_end.y) - r_cliprect.position.y;

	return true;
}

PREAMBLE(void)::_calculate_scissor_threshold_area() {
	if (!bdata.settings_scissor_lights) {
		return;
	}

	// scissor area threshold is 0.0 to 1.0 in the settings for ease of use.
	// we need to translate to an absolute area to determine quickly whether
	// to scissor.
	if (bdata.settings_scissor_threshold < 0.0001f) {
		bdata.scissor_threshold_area = -1.0f; // will always pass
	} else {
		// in pixels
		int w = get_storage()->frame.current_rt->width;
		int h = get_storage()->frame.current_rt->height;

		int screen_area = w * h;

		bdata.scissor_threshold_area = bdata.settings_scissor_threshold * screen_area;
	}
}

PREAMBLE(void)::render_joined_item_commands(const BItemJoined &p_bij, RendererCanvasRender::Item *p_current_clip, bool &r_reclip, typename T_STORAGE::Material *p_material, bool p_lit) {
	RendererCanvasRender::Item *item = 0;
	RendererCanvasRender::Item *first_item = bdata.item_refs[p_bij.first_item_ref].item;

	// fill_state and bdata have once off setup per joined item, and a smaller reset on flush
	FillState fill_state;
	fill_state.reset_joined_item(p_bij.use_hardware_transform());

	bdata.reset_joined_item();

	// should this joined item be using large FVF?
	if (p_bij.flags & RasterizerStorageCommon::USE_MODULATE_FVF) {
		bdata.use_modulate = true;
		bdata.fvf = RasterizerStorageCommon::FVF_MODULATED;
	}
	if (p_bij.flags & RasterizerStorageCommon::USE_LARGE_FVF) {
		bdata.use_modulate = true;
		bdata.use_large_verts = true;
		bdata.fvf = RasterizerStorageCommon::FVF_LARGE;
	}

	// in the special case of custom shaders that read from VERTEX (i.e. vertex position)
	// we want to disable software transform of extra matrix
	if (bdata.joined_item_batch_flags & RasterizerStorageCommon::PREVENT_VERTEX_BAKING) {
		fill_state.extra_matrix_sent = true;
	}

	for (unsigned int i = 0; i < p_bij.num_item_refs; i++) {
		const BItemRef &ref = bdata.item_refs[p_bij.first_item_ref + i];
		item = ref.item;

		if (!p_lit) {
			// if not lit we use the complex calculated final modulate
			fill_state.final_modulate = ref.final_modulate;
		} else {
			// if lit we ignore canvas modulate and just use the item modulate
			fill_state.final_modulate = item->final_modulate;
		}

		// ONCE OFF fill state setup, that will be retained over multiple calls to
		// prefill_joined_item()
		fill_state.transform_combined = item->final_transform;

		// decide the initial transform mode, and make a backup
		// in orig_transform_mode in case we need to switch back
		if (!fill_state.use_hardware_transform) {
			fill_state.transform_mode = _find_transform_mode(fill_state.transform_combined);
		} else {
			fill_state.transform_mode = TM_NONE;
		}
		fill_state.orig_transform_mode = fill_state.transform_mode;

		// keep track of when we added an extra matrix
		// so we can defer sending until we see a default command
		fill_state.transform_extra_command_number_p1 = 0;

		RendererCanvasRender::Item::Command *current_command = item->commands;
		while (current_command) {
			// fill as many batches as possible (until all done, or the vertex buffer is full)
			bool bFull = get_this()->prefill_joined_item(fill_state, current_command, item, p_current_clip, r_reclip, p_material);

			if (bFull) {
				// always pass first item (commands for default are always first item)
				flush_render_batches(first_item, p_current_clip, r_reclip, p_material, fill_state.sequence_batch_type_flags);

				// zero all the batch data ready for a new run
				bdata.reset_flush();

				// don't zero all the fill state, some may need to be preserved
				fill_state.reset_flush();
			}
		}
	}

	// flush if any left
	flush_render_batches(first_item, p_current_clip, r_reclip, p_material, fill_state.sequence_batch_type_flags);

	// zero all the batch data ready for a new run
	bdata.reset_flush();
}

PREAMBLE(void)::_legacy_canvas_item_render_commands(RendererCanvasRender::Item *p_item, RendererCanvasRender::Item *p_current_clip, bool &r_reclip, typename T_STORAGE::Material *p_material) {
	// reuse the same list each time to prevent needless dynamic allocations
	unsigned int command_count = godot4_commands_to_vector(p_item->commands, bdata.command_shortlist);
	RendererCanvasRender::Item::Command *const *commands = nullptr;
	if (command_count) {
		commands = &bdata.command_shortlist[0];
	}

	// legacy .. just create one massive batch and render everything as before
	bdata.batches.reset();
	Batch *batch = _batch_request_new();
	batch->type = RasterizerStorageCommon::BT_DEFAULT;
	batch->num_commands = command_count;

	get_this()->render_batches(commands, p_current_clip, r_reclip, p_material);
	bdata.reset_flush();
}

PREAMBLE(void)::record_items(RendererCanvasRender::Item *p_item_list, int p_z) {
	while (p_item_list) {
		BSortItem *s = bdata.sort_items.request_with_grow();

		s->item = p_item_list;
		s->z_index = p_z;

		p_item_list = p_item_list->next;
	}
}

PREAMBLE(void)::join_sorted_items() {
}

PREAMBLE(void)::_software_transform_vertex(BatchVector2 &r_v, const Transform2D &p_tr) const {
	Vector2 vc(r_v.x, r_v.y);
	vc = p_tr.xform(vc);
	r_v.set(vc);
}

PREAMBLE(void)::_software_transform_vertex(Vector2 &r_v, const Transform2D &p_tr) const {
	r_v = p_tr.xform(r_v);
}

PREAMBLE(void)::_translate_batches_to_vertex_colored_FVF() {
	// zeros the size and sets up how big each unit is
	bdata.unit_vertices.prepare(sizeof(BatchVertexColored));

	const BatchColor *source_vertex_colors = &bdata.vertex_colors[0];
	RAST_DEBUG_ASSERT(bdata.vertex_colors.size() == bdata.vertices.size());

	int num_verts = bdata.vertices.size();

	for (int n = 0; n < num_verts; n++) {
		const BatchVertex &bv = bdata.vertices[n];

		BatchVertexColored *cv = (BatchVertexColored *)bdata.unit_vertices.request();

		cv->pos = bv.pos;
		cv->uv = bv.uv;
		cv->col = *source_vertex_colors++;
	}
}

// Translation always involved adding color to the FVF, which enables
// joining of batches that have different colors.
// There is a trade off. Non colored verts are smaller so work faster, but
// there comes a point where it is better to just use colored verts to avoid lots of
// batches.
// In addition this can optionally add light angles to the FVF, necessary for normal mapping.
T_PREAMBLE
template <class BATCH_VERTEX_TYPE, bool INCLUDE_LIGHT_ANGLES, bool INCLUDE_MODULATE, bool INCLUDE_LARGE>
void C_PREAMBLE::_translate_batches_to_larger_FVF(uint32_t p_sequence_batch_type_flags) {
	bool include_poly_color = false;

	// we ONLY want to include the color verts in translation when using polys,
	// as rects do not write vertex colors, only colors per batch.
	if (p_sequence_batch_type_flags & RasterizerStorageCommon::BTF_POLY) {
		include_poly_color = INCLUDE_LIGHT_ANGLES | INCLUDE_MODULATE | INCLUDE_LARGE;
	}

	// zeros the size and sets up how big each unit is
	bdata.unit_vertices.prepare(sizeof(BATCH_VERTEX_TYPE));
	bdata.batches_temp.reset();

	// As the vertices_colored and batches_temp are 'mirrors' of the non-colored version,
	// the sizes should be equal, and allocations should never fail. Hence the use of debug
	// asserts to check program flow, these should not occur at runtime unless the allocation
	// code has been altered.
	RAST_DEBUG_ASSERT(bdata.unit_vertices.max_size() == bdata.vertices.max_size());
	RAST_DEBUG_ASSERT(bdata.batches_temp.max_size() == bdata.batches.max_size());

	Color curr_col(-1.0f, -1.0f, -1.0f, -1.0f);

	Batch *dest_batch = nullptr;

	const BatchColor *source_vertex_colors = &bdata.vertex_colors[0];
	const float *source_light_angles = &bdata.light_angles[0];
	const BatchColor *source_vertex_modulates = &bdata.vertex_modulates[0];
	const BatchTransform *source_vertex_transforms = &bdata.vertex_transforms[0];

	// translate the batches into vertex colored batches
	for (int n = 0; n < bdata.batches.size(); n++) {
		const Batch &source_batch = bdata.batches[n];

		// does source batch use light angles?
		const BatchTex &btex = bdata.batch_textures[source_batch.batch_texture_id];
		bool source_batch_uses_light_angles = btex.RID_normal != RID();

		bool needs_new_batch = true;

		if (dest_batch) {
			if (dest_batch->type == source_batch.type) {
				if (source_batch.type == RasterizerStorageCommon::BT_RECT) {
					if (dest_batch->batch_texture_id == source_batch.batch_texture_id) {
						// add to previous batch
						dest_batch->num_commands += source_batch.num_commands;
						needs_new_batch = false;

						// create the colored verts (only if not default)
						//int first_vert = source_batch.first_quad * 4;
						//int end_vert = 4 * (source_batch.first_quad + source_batch.num_commands);
						int first_vert = source_batch.first_vert;
						int end_vert = first_vert + (4 * source_batch.num_commands);

						for (int v = first_vert; v < end_vert; v++) {
							RAST_DEV_DEBUG_ASSERT(bdata.vertices.size());
							const BatchVertex &bv = bdata.vertices[v];
							BATCH_VERTEX_TYPE *cv = (BATCH_VERTEX_TYPE *)bdata.unit_vertices.request();
							RAST_DEBUG_ASSERT(cv);
							cv->pos = bv.pos;
							cv->uv = bv.uv;
							cv->col = source_batch.color;

							if (INCLUDE_LIGHT_ANGLES) {
								RAST_DEV_DEBUG_ASSERT(bdata.light_angles.size());
								// this is required to allow compilation with non light angle vertex.
								// it should be compiled out.
								BatchVertexLightAngled *lv = (BatchVertexLightAngled *)cv;
								if (source_batch_uses_light_angles)
									lv->light_angle = *source_light_angles++;
								else
									lv->light_angle = 0.0f; // dummy, unused in vertex shader (could possibly be left uninitialized, but probably bad idea)
							} // if including light angles

							if (INCLUDE_MODULATE) {
								RAST_DEV_DEBUG_ASSERT(bdata.vertex_modulates.size());
								BatchVertexModulated *mv = (BatchVertexModulated *)cv;
								mv->modulate = *source_vertex_modulates++;
							} // including modulate

							if (INCLUDE_LARGE) {
								RAST_DEV_DEBUG_ASSERT(bdata.vertex_transforms.size());
								BatchVertexLarge *lv = (BatchVertexLarge *)cv;
								lv->transform = *source_vertex_transforms++;
							} // if including large
						}
					} // textures match
				} else {
					// default
					// we can still join, but only under special circumstances
					// does this ever happen? not sure at this stage, but left for future expansion
					uint32_t source_last_command = source_batch.first_command + source_batch.num_commands;
					if (source_last_command == dest_batch->first_command) {
						dest_batch->num_commands += source_batch.num_commands;
						needs_new_batch = false;
					} // if the commands line up exactly
				}
			} // if both batches are the same type

		} // if dest batch is valid

		if (needs_new_batch) {
			dest_batch = bdata.batches_temp.request();
			RAST_DEBUG_ASSERT(dest_batch);

			*dest_batch = source_batch;

			// create the colored verts (only if not default)
			if (source_batch.type != RasterizerStorageCommon::BT_DEFAULT) {
				//					int first_vert = source_batch.first_quad * 4;
				//					int end_vert = 4 * (source_batch.first_quad + source_batch.num_commands);
				int first_vert = source_batch.first_vert;
				int end_vert = first_vert + (4 * source_batch.num_commands);

				for (int v = first_vert; v < end_vert; v++) {
					RAST_DEV_DEBUG_ASSERT(bdata.vertices.size());
					const BatchVertex &bv = bdata.vertices[v];
					BATCH_VERTEX_TYPE *cv = (BATCH_VERTEX_TYPE *)bdata.unit_vertices.request();
					RAST_DEBUG_ASSERT(cv);
					cv->pos = bv.pos;
					cv->uv = bv.uv;

					// polys are special, they can have per vertex colors
					if (!include_poly_color) {
						cv->col = source_batch.color;
					} else {
						RAST_DEV_DEBUG_ASSERT(bdata.vertex_colors.size());
						cv->col = *source_vertex_colors++;
					}

					if (INCLUDE_LIGHT_ANGLES) {
						RAST_DEV_DEBUG_ASSERT(bdata.light_angles.size());
						// this is required to allow compilation with non light angle vertex.
						// it should be compiled out.
						BatchVertexLightAngled *lv = (BatchVertexLightAngled *)cv;
						if (source_batch_uses_light_angles)
							lv->light_angle = *source_light_angles++;
						else
							lv->light_angle = 0.0f; // dummy, unused in vertex shader (could possibly be left uninitialized, but probably bad idea)
					} // if using light angles

					if (INCLUDE_MODULATE) {
						RAST_DEV_DEBUG_ASSERT(bdata.vertex_modulates.size());
						BatchVertexModulated *mv = (BatchVertexModulated *)cv;
						mv->modulate = *source_vertex_modulates++;
					} // including modulate

					if (INCLUDE_LARGE) {
						RAST_DEV_DEBUG_ASSERT(bdata.vertex_transforms.size());
						BatchVertexLarge *lv = (BatchVertexLarge *)cv;
						lv->transform = *source_vertex_transforms++;
					} // if including large
				}
			}
		}
	}

	// copy the temporary batches to the master batch list (this could be avoided but it makes the code cleaner)
	bdata.batches.copy_from(bdata.batches_temp);
}

PREAMBLE(bool)::_disallow_item_join_if_batch_types_too_different(RenderItemState &r_ris, uint32_t btf_allowed) {
	r_ris.joined_item_batch_type_flags_curr |= btf_allowed;

	bool disallow = false;

	if (r_ris.joined_item_batch_type_flags_prev & (~btf_allowed))
		disallow = true;

	return disallow;
}

#undef PREAMBLE
#undef T_PREAMBLE
#undef C_PREAMBLE

#endif // RASTERIZER_CANVAS_BATCHER_H