1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
|
/* clang-format off */
[vertex]
#ifdef USE_GLES_OVER_GL
#define mediump
#define highp
#else
precision highp float;
precision highp int;
#endif
#include "stdlib.glsl"
#define SHADER_IS_SRGB true
#define M_PI 3.14159265359
//
// attributes
//
attribute highp vec4 vertex_attrib; // attrib:0
/* clang-format on */
attribute vec3 normal_attrib; // attrib:1
#if defined(ENABLE_TANGENT_INTERP) || defined(ENABLE_NORMALMAP)
attribute vec4 tangent_attrib; // attrib:2
#endif
#if defined(ENABLE_COLOR_INTERP)
attribute vec4 color_attrib; // attrib:3
#endif
#if defined(ENABLE_UV_INTERP)
attribute vec2 uv_attrib; // attrib:4
#endif
#if defined(ENABLE_UV2_INTERP) || defined(USE_LIGHTMAP)
attribute vec2 uv2_attrib; // attrib:5
#endif
#ifdef USE_SKELETON
#ifdef USE_SKELETON_SOFTWARE
attribute highp vec4 bone_transform_row_0; // attrib:13
attribute highp vec4 bone_transform_row_1; // attrib:14
attribute highp vec4 bone_transform_row_2; // attrib:15
#else
attribute vec4 bone_ids; // attrib:6
attribute highp vec4 bone_weights; // attrib:7
uniform highp sampler2D bone_transforms; // texunit:-1
uniform ivec2 skeleton_texture_size;
#endif
#endif
#ifdef USE_INSTANCING
attribute highp vec4 instance_xform_row_0; // attrib:8
attribute highp vec4 instance_xform_row_1; // attrib:9
attribute highp vec4 instance_xform_row_2; // attrib:10
attribute highp vec4 instance_color; // attrib:11
attribute highp vec4 instance_custom_data; // attrib:12
#endif
//
// uniforms
//
uniform highp mat4 camera_matrix;
uniform highp mat4 camera_inverse_matrix;
uniform highp mat4 projection_matrix;
uniform highp mat4 projection_inverse_matrix;
uniform highp mat4 world_transform;
uniform highp float time;
uniform float normal_mult;
#ifdef RENDER_DEPTH
uniform float light_bias;
uniform float light_normal_bias;
#endif
//
// varyings
//
varying highp vec3 vertex_interp;
varying vec3 normal_interp;
#if defined(ENABLE_TANGENT_INTERP) || defined(ENABLE_NORMALMAP)
varying vec3 tangent_interp;
varying vec3 binormal_interp;
#endif
#if defined(ENABLE_COLOR_INTERP)
varying vec4 color_interp;
#endif
#if defined(ENABLE_UV_INTERP)
varying vec2 uv_interp;
#endif
#if defined(ENABLE_UV2_INTERP) || defined(USE_LIGHTMAP)
varying vec2 uv2_interp;
#endif
/* clang-format off */
VERTEX_SHADER_GLOBALS
/* clang-format on */
#ifdef RENDER_DEPTH_DUAL_PARABOLOID
varying highp float dp_clip;
uniform highp float shadow_dual_paraboloid_render_zfar;
uniform highp float shadow_dual_paraboloid_render_side;
#endif
#if defined(USE_SHADOW) && defined(USE_LIGHTING)
uniform highp mat4 light_shadow_matrix;
varying highp vec4 shadow_coord;
#if defined(LIGHT_USE_PSSM2) || defined(LIGHT_USE_PSSM4)
uniform highp mat4 light_shadow_matrix2;
varying highp vec4 shadow_coord2;
#endif
#if defined(LIGHT_USE_PSSM4)
uniform highp mat4 light_shadow_matrix3;
uniform highp mat4 light_shadow_matrix4;
varying highp vec4 shadow_coord3;
varying highp vec4 shadow_coord4;
#endif
#endif
#if defined(USE_VERTEX_LIGHTING) && defined(USE_LIGHTING)
varying highp vec3 diffuse_interp;
varying highp vec3 specular_interp;
// general for all lights
uniform highp vec4 light_color;
uniform highp float light_specular;
// directional
uniform highp vec3 light_direction;
// omni
uniform highp vec3 light_position;
uniform highp float light_range;
uniform highp float light_attenuation;
// spot
uniform highp float light_spot_attenuation;
uniform highp float light_spot_range;
uniform highp float light_spot_angle;
void light_compute(
vec3 N,
vec3 L,
vec3 V,
vec3 light_color,
vec3 attenuation,
float roughness) {
//this makes lights behave closer to linear, but then addition of lights looks bad
//better left disabled
//#define SRGB_APPROX(m_var) m_var = pow(m_var,0.4545454545);
/*
#define SRGB_APPROX(m_var) {\
float S1 = sqrt(m_var);\
float S2 = sqrt(S1);\
float S3 = sqrt(S2);\
m_var = 0.662002687 * S1 + 0.684122060 * S2 - 0.323583601 * S3 - 0.0225411470 * m_var;\
}
*/
#define SRGB_APPROX(m_var)
float NdotL = dot(N, L);
float cNdotL = max(NdotL, 0.0); // clamped NdotL
float NdotV = dot(N, V);
float cNdotV = max(NdotV, 0.0);
#if defined(DIFFUSE_OREN_NAYAR)
vec3 diffuse_brdf_NL;
#else
float diffuse_brdf_NL; // BRDF times N.L for calculating diffuse radiance
#endif
#if defined(DIFFUSE_LAMBERT_WRAP)
// energy conserving lambert wrap shader
diffuse_brdf_NL = max(0.0, (NdotL + roughness) / ((1.0 + roughness) * (1.0 + roughness)));
#elif defined(DIFFUSE_OREN_NAYAR)
{
// see http://mimosa-pudica.net/improved-oren-nayar.html
float LdotV = dot(L, V);
float s = LdotV - NdotL * NdotV;
float t = mix(1.0, max(NdotL, NdotV), step(0.0, s));
float sigma2 = roughness * roughness; // TODO: this needs checking
vec3 A = 1.0 + sigma2 * (-0.5 / (sigma2 + 0.33) + 0.17 * diffuse_color / (sigma2 + 0.13));
float B = 0.45 * sigma2 / (sigma2 + 0.09);
diffuse_brdf_NL = cNdotL * (A + vec3(B) * s / t) * (1.0 / M_PI);
}
#else
// lambert by default for everything else
diffuse_brdf_NL = cNdotL * (1.0 / M_PI);
#endif
SRGB_APPROX(diffuse_brdf_NL)
diffuse_interp += light_color * diffuse_brdf_NL * attenuation;
if (roughness > 0.0) {
// D
float specular_brdf_NL = 0.0;
#if !defined(SPECULAR_DISABLED)
//normalized blinn always unless disabled
vec3 H = normalize(V + L);
float cNdotH = max(dot(N, H), 0.0);
float cVdotH = max(dot(V, H), 0.0);
float cLdotH = max(dot(L, H), 0.0);
float shininess = exp2(15.0 * (1.0 - roughness) + 1.0) * 0.25;
float blinn = pow(cNdotH, shininess);
blinn *= (shininess + 8.0) / (8.0 * 3.141592654);
specular_brdf_NL = (blinn) / max(4.0 * cNdotV * cNdotL, 0.75);
#endif
SRGB_APPROX(specular_brdf_NL)
specular_interp += specular_brdf_NL * light_color * attenuation;
}
}
#endif
#ifdef USE_VERTEX_LIGHTING
#ifdef USE_REFLECTION_PROBE1
uniform highp mat4 refprobe1_local_matrix;
varying mediump vec4 refprobe1_reflection_normal_blend;
uniform highp vec3 refprobe1_box_extents;
#ifndef USE_LIGHTMAP
varying mediump vec3 refprobe1_ambient_normal;
#endif
#endif //reflection probe1
#ifdef USE_REFLECTION_PROBE2
uniform highp mat4 refprobe2_local_matrix;
varying mediump vec4 refprobe2_reflection_normal_blend;
uniform highp vec3 refprobe2_box_extents;
#ifndef USE_LIGHTMAP
varying mediump vec3 refprobe2_ambient_normal;
#endif
#endif //reflection probe2
#endif //vertex lighting for refprobes
#if defined(FOG_DEPTH_ENABLED) || defined(FOG_HEIGHT_ENABLED)
varying vec4 fog_interp;
uniform mediump vec4 fog_color_base;
#ifdef LIGHT_MODE_DIRECTIONAL
uniform mediump vec4 fog_sun_color_amount;
#endif
uniform bool fog_transmit_enabled;
uniform mediump float fog_transmit_curve;
#ifdef FOG_DEPTH_ENABLED
uniform highp float fog_depth_begin;
uniform mediump float fog_depth_curve;
uniform mediump float fog_max_distance;
#endif
#ifdef FOG_HEIGHT_ENABLED
uniform highp float fog_height_min;
uniform highp float fog_height_max;
uniform mediump float fog_height_curve;
#endif
#endif //fog
void main() {
highp vec4 vertex = vertex_attrib;
mat4 world_matrix = world_transform;
#ifdef USE_INSTANCING
{
highp mat4 m = mat4(
instance_xform_row_0,
instance_xform_row_1,
instance_xform_row_2,
vec4(0.0, 0.0, 0.0, 1.0));
world_matrix = world_matrix * transpose(m);
}
#endif
vec3 normal = normal_attrib * normal_mult;
#if defined(ENABLE_TANGENT_INTERP) || defined(ENABLE_NORMALMAP)
vec3 tangent = tangent_attrib.xyz;
tangent *= normal_mult;
float binormalf = tangent_attrib.a;
vec3 binormal = normalize(cross(normal, tangent) * binormalf);
#endif
#if defined(ENABLE_COLOR_INTERP)
color_interp = color_attrib;
#ifdef USE_INSTANCING
color_interp *= instance_color;
#endif
#endif
#if defined(ENABLE_UV_INTERP)
uv_interp = uv_attrib;
#endif
#if defined(ENABLE_UV2_INTERP) || defined(USE_LIGHTMAP)
uv2_interp = uv2_attrib;
#endif
#if !defined(SKIP_TRANSFORM_USED) && defined(VERTEX_WORLD_COORDS_USED)
vertex = world_matrix * vertex;
normal = normalize((world_matrix * vec4(normal, 0.0)).xyz);
#if defined(ENABLE_TANGENT_INTERP) || defined(ENABLE_NORMALMAP)
tangent = normalize((world_matrix * vec4(tangent, 0.0)).xyz);
binormal = normalize((world_matrix * vec4(binormal, 0.0)).xyz);
#endif
#endif
#ifdef USE_SKELETON
highp mat4 bone_transform = mat4(0.0);
#ifdef USE_SKELETON_SOFTWARE
// passing the transform as attributes
bone_transform[0] = vec4(bone_transform_row_0.x, bone_transform_row_1.x, bone_transform_row_2.x, 0.0);
bone_transform[1] = vec4(bone_transform_row_0.y, bone_transform_row_1.y, bone_transform_row_2.y, 0.0);
bone_transform[2] = vec4(bone_transform_row_0.z, bone_transform_row_1.z, bone_transform_row_2.z, 0.0);
bone_transform[3] = vec4(bone_transform_row_0.w, bone_transform_row_1.w, bone_transform_row_2.w, 1.0);
#else
// look up transform from the "pose texture"
{
for (int i = 0; i < 4; i++) {
ivec2 tex_ofs = ivec2(int(bone_ids[i]) * 3, 0);
highp mat4 b = mat4(
texel2DFetch(bone_transforms, skeleton_texture_size, tex_ofs + ivec2(0, 0)),
texel2DFetch(bone_transforms, skeleton_texture_size, tex_ofs + ivec2(1, 0)),
texel2DFetch(bone_transforms, skeleton_texture_size, tex_ofs + ivec2(2, 0)),
vec4(0.0, 0.0, 0.0, 1.0));
bone_transform += transpose(b) * bone_weights[i];
}
}
#endif
world_matrix = bone_transform * world_matrix;
#endif
#ifdef USE_INSTANCING
vec4 instance_custom = instance_custom_data;
#else
vec4 instance_custom = vec4(0.0);
#endif
mat4 modelview = camera_inverse_matrix * world_matrix;
float roughness = 1.0;
#define world_transform world_matrix
{
/* clang-format off */
VERTEX_SHADER_CODE
/* clang-format on */
}
vec4 outvec = vertex;
// use local coordinates
#if !defined(SKIP_TRANSFORM_USED) && !defined(VERTEX_WORLD_COORDS_USED)
vertex = modelview * vertex;
normal = normalize((modelview * vec4(normal, 0.0)).xyz);
#if defined(ENABLE_TANGENT_INTERP) || defined(ENABLE_NORMALMAP)
tangent = normalize((modelview * vec4(tangent, 0.0)).xyz);
binormal = normalize((modelview * vec4(binormal, 0.0)).xyz);
#endif
#endif
#if !defined(SKIP_TRANSFORM_USED) && defined(VERTEX_WORLD_COORDS_USED)
vertex = camera_inverse_matrix * vertex;
normal = normalize((camera_inverse_matrix * vec4(normal, 0.0)).xyz);
#if defined(ENABLE_TANGENT_INTERP) || defined(ENABLE_NORMALMAP)
tangent = normalize((camera_inverse_matrix * vec4(tangent, 0.0)).xyz);
binormal = normalize((camera_inverse_matrix * vec4(binormal, 0.0)).xyz);
#endif
#endif
vertex_interp = vertex.xyz;
normal_interp = normal;
#if defined(ENABLE_TANGENT_INTERP) || defined(ENABLE_NORMALMAP)
tangent_interp = tangent;
binormal_interp = binormal;
#endif
#ifdef RENDER_DEPTH
#ifdef RENDER_DEPTH_DUAL_PARABOLOID
vertex_interp.z *= shadow_dual_paraboloid_render_side;
normal_interp.z *= shadow_dual_paraboloid_render_side;
dp_clip = vertex_interp.z; //this attempts to avoid noise caused by objects sent to the other parabolloid side due to bias
//for dual paraboloid shadow mapping, this is the fastest but least correct way, as it curves straight edges
highp vec3 vtx = vertex_interp + normalize(vertex_interp) * light_bias;
highp float distance = length(vtx);
vtx = normalize(vtx);
vtx.xy /= 1.0 - vtx.z;
vtx.z = (distance / shadow_dual_paraboloid_render_zfar);
vtx.z = vtx.z * 2.0 - 1.0;
vertex_interp = vtx;
#else
float z_ofs = light_bias;
z_ofs += (1.0 - abs(normal_interp.z)) * light_normal_bias;
vertex_interp.z -= z_ofs;
#endif //dual parabolloid
#endif //depth
//vertex lighting
#if defined(USE_VERTEX_LIGHTING) && defined(USE_LIGHTING)
//vertex shaded version of lighting (more limited)
vec3 L;
vec3 light_att;
#ifdef LIGHT_MODE_OMNI
vec3 light_vec = light_position - vertex_interp;
float light_length = length(light_vec);
float normalized_distance = light_length / light_range;
if (normalized_distance < 1.0) {
float omni_attenuation = pow(1.0 - normalized_distance, light_attenuation);
vec3 attenuation = vec3(omni_attenuation);
light_att = vec3(omni_attenuation);
} else {
light_att = vec3(0.0);
}
L = normalize(light_vec);
#endif
#ifdef LIGHT_MODE_SPOT
vec3 light_rel_vec = light_position - vertex_interp;
float light_length = length(light_rel_vec);
float normalized_distance = light_length / light_range;
if (normalized_distance < 1.0) {
float spot_attenuation = pow(1.0 - normalized_distance, light_attenuation);
vec3 spot_dir = light_direction;
float spot_cutoff = light_spot_angle;
float angle = dot(-normalize(light_rel_vec), spot_dir);
if (angle > spot_cutoff) {
float scos = max(angle, spot_cutoff);
float spot_rim = max(0.0001, (1.0 - scos) / (1.0 - spot_cutoff));
spot_attenuation *= 1.0 - pow(spot_rim, light_spot_attenuation);
light_att = vec3(spot_attenuation);
} else {
light_att = vec3(0.0);
}
} else {
light_att = vec3(0.0);
}
L = normalize(light_rel_vec);
#endif
#ifdef LIGHT_MODE_DIRECTIONAL
vec3 light_vec = -light_direction;
light_att = vec3(1.0); //no base attenuation
L = normalize(light_vec);
#endif
diffuse_interp = vec3(0.0);
specular_interp = vec3(0.0);
light_compute(normal_interp, L, -normalize(vertex_interp), light_color.rgb, light_att, roughness);
#endif
//shadows (for both vertex and fragment)
#if defined(USE_SHADOW) && defined(USE_LIGHTING)
vec4 vi4 = vec4(vertex_interp, 1.0);
shadow_coord = light_shadow_matrix * vi4;
#if defined(LIGHT_USE_PSSM2) || defined(LIGHT_USE_PSSM4)
shadow_coord2 = light_shadow_matrix2 * vi4;
#endif
#if defined(LIGHT_USE_PSSM4)
shadow_coord3 = light_shadow_matrix3 * vi4;
shadow_coord4 = light_shadow_matrix4 * vi4;
#endif
#endif //use shadow and use lighting
#ifdef USE_VERTEX_LIGHTING
#ifdef USE_REFLECTION_PROBE1
{
vec3 ref_normal = normalize(reflect(vertex_interp, normal_interp));
vec3 local_pos = (refprobe1_local_matrix * vec4(vertex_interp, 1.0)).xyz;
vec3 inner_pos = abs(local_pos / refprobe1_box_extents);
float blend = max(inner_pos.x, max(inner_pos.y, inner_pos.z));
{
vec3 local_ref_vec = (refprobe1_local_matrix * vec4(ref_normal, 0.0)).xyz;
refprobe1_reflection_normal_blend.xyz = local_ref_vec;
refprobe1_reflection_normal_blend.a = blend;
}
#ifndef USE_LIGHTMAP
refprobe1_ambient_normal = (refprobe1_local_matrix * vec4(normal_interp, 0.0)).xyz;
#endif
}
#endif //USE_REFLECTION_PROBE1
#ifdef USE_REFLECTION_PROBE2
{
vec3 ref_normal = normalize(reflect(vertex_interp, normal_interp));
vec3 local_pos = (refprobe2_local_matrix * vec4(vertex_interp, 1.0)).xyz;
vec3 inner_pos = abs(local_pos / refprobe2_box_extents);
float blend = max(inner_pos.x, max(inner_pos.y, inner_pos.z));
{
vec3 local_ref_vec = (refprobe2_local_matrix * vec4(ref_normal, 0.0)).xyz;
refprobe2_reflection_normal_blend.xyz = local_ref_vec;
refprobe2_reflection_normal_blend.a = blend;
}
#ifndef USE_LIGHTMAP
refprobe2_ambient_normal = (refprobe2_local_matrix * vec4(normal_interp, 0.0)).xyz;
#endif
}
#endif //USE_REFLECTION_PROBE2
#if defined(FOG_DEPTH_ENABLED) || defined(FOG_HEIGHT_ENABLED)
float fog_amount = 0.0;
#ifdef LIGHT_MODE_DIRECTIONAL
vec3 fog_color = mix(fog_color_base.rgb, fog_sun_color_amount.rgb, fog_sun_color_amount.a * pow(max(dot(normalize(vertex_interp), light_direction), 0.0), 8.0));
#else
vec3 fog_color = fog_color_base.rgb;
#endif
#ifdef FOG_DEPTH_ENABLED
{
float fog_z = smoothstep(fog_depth_begin, fog_max_distance, length(vertex));
fog_amount = pow(fog_z, fog_depth_curve);
}
#endif
#ifdef FOG_HEIGHT_ENABLED
{
float y = (camera_matrix * vec4(vertex_interp, 1.0)).y;
fog_amount = max(fog_amount, pow(smoothstep(fog_height_min, fog_height_max, y), fog_height_curve));
}
#endif
fog_interp = vec4(fog_color, fog_amount);
#endif //fog
#endif //use vertex lighting
gl_Position = projection_matrix * vec4(vertex_interp, 1.0);
}
/* clang-format off */
[fragment]
#extension GL_ARB_shader_texture_lod : enable
#ifndef GL_ARB_shader_texture_lod
#define texture2DLod(img, coord, lod) texture2D(img, coord)
#define textureCubeLod(img, coord, lod) textureCube(img, coord)
#endif
#ifdef USE_GLES_OVER_GL
#define mediump
#define highp
#else
precision mediump float;
precision highp int;
#endif
#include "stdlib.glsl"
#define M_PI 3.14159265359
#define SHADER_IS_SRGB true
//
// uniforms
//
uniform highp mat4 camera_matrix;
/* clang-format on */
uniform highp mat4 camera_inverse_matrix;
uniform highp mat4 projection_matrix;
uniform highp mat4 projection_inverse_matrix;
uniform highp mat4 world_transform;
uniform highp float time;
#if defined(SCREEN_UV_USED)
uniform vec2 screen_pixel_size;
#endif
// I think supporting this in GLES2 is difficult
// uniform highp sampler2D depth_buffer;
#if defined(SCREEN_TEXTURE_USED)
uniform highp sampler2D screen_texture; //texunit:-4
#endif
#ifdef USE_REFLECTION_PROBE1
#ifdef USE_VERTEX_LIGHTING
varying mediump vec4 refprobe1_reflection_normal_blend;
#ifndef USE_LIGHTMAP
varying mediump vec3 refprobe1_ambient_normal;
#endif
#else
uniform bool refprobe1_use_box_project;
uniform highp vec3 refprobe1_box_extents;
uniform vec3 refprobe1_box_offset;
uniform highp mat4 refprobe1_local_matrix;
#endif //use vertex lighting
uniform bool refprobe1_exterior;
uniform highp samplerCube reflection_probe1; //texunit:-5
uniform float refprobe1_intensity;
uniform vec4 refprobe1_ambient;
#endif //USE_REFLECTION_PROBE1
#ifdef USE_REFLECTION_PROBE2
#ifdef USE_VERTEX_LIGHTING
varying mediump vec4 refprobe2_reflection_normal_blend;
#ifndef USE_LIGHTMAP
varying mediump vec3 refprobe2_ambient_normal;
#endif
#else
uniform bool refprobe2_use_box_project;
uniform highp vec3 refprobe2_box_extents;
uniform vec3 refprobe2_box_offset;
uniform highp mat4 refprobe2_local_matrix;
#endif //use vertex lighting
uniform bool refprobe2_exterior;
uniform highp samplerCube reflection_probe2; //texunit:-6
uniform float refprobe2_intensity;
uniform vec4 refprobe2_ambient;
#endif //USE_REFLECTION_PROBE2
#define RADIANCE_MAX_LOD 6.0
#if defined(USE_REFLECTION_PROBE1) || defined(USE_REFLECTION_PROBE2)
void reflection_process(samplerCube reflection_map,
#ifdef USE_VERTEX_LIGHTING
vec3 ref_normal,
#ifndef USE_LIGHTMAP
vec3 amb_normal,
#endif
float ref_blend,
#else //no vertex lighting
vec3 normal, vec3 vertex,
mat4 local_matrix,
bool use_box_project, vec3 box_extents, vec3 box_offset,
#endif //vertex lighting
bool exterior, float intensity, vec4 ref_ambient, float roughness, vec3 ambient, vec3 skybox, inout highp vec4 reflection_accum, inout highp vec4 ambient_accum) {
vec4 reflection;
#ifdef USE_VERTEX_LIGHTING
reflection.rgb = textureCubeLod(reflection_map, ref_normal, roughness * RADIANCE_MAX_LOD).rgb;
float blend = ref_blend; //crappier blend formula for vertex
blend *= blend;
blend = max(0.0, 1.0 - blend);
#else //fragment lighting
vec3 local_pos = (local_matrix * vec4(vertex, 1.0)).xyz;
if (any(greaterThan(abs(local_pos), box_extents))) { //out of the reflection box
return;
}
vec3 inner_pos = abs(local_pos / box_extents);
float blend = max(inner_pos.x, max(inner_pos.y, inner_pos.z));
blend = mix(length(inner_pos), blend, blend);
blend *= blend;
blend = max(0.0, 1.0 - blend);
//reflect and make local
vec3 ref_normal = normalize(reflect(vertex, normal));
ref_normal = (local_matrix * vec4(ref_normal, 0.0)).xyz;
if (use_box_project) { //box project
vec3 nrdir = normalize(ref_normal);
vec3 rbmax = (box_extents - local_pos) / nrdir;
vec3 rbmin = (-box_extents - local_pos) / nrdir;
vec3 rbminmax = mix(rbmin, rbmax, vec3(greaterThan(nrdir, vec3(0.0, 0.0, 0.0))));
float fa = min(min(rbminmax.x, rbminmax.y), rbminmax.z);
vec3 posonbox = local_pos + nrdir * fa;
ref_normal = posonbox - box_offset.xyz;
}
reflection.rgb = textureCubeLod(reflection_map, ref_normal, roughness * RADIANCE_MAX_LOD).rgb;
#endif
if (exterior) {
reflection.rgb = mix(skybox, reflection.rgb, blend);
}
reflection.rgb *= intensity;
reflection.a = blend;
reflection.rgb *= blend;
reflection_accum += reflection;
#ifndef USE_LIGHTMAP
vec4 ambient_out;
#ifndef USE_VERTEX_LIGHTING
vec3 amb_normal = (local_matrix * vec4(normal, 0.0)).xyz;
#endif
ambient_out.rgb = textureCubeLod(reflection_map, amb_normal, RADIANCE_MAX_LOD).rgb;
ambient_out.rgb = mix(ref_ambient.rgb, ambient_out.rgb, ref_ambient.a);
if (exterior) {
ambient_out.rgb = mix(ambient, ambient_out.rgb, blend);
}
ambient_out.a = blend;
ambient_out.rgb *= blend;
ambient_accum += ambient_out;
#endif
}
#endif //use refprobe 1 or 2
#ifdef USE_LIGHTMAP
uniform mediump sampler2D lightmap; //texunit:-4
uniform mediump float lightmap_energy;
#endif
#ifdef USE_LIGHTMAP_CAPTURE
uniform mediump vec4[12] lightmap_captures;
uniform bool lightmap_capture_sky;
#endif
#ifdef USE_RADIANCE_MAP
uniform samplerCube radiance_map; // texunit:-2
uniform mat4 radiance_inverse_xform;
#endif
uniform float bg_energy;
uniform float ambient_sky_contribution;
uniform vec4 ambient_color;
uniform float ambient_energy;
#ifdef USE_LIGHTING
#ifdef USE_VERTEX_LIGHTING
//get from vertex
varying highp vec3 diffuse_interp;
varying highp vec3 specular_interp;
uniform highp vec3 light_direction; //may be used by fog, so leave here
#else
//done in fragment
// general for all lights
uniform highp vec4 light_color;
uniform highp float light_specular;
// directional
uniform highp vec3 light_direction;
// omni
uniform highp vec3 light_position;
uniform highp float light_attenuation;
// spot
uniform highp float light_spot_attenuation;
uniform highp float light_spot_range;
uniform highp float light_spot_angle;
#endif
//this is needed outside above if because dual paraboloid wants it
uniform highp float light_range;
#ifdef USE_SHADOW
uniform highp vec2 shadow_pixel_size;
#if defined(LIGHT_MODE_OMNI) || defined(LIGHT_MODE_SPOT)
uniform highp sampler2D light_shadow_atlas; //texunit:-3
#endif
#ifdef LIGHT_MODE_DIRECTIONAL
uniform highp sampler2D light_directional_shadow; // texunit:-3
uniform highp vec4 light_split_offsets;
#endif
varying highp vec4 shadow_coord;
#if defined(LIGHT_USE_PSSM2) || defined(LIGHT_USE_PSSM4)
varying highp vec4 shadow_coord2;
#endif
#if defined(LIGHT_USE_PSSM4)
varying highp vec4 shadow_coord3;
varying highp vec4 shadow_coord4;
#endif
uniform vec4 light_clamp;
#endif // light shadow
// directional shadow
#endif
//
// varyings
//
varying highp vec3 vertex_interp;
varying vec3 normal_interp;
#if defined(ENABLE_TANGENT_INTERP) || defined(ENABLE_NORMALMAP)
varying vec3 tangent_interp;
varying vec3 binormal_interp;
#endif
#if defined(ENABLE_COLOR_INTERP)
varying vec4 color_interp;
#endif
#if defined(ENABLE_UV_INTERP)
varying vec2 uv_interp;
#endif
#if defined(ENABLE_UV2_INTERP) || defined(USE_LIGHTMAP)
varying vec2 uv2_interp;
#endif
varying vec3 view_interp;
vec3 F0(float metallic, float specular, vec3 albedo) {
float dielectric = 0.16 * specular * specular;
// use albedo * metallic as colored specular reflectance at 0 angle for metallic materials;
// see https://google.github.io/filament/Filament.md.html
return mix(vec3(dielectric), albedo, vec3(metallic));
}
/* clang-format off */
FRAGMENT_SHADER_GLOBALS
/* clang-format on */
#ifdef RENDER_DEPTH_DUAL_PARABOLOID
varying highp float dp_clip;
#endif
#ifdef USE_LIGHTING
// This returns the G_GGX function divided by 2 cos_theta_m, where in practice cos_theta_m is either N.L or N.V.
// We're dividing this factor off because the overall term we'll end up looks like
// (see, for example, the first unnumbered equation in B. Burley, "Physically Based Shading at Disney", SIGGRAPH 2012):
//
// F(L.V) D(N.H) G(N.L) G(N.V) / (4 N.L N.V)
//
// We're basically regouping this as
//
// F(L.V) D(N.H) [G(N.L)/(2 N.L)] [G(N.V) / (2 N.V)]
//
// and thus, this function implements the [G(N.m)/(2 N.m)] part with m = L or V.
//
// The contents of the D and G (G1) functions (GGX) are taken from
// E. Heitz, "Understanding the Masking-Shadowing Function in Microfacet-Based BRDFs", J. Comp. Graph. Tech. 3 (2) (2014).
// Eqns 71-72 and 85-86 (see also Eqns 43 and 80).
/*
float G_GGX_2cos(float cos_theta_m, float alpha) {
// Schlick's approximation
// C. Schlick, "An Inexpensive BRDF Model for Physically-based Rendering", Computer Graphics Forum. 13 (3): 233 (1994)
// Eq. (19), although see Heitz (2014) the about the problems with his derivation.
// It nevertheless approximates GGX well with k = alpha/2.
float k = 0.5 * alpha;
return 0.5 / (cos_theta_m * (1.0 - k) + k);
// float cos2 = cos_theta_m * cos_theta_m;
// float sin2 = (1.0 - cos2);
// return 1.0 / (cos_theta_m + sqrt(cos2 + alpha * alpha * sin2));
}
*/
// This approximates G_GGX_2cos(cos_theta_l, alpha) * G_GGX_2cos(cos_theta_v, alpha)
// See Filament docs, Specular G section.
float V_GGX(float cos_theta_l, float cos_theta_v, float alpha) {
float v = cos_theta_l * (cos_theta_v * (1.0 - alpha) + alpha);
float l = cos_theta_v * (cos_theta_l * (1.0 - alpha) + alpha);
return 0.5 / (v + l);
}
float D_GGX(float cos_theta_m, float alpha) {
float alpha2 = alpha * alpha;
float d = 1.0 + (alpha2 - 1.0) * cos_theta_m * cos_theta_m;
return alpha2 / (M_PI * d * d);
}
/*
float G_GGX_anisotropic_2cos(float cos_theta_m, float alpha_x, float alpha_y, float cos_phi, float sin_phi) {
float cos2 = cos_theta_m * cos_theta_m;
float sin2 = (1.0 - cos2);
float s_x = alpha_x * cos_phi;
float s_y = alpha_y * sin_phi;
return 1.0 / max(cos_theta_m + sqrt(cos2 + (s_x * s_x + s_y * s_y) * sin2), 0.001);
}
*/
// This approximates G_GGX_anisotropic_2cos(cos_theta_l, ...) * G_GGX_anisotropic_2cos(cos_theta_v, ...)
// See Filament docs, Anisotropic specular BRDF section.
float V_GGX_anisotropic(float alpha_x, float alpha_y, float TdotV, float TdotL, float BdotV, float BdotL, float NdotV, float NdotL) {
float Lambda_V = NdotL * length(vec3(alpha_x * TdotV, alpha_y * BdotV, NdotV));
float Lambda_L = NdotV * length(vec3(alpha_x * TdotL, alpha_y * BdotL, NdotL));
return 0.5 / (Lambda_V + Lambda_L);
}
float D_GGX_anisotropic(float cos_theta_m, float alpha_x, float alpha_y, float cos_phi, float sin_phi, float NdotH) {
float alpha2 = alpha_x * alpha_y;
highp vec3 v = vec3(alpha_y * cos_phi, alpha_x * sin_phi, alpha2 * NdotH);
highp float v2 = dot(v, v);
float w2 = alpha2 / v2;
float D = alpha2 * w2 * w2 * (1.0 / M_PI);
return D;
/* float cos2 = cos_theta_m * cos_theta_m;
float sin2 = (1.0 - cos2);
float r_x = cos_phi / alpha_x;
float r_y = sin_phi / alpha_y;
float d = cos2 + sin2 * (r_x * r_x + r_y * r_y);
return 1.0 / max(M_PI * alpha_x * alpha_y * d * d, 0.001); */
}
float SchlickFresnel(float u) {
float m = 1.0 - u;
float m2 = m * m;
return m2 * m2 * m; // pow(m,5)
}
float GTR1(float NdotH, float a) {
if (a >= 1.0) return 1.0 / M_PI;
float a2 = a * a;
float t = 1.0 + (a2 - 1.0) * NdotH * NdotH;
return (a2 - 1.0) / (M_PI * log(a2) * t);
}
void light_compute(
vec3 N,
vec3 L,
vec3 V,
vec3 B,
vec3 T,
vec3 light_color,
vec3 attenuation,
vec3 diffuse_color,
vec3 transmission,
float specular_blob_intensity,
float roughness,
float metallic,
float specular,
float rim,
float rim_tint,
float clearcoat,
float clearcoat_gloss,
float anisotropy,
inout vec3 diffuse_light,
inout vec3 specular_light) {
//this makes lights behave closer to linear, but then addition of lights looks bad
//better left disabled
//#define SRGB_APPROX(m_var) m_var = pow(m_var,0.4545454545);
/*
#define SRGB_APPROX(m_var) {\
float S1 = sqrt(m_var);\
float S2 = sqrt(S1);\
float S3 = sqrt(S2);\
m_var = 0.662002687 * S1 + 0.684122060 * S2 - 0.323583601 * S3 - 0.0225411470 * m_var;\
}
*/
#define SRGB_APPROX(m_var)
#if defined(USE_LIGHT_SHADER_CODE)
// light is written by the light shader
vec3 normal = N;
vec3 albedo = diffuse_color;
vec3 light = L;
vec3 view = V;
/* clang-format off */
LIGHT_SHADER_CODE
/* clang-format on */
#else
float NdotL = dot(N, L);
float cNdotL = max(NdotL, 0.0); // clamped NdotL
float NdotV = dot(N, V);
float cNdotV = max(NdotV, 0.0);
if (metallic < 1.0) {
#if defined(DIFFUSE_OREN_NAYAR)
vec3 diffuse_brdf_NL;
#else
float diffuse_brdf_NL; // BRDF times N.L for calculating diffuse radiance
#endif
#if defined(DIFFUSE_LAMBERT_WRAP)
// energy conserving lambert wrap shader
diffuse_brdf_NL = max(0.0, (NdotL + roughness) / ((1.0 + roughness) * (1.0 + roughness)));
#elif defined(DIFFUSE_OREN_NAYAR)
{
// see http://mimosa-pudica.net/improved-oren-nayar.html
float LdotV = dot(L, V);
float s = LdotV - NdotL * NdotV;
float t = mix(1.0, max(NdotL, NdotV), step(0.0, s));
float sigma2 = roughness * roughness; // TODO: this needs checking
vec3 A = 1.0 + sigma2 * (-0.5 / (sigma2 + 0.33) + 0.17 * diffuse_color / (sigma2 + 0.13));
float B = 0.45 * sigma2 / (sigma2 + 0.09);
diffuse_brdf_NL = cNdotL * (A + vec3(B) * s / t) * (1.0 / M_PI);
}
#elif defined(DIFFUSE_TOON)
diffuse_brdf_NL = smoothstep(-roughness, max(roughness, 0.01), NdotL);
#elif defined(DIFFUSE_BURLEY)
{
vec3 H = normalize(V + L);
float cLdotH = max(0.0, dot(L, H));
float FD90 = 0.5 + 2.0 * cLdotH * cLdotH * roughness;
float FdV = 1.0 + (FD90 - 1.0) * SchlickFresnel(cNdotV);
float FdL = 1.0 + (FD90 - 1.0) * SchlickFresnel(cNdotL);
diffuse_brdf_NL = (1.0 / M_PI) * FdV * FdL * cNdotL;
/*
float energyBias = mix(roughness, 0.0, 0.5);
float energyFactor = mix(roughness, 1.0, 1.0 / 1.51);
float fd90 = energyBias + 2.0 * VoH * VoH * roughness;
float f0 = 1.0;
float lightScatter = f0 + (fd90 - f0) * pow(1.0 - cNdotL, 5.0);
float viewScatter = f0 + (fd90 - f0) * pow(1.0 - cNdotV, 5.0);
diffuse_brdf_NL = lightScatter * viewScatter * energyFactor;
*/
}
#else
// lambert
diffuse_brdf_NL = cNdotL * (1.0 / M_PI);
#endif
SRGB_APPROX(diffuse_brdf_NL)
diffuse_light += light_color * diffuse_color * diffuse_brdf_NL * attenuation;
#if defined(TRANSMISSION_USED)
diffuse_light += light_color * diffuse_color * (vec3(1.0 / M_PI) - diffuse_brdf_NL) * transmission * attenuation;
#endif
#if defined(LIGHT_USE_RIM)
float rim_light = pow(max(0.0, 1.0 - cNdotV), max(0.0, (1.0 - roughness) * 16.0));
diffuse_light += rim_light * rim * mix(vec3(1.0), diffuse_color, rim_tint) * light_color;
#endif
}
if (roughness > 0.0) {
#if defined(SPECULAR_SCHLICK_GGX)
vec3 specular_brdf_NL = vec3(0.0);
#else
float specular_brdf_NL = 0.0;
#endif
#if defined(SPECULAR_BLINN)
//normalized blinn
vec3 H = normalize(V + L);
float cNdotH = max(dot(N, H), 0.0);
float cVdotH = max(dot(V, H), 0.0);
float cLdotH = max(dot(L, H), 0.0);
float shininess = exp2(15.0 * (1.0 - roughness) + 1.0) * 0.25;
float blinn = pow(cNdotH, shininess);
blinn *= (shininess + 8.0) / (8.0 * 3.141592654);
specular_brdf_NL = (blinn) / max(4.0 * cNdotV * cNdotL, 0.75);
#elif defined(SPECULAR_PHONG)
vec3 R = normalize(-reflect(L, N));
float cRdotV = max(0.0, dot(R, V));
float shininess = exp2(15.0 * (1.0 - roughness) + 1.0) * 0.25;
float phong = pow(cRdotV, shininess);
phong *= (shininess + 8.0) / (8.0 * 3.141592654);
specular_brdf_NL = (phong) / max(4.0 * cNdotV * cNdotL, 0.75);
#elif defined(SPECULAR_TOON)
vec3 R = normalize(-reflect(L, N));
float RdotV = dot(R, V);
float mid = 1.0 - roughness;
mid *= mid;
specular_brdf_NL = smoothstep(mid - roughness * 0.5, mid + roughness * 0.5, RdotV) * mid;
#elif defined(SPECULAR_DISABLED)
// none..
#elif defined(SPECULAR_SCHLICK_GGX)
// shlick+ggx as default
vec3 H = normalize(V + L);
float cNdotH = max(dot(N, H), 0.0);
float cLdotH = max(dot(L, H), 0.0);
#if defined(LIGHT_USE_ANISOTROPY)
float alpha = roughness * roughness;
float aspect = sqrt(1.0 - anisotropy * 0.9);
float ax = alpha / aspect;
float ay = alpha * aspect;
float XdotH = dot(T, H);
float YdotH = dot(B, H);
float D = D_GGX_anisotropic(cNdotH, ax, ay, XdotH, YdotH, cNdotH);
//float G = G_GGX_anisotropic_2cos(cNdotL, ax, ay, XdotH, YdotH) * G_GGX_anisotropic_2cos(cNdotV, ax, ay, XdotH, YdotH);
float G = V_GGX_anisotropic(ax, ay, dot(T, V), dot(T, L), dot(B, V), dot(B, L), cNdotV, cNdotL))
#else
float alpha = roughness * roughness;
float D = D_GGX(cNdotH, alpha);
//float G = G_GGX_2cos(cNdotL, alpha) * G_GGX_2cos(cNdotV, alpha);
float G = V_GGX(cNdotL, cNdotV, alpha);
#endif
// F
vec3 f0 = F0(metallic, specular, diffuse_color);
float cLdotH5 = SchlickFresnel(cLdotH);
vec3 F = mix(vec3(cLdotH5), vec3(1.0), f0);
specular_brdf_NL = cNdotL * D * F * G;
#endif
SRGB_APPROX(specular_brdf_NL)
specular_light += specular_brdf_NL * light_color * specular_blob_intensity * attenuation;
#if defined(LIGHT_USE_CLEARCOAT)
if (clearcoat_gloss > 0.0) {
#if !defined(SPECULAR_SCHLICK_GGX) && !defined(SPECULAR_BLINN)
vec3 H = normalize(V + L);
#endif
#if !defined(SPECULAR_SCHLICK_GGX)
float cNdotH = max(dot(N, H), 0.0);
float cLdotH = max(dot(L, H), 0.0);
float cLdotH5 = SchlickFresnel(cLdotH);
#endif
float Dr = GTR1(cNdotH, mix(.1, .001, clearcoat_gloss));
float Fr = mix(.04, 1.0, cLdotH5);
//float Gr = G_GGX_2cos(cNdotL, .25) * G_GGX_2cos(cNdotV, .25);
float Gr = V_GGX(cNdotL, cNdotV, 0.25);
float clearcoat_specular_brdf_NL = 0.25 * clearcoat * Gr * Fr * Dr * cNdotL;
specular_light += clearcoat_specular_brdf_NL * light_color * specular_blob_intensity * attenuation;
}
#endif
}
#endif //defined(USE_LIGHT_SHADER_CODE)
}
#endif
// shadows
#ifdef USE_SHADOW
#define SAMPLE_SHADOW_TEXEL(p_shadow, p_pos, p_depth) step(p_depth, texture2D(p_shadow, p_pos).r)
#define SAMPLE_SHADOW_TEXEL_PROJ(p_shadow, p_pos) step(p_pos.z, texture2DProj(p_shadow, p_pos).r)
float sample_shadow(
highp sampler2D shadow, highp vec4 spos) {
#ifdef SHADOW_MODE_PCF_13
spos.xyz /= spos.w;
vec2 pos = spos.xy;
float depth = spos.z;
float avg = SAMPLE_SHADOW_TEXEL(shadow, pos, depth);
avg += SAMPLE_SHADOW_TEXEL(shadow, pos + vec2(shadow_pixel_size.x, 0.0), depth);
avg += SAMPLE_SHADOW_TEXEL(shadow, pos + vec2(-shadow_pixel_size.x, 0.0), depth);
avg += SAMPLE_SHADOW_TEXEL(shadow, pos + vec2(0.0, shadow_pixel_size.y), depth);
avg += SAMPLE_SHADOW_TEXEL(shadow, pos + vec2(0.0, -shadow_pixel_size.y), depth);
avg += SAMPLE_SHADOW_TEXEL(shadow, pos + vec2(shadow_pixel_size.x, shadow_pixel_size.y), depth);
avg += SAMPLE_SHADOW_TEXEL(shadow, pos + vec2(-shadow_pixel_size.x, shadow_pixel_size.y), depth);
avg += SAMPLE_SHADOW_TEXEL(shadow, pos + vec2(shadow_pixel_size.x, -shadow_pixel_size.y), depth);
avg += SAMPLE_SHADOW_TEXEL(shadow, pos + vec2(-shadow_pixel_size.x, -shadow_pixel_size.y), depth);
avg += SAMPLE_SHADOW_TEXEL(shadow, pos + vec2(shadow_pixel_size.x * 2.0, 0.0), depth);
avg += SAMPLE_SHADOW_TEXEL(shadow, pos + vec2(-shadow_pixel_size.x * 2.0, 0.0), depth);
avg += SAMPLE_SHADOW_TEXEL(shadow, pos + vec2(0.0, shadow_pixel_size.y * 2.0), depth);
avg += SAMPLE_SHADOW_TEXEL(shadow, pos + vec2(0.0, -shadow_pixel_size.y * 2.0), depth);
return avg * (1.0 / 13.0);
#endif
#ifdef SHADOW_MODE_PCF_5
spos.xyz /= spos.w;
vec2 pos = spos.xy;
float depth = spos.z;
float avg = SAMPLE_SHADOW_TEXEL(shadow, pos, depth);
avg += SAMPLE_SHADOW_TEXEL(shadow, pos + vec2(shadow_pixel_size.x, 0.0), depth);
avg += SAMPLE_SHADOW_TEXEL(shadow, pos + vec2(-shadow_pixel_size.x, 0.0), depth);
avg += SAMPLE_SHADOW_TEXEL(shadow, pos + vec2(0.0, shadow_pixel_size.y), depth);
avg += SAMPLE_SHADOW_TEXEL(shadow, pos + vec2(0.0, -shadow_pixel_size.y), depth);
return avg * (1.0 / 5.0);
#endif
#if !defined(SHADOW_MODE_PCF_5) || !defined(SHADOW_MODE_PCF_13)
return SAMPLE_SHADOW_TEXEL_PROJ(shadow, spos);
#endif
}
#endif
#if defined(FOG_DEPTH_ENABLED) || defined(FOG_HEIGHT_ENABLED)
#if defined(USE_VERTEX_LIGHTING)
varying vec4 fog_interp;
#else
uniform mediump vec4 fog_color_base;
#ifdef LIGHT_MODE_DIRECTIONAL
uniform mediump vec4 fog_sun_color_amount;
#endif
uniform bool fog_transmit_enabled;
uniform mediump float fog_transmit_curve;
#ifdef FOG_DEPTH_ENABLED
uniform highp float fog_depth_begin;
uniform mediump float fog_depth_curve;
uniform mediump float fog_max_distance;
#endif
#ifdef FOG_HEIGHT_ENABLED
uniform highp float fog_height_min;
uniform highp float fog_height_max;
uniform mediump float fog_height_curve;
#endif
#endif //vertex lit
#endif //fog
void main() {
#ifdef RENDER_DEPTH_DUAL_PARABOLOID
if (dp_clip > 0.0)
discard;
#endif
highp vec3 vertex = vertex_interp;
vec3 albedo = vec3(1.0);
vec3 transmission = vec3(0.0);
float metallic = 0.0;
float specular = 0.5;
vec3 emission = vec3(0.0);
float roughness = 1.0;
float rim = 0.0;
float rim_tint = 0.0;
float clearcoat = 0.0;
float clearcoat_gloss = 0.0;
float anisotropy = 0.0;
vec2 anisotropy_flow = vec2(1.0, 0.0);
float sss_strength = 0.0; //unused
float alpha = 1.0;
float side = 1.0;
float specular_blob_intensity = 1.0;
#if defined(SPECULAR_TOON)
specular_blob_intensity *= specular * 2.0;
#endif
#if defined(ENABLE_AO)
float ao = 1.0;
float ao_light_affect = 0.0;
#endif
#if defined(ENABLE_TANGENT_INTERP) || defined(ENABLE_NORMALMAP)
vec3 binormal = normalize(binormal_interp) * side;
vec3 tangent = normalize(tangent_interp) * side;
#else
vec3 binormal = vec3(0.0);
vec3 tangent = vec3(0.0);
#endif
vec3 normal = normalize(normal_interp) * side;
#if defined(ENABLE_NORMALMAP)
vec3 normalmap = vec3(0.5);
#endif
float normaldepth = 1.0;
#if defined(ALPHA_SCISSOR_USED)
float alpha_scissor = 0.5;
#endif
#if defined(SCREEN_UV_USED)
vec2 screen_uv = gl_FragCoord.xy * screen_pixel_size;
#endif
{
/* clang-format off */
FRAGMENT_SHADER_CODE
/* clang-format on */
}
#if defined(ENABLE_NORMALMAP)
normalmap.xy = normalmap.xy * 2.0 - 1.0;
normalmap.z = sqrt(max(0.0, 1.0 - dot(normalmap.xy, normalmap.xy)));
normal = normalize(mix(normal_interp, tangent * normalmap.x + binormal * normalmap.y + normal * normalmap.z, normaldepth)) * side;
//normal = normalmap;
#endif
normal = normalize(normal);
vec3 N = normal;
vec3 specular_light = vec3(0.0, 0.0, 0.0);
vec3 diffuse_light = vec3(0.0, 0.0, 0.0);
vec3 ambient_light = vec3(0.0, 0.0, 0.0);
vec3 eye_position = -normalize(vertex_interp);
#if defined(ALPHA_SCISSOR_USED)
if (alpha < alpha_scissor) {
discard;
}
#endif
#ifdef BASE_PASS
//none
#ifdef USE_RADIANCE_MAP
vec3 ref_vec = reflect(-eye_position, N);
ref_vec = normalize((radiance_inverse_xform * vec4(ref_vec, 0.0)).xyz);
ref_vec.z *= -1.0;
specular_light = textureCubeLod(radiance_map, ref_vec, roughness * RADIANCE_MAX_LOD).xyz * bg_energy;
{
vec3 ambient_dir = normalize((radiance_inverse_xform * vec4(normal, 0.0)).xyz);
vec3 env_ambient = textureCubeLod(radiance_map, ambient_dir, RADIANCE_MAX_LOD).xyz * bg_energy;
ambient_light = mix(ambient_color.rgb, env_ambient, ambient_sky_contribution);
}
#else
ambient_light = ambient_color.rgb;
#endif
ambient_light *= ambient_energy;
#if defined(USE_REFLECTION_PROBE1) || defined(USE_REFLECTION_PROBE2)
vec4 ambient_accum = vec4(0.0);
vec4 reflection_accum = vec4(0.0);
#ifdef USE_REFLECTION_PROBE1
reflection_process(reflection_probe1,
#ifdef USE_VERTEX_LIGHTING
refprobe1_reflection_normal_blend.rgb,
#ifndef USE_LIGHTMAP
refprobe1_ambient_normal,
#endif
refprobe1_reflection_normal_blend.a,
#else
normal_interp, vertex_interp, refprobe1_local_matrix,
refprobe1_use_box_project, refprobe1_box_extents, refprobe1_box_offset,
#endif
refprobe1_exterior, refprobe1_intensity, refprobe1_ambient, roughness,
ambient_light, specular_light, reflection_accum, ambient_accum);
#endif // USE_REFLECTION_PROBE1
#ifdef USE_REFLECTION_PROBE2
reflection_process(reflection_probe2,
#ifdef USE_VERTEX_LIGHTING
refprobe2_reflection_normal_blend.rgb,
#ifndef USE_LIGHTMAP
refprobe2_ambient_normal,
#endif
refprobe2_reflection_normal_blend.a,
#else
normal_interp, vertex_interp, refprobe2_local_matrix,
refprobe2_use_box_project, refprobe2_box_extents, refprobe2_box_offset,
#endif
refprobe2_exterior, refprobe2_intensity, refprobe2_ambient, roughness,
ambient_light, specular_light, reflection_accum, ambient_accum);
#endif // USE_REFLECTION_PROBE2
if (reflection_accum.a > 0.0) {
specular_light = reflection_accum.rgb / reflection_accum.a;
}
#ifndef USE_LIGHTMAP
if (ambient_accum.a > 0.0) {
ambient_light = ambient_accum.rgb / ambient_accum.a;
}
#endif
#endif // defined(USE_REFLECTION_PROBE1) || defined(USE_REFLECTION_PROBE2)
#ifdef USE_LIGHTMAP
//ambient light will come entirely from lightmap is lightmap is used
ambient_light = texture2D(lightmap, uv2_interp).rgb * lightmap_energy;
#endif
#ifdef USE_LIGHTMAP_CAPTURE
{
vec3 cone_dirs[12] = vec3[](
vec3(0, 0, 1),
vec3(0.866025, 0, 0.5),
vec3(0.267617, 0.823639, 0.5),
vec3(-0.700629, 0.509037, 0.5),
vec3(-0.700629, -0.509037, 0.5),
vec3(0.267617, -0.823639, 0.5),
vec3(0, 0, -1),
vec3(0.866025, 0, -0.5),
vec3(0.267617, 0.823639, -0.5),
vec3(-0.700629, 0.509037, -0.5),
vec3(-0.700629, -0.509037, -0.5),
vec3(0.267617, -0.823639, -0.5));
vec3 local_normal = normalize(camera_matrix * vec4(normal, 0.0)).xyz;
vec4 captured = vec4(0.0);
float sum = 0.0;
for (int i = 0; i < 12; i++) {
float amount = max(0.0, dot(local_normal, cone_dirs[i])); //not correct, but creates a nice wrap around effect
captured += lightmap_captures[i] * amount;
sum += amount;
}
captured /= sum;
if (lightmap_capture_sky) {
ambient_light = mix(ambient_light, captured.rgb, captured.a);
} else {
ambient_light = captured.rgb;
}
}
#endif
#endif //BASE PASS
//
// Lighting
//
#ifdef USE_LIGHTING
#ifndef USE_VERTEX_LIGHTING
vec3 L;
#endif
vec3 light_att = vec3(1.0);
#ifdef LIGHT_MODE_OMNI
#ifndef USE_VERTEX_LIGHTING
vec3 light_vec = light_position - vertex;
float light_length = length(light_vec);
float normalized_distance = light_length / light_range;
if (normalized_distance < 1.0) {
float omni_attenuation = pow(1.0 - normalized_distance, light_attenuation);
light_att = vec3(omni_attenuation);
} else {
light_att = vec3(0.0);
}
L = normalize(light_vec);
#endif
#ifdef USE_SHADOW
{
highp vec4 splane = shadow_coord;
float shadow_len = length(splane.xyz);
splane.xyz = normalize(splane.xyz);
vec4 clamp_rect = light_clamp;
if (splane.z >= 0.0) {
splane.z += 1.0;
clamp_rect.y += clamp_rect.w;
} else {
splane.z = 1.0 - splane.z;
}
splane.xy /= splane.z;
splane.xy = splane.xy * 0.5 + 0.5;
splane.z = shadow_len / light_range;
splane.xy = clamp_rect.xy + splane.xy * clamp_rect.zw;
splane.w = 1.0;
float shadow = sample_shadow(light_shadow_atlas, splane);
light_att *= shadow;
}
#endif
#endif //type omni
#ifdef LIGHT_MODE_DIRECTIONAL
#ifndef USE_VERTEX_LIGHTING
vec3 light_vec = -light_direction;
L = normalize(light_vec);
#endif
float depth_z = -vertex.z;
#ifdef USE_SHADOW
#ifdef USE_VERTEX_LIGHTING
//compute shadows in a mobile friendly way
#ifdef LIGHT_USE_PSSM4
//take advantage of prefetch
float shadow1 = sample_shadow(light_directional_shadow, shadow_coord);
float shadow2 = sample_shadow(light_directional_shadow, shadow_coord2);
float shadow3 = sample_shadow(light_directional_shadow, shadow_coord3);
float shadow4 = sample_shadow(light_directional_shadow, shadow_coord4);
if (depth_z < light_split_offsets.w) {
float pssm_fade = 0.0;
float shadow_att = 1.0;
#ifdef LIGHT_USE_PSSM_BLEND
float shadow_att2 = 1.0;
float pssm_blend = 0.0;
bool use_blend = true;
#endif
if (depth_z < light_split_offsets.y) {
if (depth_z < light_split_offsets.x) {
shadow_att = shadow1;
#ifdef LIGHT_USE_PSSM_BLEND
shadow_att2 = shadow2;
pssm_blend = smoothstep(0.0, light_split_offsets.x, depth_z);
#endif
} else {
shadow_att = shadow2;
#ifdef LIGHT_USE_PSSM_BLEND
shadow_att2 = shadow3;
pssm_blend = smoothstep(light_split_offsets.x, light_split_offsets.y, depth_z);
#endif
}
} else {
if (depth_z < light_split_offsets.z) {
shadow_att = shadow3;
#if defined(LIGHT_USE_PSSM_BLEND)
shadow_att2 = shadow4;
pssm_blend = smoothstep(light_split_offsets.y, light_split_offsets.z, depth_z);
#endif
} else {
shadow_att = shadow4;
pssm_fade = smoothstep(light_split_offsets.z, light_split_offsets.w, depth_z);
#if defined(LIGHT_USE_PSSM_BLEND)
use_blend = false;
#endif
}
}
#if defined(LIGHT_USE_PSSM_BLEND)
if (use_blend) {
shadow_att = mix(shadow_att, shadow_att2, pssm_blend);
}
#endif
light_att *= shadow_att;
}
#endif //LIGHT_USE_PSSM4
#ifdef LIGHT_USE_PSSM2
//take advantage of prefetch
float shadow1 = sample_shadow(light_directional_shadow, shadow_coord);
float shadow2 = sample_shadow(light_directional_shadow, shadow_coord2);
if (depth_z < light_split_offsets.y) {
float shadow_att = 1.0;
float pssm_fade = 0.0;
#ifdef LIGHT_USE_PSSM_BLEND
float shadow_att2 = 1.0;
float pssm_blend = 0.0;
bool use_blend = true;
#endif
if (depth_z < light_split_offsets.x) {
float pssm_fade = 0.0;
shadow_att = shadow1;
#ifdef LIGHT_USE_PSSM_BLEND
shadow_att2 = shadow2;
pssm_blend = smoothstep(0.0, light_split_offsets.x, depth_z);
#endif
} else {
shadow_att = shadow2;
pssm_fade = smoothstep(light_split_offsets.x, light_split_offsets.y, depth_z);
#ifdef LIGHT_USE_PSSM_BLEND
use_blend = false;
#endif
}
#ifdef LIGHT_USE_PSSM_BLEND
if (use_blend) {
shadow_att = mix(shadow_att, shadow_att2, pssm_blend);
}
#endif
light_att *= shadow_att;
}
#endif //LIGHT_USE_PSSM2
#if !defined(LIGHT_USE_PSSM4) && !defined(LIGHT_USE_PSSM2)
light_att *= sample_shadow(light_directional_shadow, shadow_coord);
#endif //orthogonal
#else //fragment version of pssm
{
#ifdef LIGHT_USE_PSSM4
if (depth_z < light_split_offsets.w) {
#elif defined(LIGHT_USE_PSSM2)
if (depth_z < light_split_offsets.y) {
#else
if (depth_z < light_split_offsets.x) {
#endif //pssm2
highp vec4 pssm_coord;
float pssm_fade = 0.0;
#ifdef LIGHT_USE_PSSM_BLEND
float pssm_blend;
highp vec4 pssm_coord2;
bool use_blend = true;
#endif
#ifdef LIGHT_USE_PSSM4
if (depth_z < light_split_offsets.y) {
if (depth_z < light_split_offsets.x) {
pssm_coord = shadow_coord;
#ifdef LIGHT_USE_PSSM_BLEND
pssm_coord2 = shadow_coord2;
pssm_blend = smoothstep(0.0, light_split_offsets.x, depth_z);
#endif
} else {
pssm_coord = shadow_coord2;
#ifdef LIGHT_USE_PSSM_BLEND
pssm_coord2 = shadow_coord3;
pssm_blend = smoothstep(light_split_offsets.x, light_split_offsets.y, depth_z);
#endif
}
} else {
if (depth_z < light_split_offsets.z) {
pssm_coord = shadow_coord3;
#if defined(LIGHT_USE_PSSM_BLEND)
pssm_coord2 = shadow_coord4;
pssm_blend = smoothstep(light_split_offsets.y, light_split_offsets.z, depth_z);
#endif
} else {
pssm_coord = shadow_coord4;
pssm_fade = smoothstep(light_split_offsets.z, light_split_offsets.w, depth_z);
#if defined(LIGHT_USE_PSSM_BLEND)
use_blend = false;
#endif
}
}
#endif // LIGHT_USE_PSSM4
#ifdef LIGHT_USE_PSSM2
if (depth_z < light_split_offsets.x) {
pssm_coord = shadow_coord;
#ifdef LIGHT_USE_PSSM_BLEND
pssm_coord2 = shadow_coord2;
pssm_blend = smoothstep(0.0, light_split_offsets.x, depth_z);
#endif
} else {
pssm_coord = shadow_coord2;
pssm_fade = smoothstep(light_split_offsets.x, light_split_offsets.y, depth_z);
#ifdef LIGHT_USE_PSSM_BLEND
use_blend = false;
#endif
}
#endif // LIGHT_USE_PSSM2
#if !defined(LIGHT_USE_PSSM4) && !defined(LIGHT_USE_PSSM2)
{
pssm_coord = shadow_coord;
}
#endif
float shadow = sample_shadow(light_directional_shadow, pssm_coord);
#ifdef LIGHT_USE_PSSM_BLEND
if (use_blend) {
shadow = mix(shadow, sample_shadow(light_directional_shadow, pssm_coord2), pssm_blend);
}
#endif
light_att *= shadow;
}
}
#endif //use vertex lighting
#endif //use shadow
#endif
#ifdef LIGHT_MODE_SPOT
light_att = vec3(1.0);
#ifndef USE_VERTEX_LIGHTING
vec3 light_rel_vec = light_position - vertex;
float light_length = length(light_rel_vec);
float normalized_distance = light_length / light_range;
if (normalized_distance < 1.0) {
float spot_attenuation = pow(1.0 - normalized_distance, light_attenuation);
vec3 spot_dir = light_direction;
float spot_cutoff = light_spot_angle;
float angle = dot(-normalize(light_rel_vec), spot_dir);
if (angle > spot_cutoff) {
float scos = max(angle, spot_cutoff);
float spot_rim = max(0.0001, (1.0 - scos) / (1.0 - spot_cutoff));
spot_attenuation *= 1.0 - pow(spot_rim, light_spot_attenuation);
light_att = vec3(spot_attenuation);
} else {
light_att = vec3(0.0);
}
} else {
light_att = vec3(0.0);
}
L = normalize(light_rel_vec);
#endif
#ifdef USE_SHADOW
{
highp vec4 splane = shadow_coord;
splane.xyz /= splane.w;
float shadow = sample_shadow(light_shadow_atlas, splane.xy, splane.z);
light_att *= shadow;
}
#endif
#endif
#ifdef USE_VERTEX_LIGHTING
//vertex lighting
specular_light += specular_interp * specular_blob_intensity * light_att;
diffuse_light += diffuse_interp * albedo * light_att;
#else
//fragment lighting
light_compute(
normal,
L,
eye_position,
binormal,
tangent,
light_color.xyz,
light_att,
albedo,
transmission,
specular_blob_intensity * light_specular,
roughness,
metallic,
specular,
rim,
rim_tint,
clearcoat,
clearcoat_gloss,
anisotropy,
diffuse_light,
specular_light);
#endif //vertex lighting
#endif //USE_LIGHTING
//compute and merge
#ifndef RENDER_DEPTH
#ifdef SHADELESS
gl_FragColor = vec4(albedo, alpha);
#else
ambient_light *= albedo;
#if defined(ENABLE_AO)
ambient_light *= ao;
ao_light_affect = mix(1.0, ao, ao_light_affect);
specular_light *= ao_light_affect;
diffuse_light *= ao_light_affect;
#endif
diffuse_light *= 1.0 - metallic;
ambient_light *= 1.0 - metallic;
// environment BRDF approximation
{
#if defined(DIFFUSE_TOON)
//simplify for toon, as
specular_light *= specular * metallic * albedo * 2.0;
#else
//TODO: this curve is not really designed for gammaspace, should be adjusted
const vec4 c0 = vec4(-1.0, -0.0275, -0.572, 0.022);
const vec4 c1 = vec4(1.0, 0.0425, 1.04, -0.04);
vec4 r = roughness * c0 + c1;
float ndotv = clamp(dot(normal, eye_position), 0.0, 1.0);
float a004 = min(r.x * r.x, exp2(-9.28 * ndotv)) * r.x + r.y;
vec2 env = vec2(-1.04, 1.04) * a004 + r.zw;
vec3 f0 = F0(metallic, specular, albedo);
specular_light *= env.x * f0 + env.y;
#endif
}
gl_FragColor = vec4(ambient_light + diffuse_light + specular_light, alpha);
//add emission if in base pass
#ifdef BASE_PASS
gl_FragColor.rgb += emission;
#endif
// gl_FragColor = vec4(normal, 1.0);
#endif //unshaded
//apply fog
#if defined(FOG_DEPTH_ENABLED) || defined(FOG_HEIGHT_ENABLED)
#if defined(USE_VERTEX_LIGHTING)
gl_FragColor.rgb = mix(gl_FragColor.rgb, fog_interp.rgb, fog_interp.a);
#else //pixel based fog
float fog_amount = 0.0;
#ifdef LIGHT_MODE_DIRECTIONAL
vec3 fog_color = mix(fog_color_base.rgb, fog_sun_color_amount.rgb, fog_sun_color_amount.a * pow(max(dot(eye_position, light_direction), 0.0), 8.0));
#else
vec3 fog_color = fog_color_base.rgb;
#endif
#ifdef FOG_DEPTH_ENABLED
{
float fog_z = smoothstep(fog_depth_begin, fog_max_distance, length(vertex));
fog_amount = pow(fog_z, fog_depth_curve);
if (fog_transmit_enabled) {
vec3 total_light = gl_FragColor.rgb;
float transmit = pow(fog_z, fog_transmit_curve);
fog_color = mix(max(total_light, fog_color), fog_color, transmit);
}
}
#endif
#ifdef FOG_HEIGHT_ENABLED
{
float y = (camera_matrix * vec4(vertex, 1.0)).y;
fog_amount = max(fog_amount, pow(smoothstep(fog_height_min, fog_height_max, y), fog_height_curve));
}
#endif
gl_FragColor.rgb = mix(gl_FragColor.rgb, fog_color, fog_amount);
#endif //use vertex lit
#endif // defined(FOG_DEPTH_ENABLED) || defined(FOG_HEIGHT_ENABLED)
#endif // not RENDER_DEPTH
}
|