summaryrefslogtreecommitdiff
path: root/drivers/gles2/shaders/copy.glsl
blob: 0b8da4f87540363ab73381bd79a1a299f96d9115 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
/* clang-format off */
[vertex]

#ifdef USE_GLES_OVER_GL
#define mediump
#define highp
#else
precision mediump float;
precision mediump int;
#endif

attribute highp vec4 vertex_attrib; // attrib:0
/* clang-format on */

#if defined(USE_CUBEMAP) || defined(USE_PANORAMA)
attribute vec3 cube_in; // attrib:4
#else
attribute vec2 uv_in; // attrib:4
#endif

attribute vec2 uv2_in; // attrib:5

#if defined(USE_CUBEMAP) || defined(USE_PANORAMA)
varying vec3 cube_interp;
#else
varying vec2 uv_interp;
#endif
varying vec2 uv2_interp;

#ifdef USE_COPY_SECTION
uniform vec4 copy_section;
#endif

void main() {

#if defined(USE_CUBEMAP) || defined(USE_PANORAMA)
	cube_interp = cube_in;
#elif defined(USE_ASYM_PANO)
	uv_interp = vertex_attrib.xy;
#else
	uv_interp = uv_in;
#endif

	uv2_interp = uv2_in;
	gl_Position = vertex_attrib;

#ifdef USE_COPY_SECTION
	uv_interp = copy_section.xy + uv_interp * copy_section.zw;
	gl_Position.xy = (copy_section.xy + (gl_Position.xy * 0.5 + 0.5) * copy_section.zw) * 2.0 - 1.0;
#endif
}

/* clang-format off */
[fragment]

#define M_PI 3.14159265359

#ifdef USE_GLES_OVER_GL
#define mediump
#define highp
#else
precision mediump float;
precision mediump int;
#endif

#if defined(USE_CUBEMAP) || defined(USE_PANORAMA)
varying vec3 cube_interp;
#else
varying vec2 uv_interp;
#endif
/* clang-format on */

#ifdef USE_ASYM_PANO
uniform highp mat4 pano_transform;
uniform highp vec4 asym_proj;
#endif

#ifdef USE_CUBEMAP
uniform samplerCube source_cube; // texunit:0
#else
uniform sampler2D source; // texunit:0
#endif

varying vec2 uv2_interp;

#ifdef USE_MULTIPLIER
uniform float multiplier;
#endif

#ifdef USE_CUSTOM_ALPHA
uniform float custom_alpha;
#endif

#if defined(USE_PANORAMA) || defined(USE_ASYM_PANO)

vec4 texturePanorama(sampler2D pano, vec3 normal) {

	vec2 st = vec2(
			atan(normal.x, normal.z),
			acos(normal.y));

	if (st.x < 0.0)
		st.x += M_PI * 2.0;

	st /= vec2(M_PI * 2.0, M_PI);

	return texture2D(pano, st);
}

#endif

void main() {

#ifdef USE_PANORAMA

	vec4 color = texturePanorama(source, normalize(cube_interp));

#elif defined(USE_ASYM_PANO)

	// When an asymmetrical projection matrix is used (applicable for stereoscopic rendering i.e. VR) we need to do this calculation per fragment to get a perspective correct result.
	// Note that we're ignoring the x-offset for IPD, with Z sufficiently in the distance it becomes neglectible, as a result we could probably just set cube_normal.z to -1.
	// The Matrix[2][0] (= asym_proj.x) and Matrix[2][1] (= asym_proj.z) values are what provide the right shift in the image.

	vec3 cube_normal;
	cube_normal.z = -1000000.0;
	cube_normal.x = (cube_normal.z * (-uv_interp.x - asym_proj.x)) / asym_proj.y;
	cube_normal.y = (cube_normal.z * (-uv_interp.y - asym_proj.z)) / asym_proj.a;
	cube_normal = mat3(pano_transform) * cube_normal;
	cube_normal.z = -cube_normal.z;

	vec4 color = texturePanorama(source, normalize(cube_normal.xyz));

#elif defined(USE_CUBEMAP)
	vec4 color = textureCube(source_cube, normalize(cube_interp));
#else
	vec4 color = texture2D(source, uv_interp);
#endif

#ifdef USE_NO_ALPHA
	color.a = 1.0;
#endif

#ifdef USE_CUSTOM_ALPHA
	color.a = custom_alpha;
#endif

#ifdef USE_MULTIPLIER
	color.rgb *= multiplier;
#endif

	gl_FragColor = color;
}