1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
|
/* clang-format off */
[vertex]
#ifdef USE_GLES_OVER_GL
#define lowp
#define mediump
#define highp
#else
precision highp float;
precision highp int;
#endif
attribute highp vec4 vertex_attrib; // attrib:0
/* clang-format on */
#if defined(USE_CUBEMAP) || defined(USE_PANORAMA)
attribute vec3 cube_in; // attrib:4
#else
attribute vec2 uv_in; // attrib:4
#endif
attribute vec2 uv2_in; // attrib:5
#if defined(USE_CUBEMAP) || defined(USE_PANORAMA)
varying vec3 cube_interp;
#else
varying vec2 uv_interp;
#endif
varying vec2 uv2_interp;
// These definitions are here because the shader-wrapper builder does
// not understand `#elif defined()`
#ifdef USE_DISPLAY_TRANSFORM
#endif
#ifdef USE_COPY_SECTION
uniform highp vec4 copy_section;
#elif defined(USE_DISPLAY_TRANSFORM)
uniform highp mat4 display_transform;
#endif
void main() {
#if defined(USE_CUBEMAP) || defined(USE_PANORAMA)
cube_interp = cube_in;
#elif defined(USE_ASYM_PANO)
uv_interp = vertex_attrib.xy;
#else
uv_interp = uv_in;
#endif
uv2_interp = uv2_in;
gl_Position = vertex_attrib;
#ifdef USE_COPY_SECTION
uv_interp = copy_section.xy + uv_interp * copy_section.zw;
gl_Position.xy = (copy_section.xy + (gl_Position.xy * 0.5 + 0.5) * copy_section.zw) * 2.0 - 1.0;
#elif defined(USE_DISPLAY_TRANSFORM)
uv_interp = (display_transform * vec4(uv_in, 1.0, 1.0)).xy;
#endif
}
/* clang-format off */
[fragment]
#define M_PI 3.14159265359
#ifdef USE_GLES_OVER_GL
#define lowp
#define mediump
#define highp
#else
#if defined(USE_HIGHP_PRECISION)
precision highp float;
precision highp int;
#else
precision mediump float;
precision mediump int;
#endif
#endif
#if defined(USE_CUBEMAP) || defined(USE_PANORAMA)
varying vec3 cube_interp;
#else
varying vec2 uv_interp;
#endif
/* clang-format on */
#ifdef USE_ASYM_PANO
uniform highp mat4 pano_transform;
uniform highp vec4 asym_proj;
#endif
#ifdef USE_CUBEMAP
uniform samplerCube source_cube; // texunit:0
#else
uniform sampler2D source; // texunit:0
#endif
#ifdef SEP_CBCR_TEXTURE
uniform sampler2D CbCr; //texunit:1
#endif
varying vec2 uv2_interp;
#ifdef USE_MULTIPLIER
uniform float multiplier;
#endif
#ifdef USE_CUSTOM_ALPHA
uniform float custom_alpha;
#endif
#if defined(USE_PANORAMA) || defined(USE_ASYM_PANO)
uniform highp mat4 sky_transform;
vec4 texturePanorama(sampler2D pano, vec3 normal) {
vec2 st = vec2(
atan(normal.x, normal.z),
acos(normal.y));
if (st.x < 0.0)
st.x += M_PI * 2.0;
st /= vec2(M_PI * 2.0, M_PI);
return texture2D(pano, st);
}
#endif
void main() {
#ifdef USE_PANORAMA
vec3 cube_normal = normalize(cube_interp);
cube_normal.z = -cube_normal.z;
cube_normal = mat3(sky_transform) * cube_normal;
cube_normal.z = -cube_normal.z;
vec4 color = texturePanorama(source, cube_normal);
#elif defined(USE_ASYM_PANO)
// When an asymmetrical projection matrix is used (applicable for stereoscopic rendering i.e. VR) we need to do this calculation per fragment to get a perspective correct result.
// Asymmetrical projection means the center of projection is no longer in the center of the screen but shifted.
// The Matrix[2][0] (= asym_proj.x) and Matrix[2][1] (= asym_proj.z) values are what provide the right shift in the image.
vec3 cube_normal;
cube_normal.z = -1.0;
cube_normal.x = (cube_normal.z * (-uv_interp.x - asym_proj.x)) / asym_proj.y;
cube_normal.y = (cube_normal.z * (-uv_interp.y - asym_proj.z)) / asym_proj.a;
cube_normal = mat3(sky_transform) * mat3(pano_transform) * cube_normal;
cube_normal.z = -cube_normal.z;
vec4 color = texturePanorama(source, normalize(cube_normal.xyz));
#elif defined(USE_CUBEMAP)
vec4 color = textureCube(source_cube, normalize(cube_interp));
#elif defined(SEP_CBCR_TEXTURE)
vec4 color;
color.r = texture2D(source, uv_interp).r;
color.gb = texture2D(CbCr, uv_interp).rg - vec2(0.5, 0.5);
color.a = 1.0;
#else
vec4 color = texture2D(source, uv_interp);
#endif
#ifdef YCBCR_TO_RGB
// YCbCr -> RGB conversion
// Using BT.601, which is the standard for SDTV is provided as a reference
color.rgb = mat3(
vec3(1.00000, 1.00000, 1.00000),
vec3(0.00000, -0.34413, 1.77200),
vec3(1.40200, -0.71414, 0.00000)) *
color.rgb;
#endif
#ifdef USE_NO_ALPHA
color.a = 1.0;
#endif
#ifdef USE_CUSTOM_ALPHA
color.a = custom_alpha;
#endif
#ifdef USE_MULTIPLIER
color.rgb *= multiplier;
#endif
gl_FragColor = color;
}
|