summaryrefslogtreecommitdiff
path: root/drivers/convex_decomp/b2Polygon.cpp
blob: f45d98250a3a04cf7bc22493306c147de10a89f1 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
/*
 * Copyright (c) 2007 Eric Jordan
 *
 * This software is provided 'as-is', without any express or implied
 * warranty.  In no event will the authors be held liable for any damages
 * arising from the use of this software.
 * Permission is granted to anyone to use this software for any purpose,
 * including commercial applications, and to alter it and redistribute it
 * freely, subject to the following restrictions:
 * 1. The origin of this software must not be misrepresented; you must not
 * claim that you wrote the original software. If you use this software
 * in a product, an acknowledgment in the product documentation would be
 * appreciated but is not required.
 * 2. Altered source versions must be plainly marked as such, and must not be
 * misrepresented as being the original software.
 * 3. This notice may not be removed or altered from any source distribution.
 */

// This utility works with Box2d version 2.0 (or higher), and not with 1.4.3

#include "b2Triangle.h"
#include "b2Polygon.h"

#include <math.h>
#include <limits.h>
#include <assert.h>
#define b2Assert assert

namespace b2ConvexDecomp {


//If you're using 1.4.3, b2_toiSlop won't exist, so set this equal to 0
static const float32 toiSlop = 0.0f;

/*
 * Check if the lines a0->a1 and b0->b1 cross.
 * If they do, intersectionPoint will be filled
 * with the point of crossing.
 *
 * Grazing lines should not return true.
 */
bool intersect(const b2Vec2& a0, const b2Vec2& a1,
			   const b2Vec2& b0, const b2Vec2& b1, 
			   b2Vec2& intersectionPoint) {

	if (a0 == b0 || a0 == b1 || a1 == b0 || a1 == b1) return false;
	float x1 = a0.x; float y1 = a0.y;
	float x2 = a1.x; float y2 = a1.y;
	float x3 = b0.x; float y3 = b0.y;
	float x4 = b1.x; float y4 = b1.y;
	
	//AABB early exit
	if (b2Max(x1,x2) < b2Min(x3,x4) || b2Max(x3,x4) < b2Min(x1,x2) ) return false;
	if (b2Max(y1,y2) < b2Min(y3,y4) || b2Max(y3,y4) < b2Min(y1,y2) ) return false;
	
	float ua = ((x4 - x3) * (y1 - y3) - (y4 - y3) * (x1 - x3));
	float ub = ((x2 - x1) * (y1 - y3) - (y2 - y1) * (x1 - x3));
	float denom = (y4 - y3) * (x2 - x1) - (x4 - x3) * (y2 - y1);
	if (b2Abs(denom) < CMP_EPSILON) {
		//Lines are too close to parallel to call
		return false;
	}
	ua /= denom;
	ub /= denom;
	
	if ((0 < ua) && (ua < 1) && (0 < ub) && (ub < 1)) {
		//if (intersectionPoint){
			intersectionPoint.x = (x1 + ua * (x2 - x1));
			intersectionPoint.y = (y1 + ua * (y2 - y1));
		//}
		//printf("%f, %f -> %f, %f crosses %f, %f -> %f, %f\n",x1,y1,x2,y2,x3,y3,x4,y4);
		return true;
	}
	
	return false;
}

/*
 * True if line from a0->a1 intersects b0->b1
 */
bool intersect(const b2Vec2& a0, const b2Vec2& a1,
			   const b2Vec2& b0, const b2Vec2& b1) {
	b2Vec2 myVec(0.0f,0.0f);
	return intersect(a0, a1, b0, b1, myVec);
}

b2Polygon::b2Polygon(float32* _x, float32* _y, int32 nVert) {
        nVertices = nVert;
        x = new float32[nVertices];
        y = new float32[nVertices];
        for (int32 i = 0; i < nVertices; ++i) {
            x[i] = _x[i];
            y[i] = _y[i];
        }
		areaIsSet = false;
}
	
b2Polygon::b2Polygon(b2Vec2* v, int32 nVert) {
        nVertices = nVert;
        x = new float32[nVertices];
        y = new float32[nVertices];
        for (int32 i = 0; i < nVertices; ++i) {
            x[i] = v[i].x;
            y[i] = v[i].y;

        }
		areaIsSet = false;
}

b2Polygon::b2Polygon() {
	x = NULL;
	y = NULL;
	nVertices = 0;
	areaIsSet = false;
}
	
b2Polygon::~b2Polygon() {
	//printf("About to delete poly with %d vertices\n",nVertices);
	delete[] x;
	delete[] y;
}

float32 b2Polygon::GetArea() {
	// TODO: fix up the areaIsSet caching so that it can be used
	//if (areaIsSet) return area;
	area = 0.0f;
	
	//First do wraparound
	area += x[nVertices-1]*y[0]-x[0]*y[nVertices-1];
	for (int i=0; i<nVertices-1; ++i){
		area += x[i]*y[i+1]-x[i+1]*y[i];
	}
	area *= .5f;
	areaIsSet = true;
	return area;
}

bool b2Polygon::IsCCW() {
	return (GetArea() > 0.0f);
}
	
void b2Polygon::MergeParallelEdges(float32 tolerance) {
	if (nVertices <= 3) return; //Can't do anything useful here to a triangle
	bool* mergeMe = new bool[nVertices];
	int32 newNVertices = nVertices;
	for (int32 i = 0; i < nVertices; ++i) {
		int32 lower = (i == 0) ? (nVertices - 1) : (i - 1);
		int32 middle = i;
		int32 upper = (i == nVertices - 1) ? (0) : (i + 1);
		float32 dx0 = x[middle] - x[lower];
		float32 dy0 = y[middle] - y[lower];
		float32 dx1 = x[upper] - x[middle];
		float32 dy1 = y[upper] - y[middle];
		float32 norm0 = sqrtf(dx0*dx0+dy0*dy0);
		float32 norm1 = sqrtf(dx1*dx1+dy1*dy1);
		if ( !(norm0 > 0.0f && norm1 > 0.0f) && newNVertices > 3 ) {
			//Merge identical points
			mergeMe[i] = true;
			--newNVertices;
		}
		dx0 /= norm0; dy0 /= norm0;
		dx1 /= norm1; dy1 /= norm1;
		float32 cross = dx0 * dy1 - dx1 * dy0;
		float32 dot = dx0 * dx1 + dy0 * dy1;
		if (fabs(cross) < tolerance && dot > 0 && newNVertices > 3) {
			mergeMe[i] = true;
			--newNVertices;
		} else {
			mergeMe[i] = false;
		}
	}
	if(newNVertices == nVertices || newNVertices == 0) {
		delete[] mergeMe;
		return;
	}
	float32* newx = new float32[newNVertices];
	float32* newy = new float32[newNVertices];
	int32 currIndex = 0;
	for (int32 i=0; i < nVertices; ++i) {
		if (mergeMe[i] || newNVertices == 0 || currIndex == newNVertices) continue;
		b2Assert(currIndex < newNVertices);
		newx[currIndex] = x[i];
		newy[currIndex] = y[i];
		++currIndex;
	}
	delete[] x;
	delete[] y;
	delete[] mergeMe;
	x = newx;
	y = newy;
	nVertices = newNVertices;
	//printf("%d \n", newNVertices);
}
	
    /* 
	 *	Allocates and returns pointer to vector vertex array.
     *  Length of array is nVertices.
	 */
b2Vec2* b2Polygon::GetVertexVecs() {
        b2Vec2* out = new b2Vec2[nVertices];
        for (int32 i = 0; i < nVertices; ++i) {
            out[i].Set(x[i], y[i]);
        }
        return out;
}
	
b2Polygon::b2Polygon(b2Triangle& t) {
	nVertices = 3;
	x = new float[nVertices];
	y = new float[nVertices];
	for (int32 i = 0; i < nVertices; ++i) {
		x[i] = t.x[i];
		y[i] = t.y[i];
	}
}
	
void b2Polygon::Set(const b2Polygon& p) {
        if (nVertices != p.nVertices){
			nVertices = p.nVertices;
			delete[] x;
			delete[] y;
			x = new float32[nVertices];
			y = new float32[nVertices];
        }
		
        for (int32 i = 0; i < nVertices; ++i) {
            x[i] = p.x[i];
            y[i] = p.y[i];
        }
	areaIsSet = false;
}
	
    /*
     * Assuming the polygon is simple, checks if it is convex.
     */
bool b2Polygon::IsConvex() {
        bool isPositive = false;
        for (int32 i = 0; i < nVertices; ++i) {
            int32 lower = (i == 0) ? (nVertices - 1) : (i - 1);
            int32 middle = i;
            int32 upper = (i == nVertices - 1) ? (0) : (i + 1);
            float32 dx0 = x[middle] - x[lower];
            float32 dy0 = y[middle] - y[lower];
            float32 dx1 = x[upper] - x[middle];
            float32 dy1 = y[upper] - y[middle];
            float32 cross = dx0 * dy1 - dx1 * dy0;
            // Cross product should have same sign
            // for each vertex if poly is convex.
            bool newIsP = (cross >= 0) ? true : false;
            if (i == 0) {
                isPositive = newIsP;
            }
            else if (isPositive != newIsP) {
                return false;
            }
        }
        return true;
}

/*
 * Pulled from b2Shape.cpp, assertions removed
 */
static b2Vec2 PolyCentroid(const b2Vec2* vs, int32 count)
{
	b2Vec2 c; c.Set(0.0f, 0.0f);
	float32 area = 0.0f;

	const float32 inv3 = 1.0f / 3.0f;
	b2Vec2 pRef(0.0f, 0.0f);
	for (int32 i = 0; i < count; ++i)
	{
		// Triangle vertices.
		b2Vec2 p1 = pRef;
		b2Vec2 p2 = vs[i];
		b2Vec2 p3 = i + 1 < count ? vs[i+1] : vs[0];

		b2Vec2 e1 = p2 - p1;
		b2Vec2 e2 = p3 - p1;

		float32 D = b2Cross(e1, e2);

		float32 triangleArea = 0.5f * D;
		area += triangleArea;

		// Area weighted centroid
		c += (p1 + p2 + p3) * triangleArea * inv3;
	}

	// Centroid
	c *= 1.0f / area;
	return c;
}


/*
 * Checks if polygon is valid for use in Box2d engine.
 * Last ditch effort to ensure no invalid polygons are
 * added to world geometry.
 *
 * Performs a full check, for simplicity, convexity,
 * orientation, minimum angle, and volume.  This won't
 * be very efficient, and a lot of it is redundant when
 * other tools in this section are used.
 */
bool b2Polygon::IsUsable(bool printErrors){
	int32 error = -1;
	bool noError = true;
	if (nVertices < 3 || nVertices > b2_maxPolygonVertices) {noError = false; error = 0;}
	if (!IsConvex()) {noError = false; error = 1;}
	if (!IsSimple()) {noError = false; error = 2;}
	if (GetArea() < CMP_EPSILON) {noError = false; error = 3;}

	//Compute normals
	b2Vec2* normals = new b2Vec2[nVertices];
	b2Vec2* vertices = new b2Vec2[nVertices];
	for (int32 i = 0; i < nVertices; ++i){
		vertices[i].Set(x[i],y[i]);
		int32 i1 = i;
		int32 i2 = i + 1 < nVertices ? i + 1 : 0;
		b2Vec2 edge(x[i2]-x[i1],y[i2]-y[i1]);
		normals[i] = b2Cross(edge, 1.0f);
		normals[i].Normalize();
	}

	//Required side checks
	for (int32 i=0; i<nVertices; ++i){
		int32 iminus = (i==0)?nVertices-1:i-1;
		//int32 iplus = (i==nVertices-1)?0:i+1;

		//Parallel sides check
		float32 cross = b2Cross(normals[iminus], normals[i]);
		cross = b2Clamp(cross, -1.0f, 1.0f);
		float32 angle = asinf(cross);
		if(angle <= b2_angularSlop){
			noError = false;
			error = 4;
			break;
		}

		//Too skinny check
		for (int32 j=0; j<nVertices; ++j){
			if (j == i || j == (i + 1) % nVertices){
				continue;
			}
			float32 s = b2Dot(normals[i], vertices[j] - vertices[i]);
			if (s >= -b2_linearSlop){
				noError = false;
				error = 5;
			}
		}


		b2Vec2 centroid = PolyCentroid(vertices,nVertices);
		b2Vec2 n1 = normals[iminus];
		b2Vec2 n2 = normals[i];
		b2Vec2 v = vertices[i] - centroid;;

		b2Vec2 d;
		d.x = b2Dot(n1, v) - toiSlop;
		d.y = b2Dot(n2, v) - toiSlop;

		// Shifting the edge inward by b2_toiSlop should
		// not cause the plane to pass the centroid.
		if ((d.x < 0.0f)||(d.y < 0.0f)){
			noError = false;
			error = 6;
		}

	}
	delete[] vertices;
	delete[] normals;

	if (!noError && printErrors){
		printf("Found invalid polygon, ");
		switch(error){
			case 0:
				printf("must have between 3 and %d vertices.\n",b2_maxPolygonVertices);
				break;
			case 1:
				printf("must be convex.\n");
				break;
			case 2:
				printf("must be simple (cannot intersect itself).\n");
				break;
			case 3:
				printf("area is too small.\n");
				break;
			case 4:
				printf("sides are too close to parallel.\n");
				break;
			case 5:
				printf("polygon is too thin.\n");
				break;
			case 6:
				printf("core shape generation would move edge past centroid (too thin).\n");
				break;
			default:
				printf("don't know why.\n");
		}
	}
	return noError;
}


bool b2Polygon::IsUsable(){
	return IsUsable(B2_POLYGON_REPORT_ERRORS);
}

//Check for edge crossings
bool b2Polygon::IsSimple() {
	for (int32 i=0; i<nVertices; ++i){
		int32 iplus = (i+1 > nVertices-1)?0:i+1;
		b2Vec2 a1(x[i],y[i]);
		b2Vec2 a2(x[iplus],y[iplus]);
		for (int32 j=i+1; j<nVertices; ++j){
			int32 jplus = (j+1 > nVertices-1)?0:j+1;
			b2Vec2 b1(x[j],y[j]);
			b2Vec2 b2(x[jplus],y[jplus]);
			if (intersect(a1,a2,b1,b2)){
				return false;
			}
		}
	}
	return true;
}
    
    /*
     * Tries to add a triangle to the polygon. Returns null if it can't connect
     * properly, otherwise returns a pointer to the new Polygon. Assumes bitwise
     * equality of joined vertex positions.
	 *
	 * Remember to delete the pointer afterwards.
	 * Todo: Make this return a b2Polygon instead
	 * of a pointer to a heap-allocated one.
	 *
	 * For internal use.
     */
b2Polygon* b2Polygon::Add(b2Triangle& t) {
        // First, find vertices that connect
        int32 firstP = -1;
        int32 firstT = -1;
        int32 secondP = -1;
        int32 secondT = -1;
        for (int32 i = 0; i < nVertices; i++) {
            if (t.x[0] == x[i] && t.y[0] == y[i]) {
                if (firstP == -1) {
                    firstP = i;
                    firstT = 0;
                }
                else {
                    secondP = i;
                    secondT = 0;
                }
            }
            else if (t.x[1] == x[i] && t.y[1] == y[i]) {
                if (firstP == -1) {
                    firstP = i;
                    firstT = 1;
                }
                else {
                    secondP = i;
                    secondT = 1;
                }
            }
            else if (t.x[2] == x[i] && t.y[2] == y[i]) {
                if (firstP == -1) {
                    firstP = i;
                    firstT = 2;
                }
                else {
                    secondP = i;
                    secondT = 2;
                }
            }
            else {
            }
        }
        // Fix ordering if first should be last vertex of poly
        if (firstP == 0 && secondP == nVertices - 1) {
            firstP = nVertices - 1;
            secondP = 0;
        }
		
        // Didn't find it
        if (secondP == -1) {
		    return NULL;
		}
		
        // Find tip index on triangle
        int32 tipT = 0;
        if (tipT == firstT || tipT == secondT)
            tipT = 1;
        if (tipT == firstT || tipT == secondT)
            tipT = 2;
		
        float32* newx = new float[nVertices + 1];
        float32* newy = new float[nVertices + 1];
        int32 currOut = 0;
        for (int32 i = 0; i < nVertices; i++) {
            newx[currOut] = x[i];
            newy[currOut] = y[i];
            if (i == firstP) {
                ++currOut;
                newx[currOut] = t.x[tipT];
                newy[currOut] = t.y[tipT];
            }
            ++currOut;
        }
        b2Polygon* result = new b2Polygon(newx, newy, nVertices+1);
        delete[] newx;
        delete[] newy;
        return result;
}
	
    /**
     * Adds this polygon to a PolyDef.
     */
#if 0
void b2Polygon::AddTo(b2FixtureDef& pd) {
	if (nVertices < 3) return;
	
	b2Assert(nVertices <= b2_maxPolygonVertices);
	
	b2Vec2* vecs = GetVertexVecs();
	b2Vec2* vecsToAdd = new b2Vec2[nVertices];

	int32 offset = 0;
	
	b2PolygonShape *polyShape = new b2PolygonShape;
	int32 ind;
	
    for (int32 i = 0; i < nVertices; ++i) {
		
		//Omit identical neighbors (including wraparound)
		ind = i - offset;
		if (vecs[i].x==vecs[remainder(i+1,nVertices)].x &&
			vecs[i].y==vecs[remainder(i+1,nVertices)].y){
				offset++;
				continue;
		}
		
		vecsToAdd[ind] = vecs[i];
		
    }
	
	polyShape->Set((const b2Vec2*)vecsToAdd, ind+1);
	pd.shape = polyShape;
	
    delete[] vecs;
	delete[] vecsToAdd;
}
#endif
	/**
	 * Finds and fixes "pinch points," points where two polygon
	 * vertices are at the same point.
	 *
	 * If a pinch point is found, pin is broken up into poutA and poutB
	 * and true is returned; otherwise, returns false.
	 *
	 * Mostly for internal use.
	 */
bool ResolvePinchPoint(const b2Polygon& pin, b2Polygon& poutA, b2Polygon& poutB){
	if (pin.nVertices < 3) return false;
	float32 tol = .001f;
	bool hasPinchPoint = false;
	int32 pinchIndexA = -1;
	int32 pinchIndexB = -1;
	for (int i=0; i<pin.nVertices; ++i){
		for (int j=i+1; j<pin.nVertices; ++j){
			//Don't worry about pinch points where the points
			//are actually just dupe neighbors
			if (b2Abs(pin.x[i]-pin.x[j])<tol&&b2Abs(pin.y[i]-pin.y[j])<tol&&j!=i+1){
				pinchIndexA = i;
				pinchIndexB = j;
				//printf("pinch: %f, %f == %f, %f\n",pin.x[i],pin.y[i],pin.x[j],pin.y[j]);
				//printf("at indexes %d, %d\n",i,j);
				hasPinchPoint = true;
				break;
			}
		}
		if (hasPinchPoint) break;
	}
	if (hasPinchPoint){
		//printf("Found pinch point\n");
		int32 sizeA = pinchIndexB - pinchIndexA;
		if (sizeA == pin.nVertices) return false;//has dupe points at wraparound, not a problem here
		float32* xA = new float32[sizeA];
		float32* yA = new float32[sizeA];
		for (int32 i=0; i < sizeA; ++i){
			int32 ind = remainder(pinchIndexA+i,pin.nVertices);
			xA[i] = pin.x[ind];
			yA[i] = pin.y[ind];
		}
		b2Polygon tempA(xA,yA,sizeA);
		poutA.Set(tempA);
		delete[] xA;
		delete[] yA;
		
		int32 sizeB = pin.nVertices - sizeA;
		float32* xB = new float32[sizeB];
		float32* yB = new float32[sizeB];
		for (int32 i=0; i<sizeB; ++i){
			int32 ind = remainder(pinchIndexB+i,pin.nVertices);
			xB[i] = pin.x[ind];
			yB[i] = pin.y[ind];
		}
		b2Polygon tempB(xB,yB,sizeB);
		poutB.Set(tempB);
		//printf("Size of a: %d, size of b: %d\n",sizeA,sizeB);
		delete[] xB;
		delete[] yB;
	}
	return hasPinchPoint;
}

    /**
     * Triangulates a polygon using simple ear-clipping algorithm. Returns
     * size of Triangle array unless the polygon can't be triangulated.
     * This should only happen if the polygon self-intersects,
     * though it will not _always_ return null for a bad polygon - it is the
     * caller's responsibility to check for self-intersection, and if it
     * doesn't, it should at least check that the return value is non-null
     * before using. You're warned!
	 *
	 * Triangles may be degenerate, especially if you have identical points
	 * in the input to the algorithm.  Check this before you use them.
     *
     * This is totally unoptimized, so for large polygons it should not be part
     * of the simulation loop.
     *
     * Returns:
     * -1 if algorithm fails (self-intersection most likely)
     * 0 if there are not enough vertices to triangulate anything.
     * Number of triangles if triangulation was successful.
     *
     * results will be filled with results - ear clipping always creates vNum - 2
     * or fewer (due to pinch point polygon snipping), so allocate an array of
	 * this size.
     */
	
int32 TriangulatePolygon(float32* xv, float32* yv, int32 vNum, b2Triangle* results) {
        if (vNum < 3)
            return 0;

		//Recurse and split on pinch points
		b2Polygon pA,pB;
		b2Polygon pin(xv,yv,vNum);
		if (ResolvePinchPoint(pin,pA,pB)){
			b2Triangle* mergeA = new b2Triangle[pA.nVertices];
			b2Triangle* mergeB = new b2Triangle[pB.nVertices];
			int32 nA = TriangulatePolygon(pA.x,pA.y,pA.nVertices,mergeA);
			int32 nB = TriangulatePolygon(pB.x,pB.y,pB.nVertices,mergeB);
			if (nA==-1 || nB==-1){
				delete[] mergeA;
				delete[] mergeB;
				return -1;
			}
			for (int32 i=0; i<nA; ++i){
				results[i].Set(mergeA[i]);
			}
			for (int32 i=0; i<nB; ++i){
				results[nA+i].Set(mergeB[i]);
			}
			delete[] mergeA;
			delete[] mergeB;
			return (nA+nB);
		}

        b2Triangle* buffer = new b2Triangle[vNum-2];
        int32 bufferSize = 0;
        float32* xrem = new float32[vNum];
        float32* yrem = new float32[vNum];
        for (int32 i = 0; i < vNum; ++i) {
            xrem[i] = xv[i];
            yrem[i] = yv[i];
        }
		
		int xremLength = vNum;
		
        while (vNum > 3) {
            // Find an ear
            int32 earIndex = -1;
			//float32 earVolume = -1.0f;
			float32 earMaxMinCross = -10.0f;
            for (int32 i = 0; i < vNum; ++i) {
                if (IsEar(i, xrem, yrem, vNum)) {
					int32 lower = remainder(i-1,vNum);
					int32 upper = remainder(i+1,vNum);
					b2Vec2 d1(xrem[upper]-xrem[i],yrem[upper]-yrem[i]);
					b2Vec2 d2(xrem[i]-xrem[lower],yrem[i]-yrem[lower]);
					b2Vec2 d3(xrem[lower]-xrem[upper],yrem[lower]-yrem[upper]);

					d1.Normalize();
					d2.Normalize();
					d3.Normalize();
					float32 cross12 = b2Abs( b2Cross(d1,d2) );
					float32 cross23 = b2Abs( b2Cross(d2,d3) );
					float32 cross31 = b2Abs( b2Cross(d3,d1) );
					//Find the maximum minimum angle
					float32 minCross = b2Min(cross12, b2Min(cross23,cross31));
					if (minCross > earMaxMinCross){
						earIndex = i;
						earMaxMinCross = minCross;
					}

					/*//This bit chooses the ear with greatest volume first
					float32 testVol = b2Abs( d1.x*d2.y-d2.x*d1.y );
					if (testVol > earVolume){
						earIndex = i;
						earVolume = testVol;
					}*/
                }
            }
			
            // If we still haven't found an ear, we're screwed.
            // Note: sometimes this is happening because the
			// remaining points are collinear.  Really these
			// should just be thrown out without halting triangulation.
			if (earIndex == -1){
				if (B2_POLYGON_REPORT_ERRORS){
					b2Polygon dump(xrem,yrem,vNum);
					printf("Couldn't find an ear, dumping remaining poly:\n");
					dump.printFormatted();
					printf("Please submit this dump to ewjordan at Box2d forums\n");
				}
				for (int32 i = 0; i < bufferSize; i++) {
					results[i].Set(buffer[i]);
				}
		
				delete[] buffer;
		
				if (bufferSize > 0) return bufferSize;
                else return -1;
			}
			
            // Clip off the ear:
            // - remove the ear tip from the list

            --vNum;
            float32* newx = new float32[vNum];
            float32* newy = new float32[vNum];
            int32 currDest = 0;
            for (int32 i = 0; i < vNum; ++i) {
                if (currDest == earIndex) ++currDest;
                newx[i] = xrem[currDest];
                newy[i] = yrem[currDest];
                ++currDest;
            }
			
            // - add the clipped triangle to the triangle list
            int32 under = (earIndex == 0) ? (vNum) : (earIndex - 1);
            int32 over = (earIndex == vNum) ? 0 : (earIndex + 1);
            b2Triangle toAdd = b2Triangle(xrem[earIndex], yrem[earIndex], xrem[over], yrem[over], xrem[under], yrem[under]);
            buffer[bufferSize].Set(toAdd);
            ++bufferSize;
			
            // - replace the old list with the new one
            delete[] xrem;
            delete[] yrem;
            xrem = newx;
            yrem = newy;
        }
		
        b2Triangle toAdd = b2Triangle(xrem[1], yrem[1], xrem[2], yrem[2],
								  xrem[0], yrem[0]);
        buffer[bufferSize].Set(toAdd);
        ++bufferSize;
		
        delete[] xrem;
        delete[] yrem;
		
        b2Assert(bufferSize == xremLength-2);
		
        for (int32 i = 0; i < bufferSize; i++) {
            results[i].Set(buffer[i]);
        }
		
        delete[] buffer;
		
        return bufferSize;
}

    /**
	 * Turns a list of triangles into a list of convex polygons. Very simple
     * method - start with a seed triangle, keep adding triangles to it until
     * you can't add any more without making the polygon non-convex.
     *
     * Returns an integer telling how many polygons were created.  Will fill
     * polys array up to polysLength entries, which may be smaller or larger
     * than the return value.
     * 
     * Takes O(N*P) where P is the number of resultant polygons, N is triangle
     * count.
     * 
     * The final polygon list will not necessarily be minimal, though in
     * practice it works fairly well.
     */
int32 PolygonizeTriangles(b2Triangle* triangulated, int32 triangulatedLength, b2Polygon* polys, int32 polysLength) {
        int32 polyIndex = 0;
		
        if (triangulatedLength <= 0) {
            return 0;
        }
        else {
            int* covered = new int[triangulatedLength];
            for (int32 i = 0; i < triangulatedLength; ++i) {
				covered[i] = 0;
				//Check here for degenerate triangles
				if ( ( (triangulated[i].x[0] == triangulated[i].x[1]) && (triangulated[i].y[0] == triangulated[i].y[1]) )
					 || ( (triangulated[i].x[1] == triangulated[i].x[2]) && (triangulated[i].y[1] == triangulated[i].y[2]) )
					 || ( (triangulated[i].x[0] == triangulated[i].x[2]) && (triangulated[i].y[0] == triangulated[i].y[2]) ) ) {
					covered[i] = 1;
				}
            }
			
            bool notDone = true;
            while (notDone) {
                int32 currTri = -1;
                for (int32 i = 0; i < triangulatedLength; ++i) {
                    if (covered[i])
                        continue;
                    currTri = i;
                    break;
                }
                if (currTri == -1) {
                    notDone = false;
                }
                else {
                    b2Polygon poly(triangulated[currTri]);
					covered[currTri] = 1;
					int32 index = 0;
                    for (int32 i = 0; i < 2*triangulatedLength; ++i,++index) {
						while (index >= triangulatedLength) index -= triangulatedLength;
                        if (covered[index]) {
                            continue;
						}
                        b2Polygon* newP = poly.Add(triangulated[index]);
                        if (!newP) {
                            continue;
						}
						if (newP->nVertices > b2Polygon::maxVerticesPerPolygon) {
							delete newP;
							newP = NULL;
                            continue;
						}
                        if (newP->IsConvex()) { //Or should it be IsUsable?  Maybe re-write IsConvex to apply the angle threshold from Box2d
                            poly.Set(*newP);
							delete newP;
							newP = NULL;
                            covered[index] = 1;
                        } else {
							delete newP;
							newP = NULL;
						}
                    }
                    if (polyIndex < polysLength){
						poly.MergeParallelEdges(b2_angularSlop);
						//If identical points are present, a triangle gets
						//borked by the MergeParallelEdges function, hence
						//the vertex number check
						if (poly.nVertices >= 3) polys[polyIndex].Set(poly);
						//else printf("Skipping corrupt poly\n");
					}
                    if (poly.nVertices >= 3) polyIndex++; //Must be outside (polyIndex < polysLength) test
                }
					//printf("MEMCHECK: %d\n",_CrtCheckMemory());
            }
            delete[] covered;
        }
        return polyIndex;
}
	
    /**
	 * Checks if vertex i is the tip of an ear in polygon defined by xv[] and
     * yv[].
	 *
	 * Assumes clockwise orientation of polygon...ick
     */
bool IsEar(int32 i, float32* xv, float32* yv, int32 xvLength) {
        float32 dx0, dy0, dx1, dy1;
        dx0 = dy0 = dx1 = dy1 = 0;
        if (i >= xvLength || i < 0 || xvLength < 3) {
            return false;
        }
        int32 upper = i + 1;
        int32 lower = i - 1;
        if (i == 0) {
            dx0 = xv[0] - xv[xvLength - 1];
            dy0 = yv[0] - yv[xvLength - 1];
            dx1 = xv[1] - xv[0];
            dy1 = yv[1] - yv[0];
            lower = xvLength - 1;
        }
        else if (i == xvLength - 1) {
            dx0 = xv[i] - xv[i - 1];
            dy0 = yv[i] - yv[i - 1];
            dx1 = xv[0] - xv[i];
            dy1 = yv[0] - yv[i];
            upper = 0;
        }
        else {
            dx0 = xv[i] - xv[i - 1];
            dy0 = yv[i] - yv[i - 1];
            dx1 = xv[i + 1] - xv[i];
            dy1 = yv[i + 1] - yv[i];
        }
        float32 cross = dx0 * dy1 - dx1 * dy0;
        if (cross > 0)
            return false;
        b2Triangle myTri(xv[i], yv[i], xv[upper], yv[upper],
								  xv[lower], yv[lower]);
        for (int32 j = 0; j < xvLength; ++j) {
            if (j == i || j == lower || j == upper)
                continue;
            if (myTri.IsInside(xv[j], yv[j]))
                return false;
        }
        return true;
}

void ReversePolygon(b2Polygon& p){
	ReversePolygon(p.x,p.y,p.nVertices);
}
	
void ReversePolygon(float* x, float* y, int n) {
        if (n == 1)
            return;
        int32 low = 0;
        int32 high = n - 1;
        while (low < high) {
            float32 buffer = x[low];
            x[low] = x[high];
            x[high] = buffer;
            buffer = y[low];
            y[low] = y[high];
            y[high] = buffer;
            ++low;
            --high;
        }
}

    /**
	 * Decomposes a non-convex polygon into a number of convex polygons, up
     * to maxPolys (remaining pieces are thrown out, but the total number
	 * is returned, so the return value can be greater than maxPolys).
     *
     * Each resulting polygon will have no more than maxVerticesPerPolygon
     * vertices (set to b2MaxPolyVertices by default, though you can change
	 * this).
     * 
     * Returns -1 if operation fails (usually due to self-intersection of
	 * polygon).
     */
int32 DecomposeConvex(b2Polygon* p, b2Polygon* results, int32 maxPolys) {
        if (p->nVertices < 3) return 0;

        b2Triangle* triangulated = new b2Triangle[p->nVertices - 2];
		int32 nTri;
        if (p->IsCCW()) {
			//printf("It is ccw \n");
			b2Polygon tempP;
			tempP.Set(*p);
			ReversePolygon(tempP.x, tempP.y, tempP.nVertices);
			nTri = TriangulatePolygon(tempP.x, tempP.y, tempP.nVertices, triangulated);
			//ReversePolygon(p->x, p->y, p->nVertices); //reset orientation
		} else {
			//printf("It is not ccw \n");
			nTri = TriangulatePolygon(p->x, p->y, p->nVertices, triangulated);
		}
		if (nTri < 1) {
            //Still no luck?  Oh well...
            delete[] triangulated;
            return -1;
        }
        int32 nPolys = PolygonizeTriangles(triangulated, nTri, results, maxPolys);
        delete[] triangulated;
        return nPolys;
}

    /**
	 * Decomposes a polygon into convex polygons and adds all pieces to a b2BodyDef
     * using a prototype b2PolyDef. All fields of the prototype are used for every
     * shape except the vertices (friction, restitution, density, etc).
     * 
     * If you want finer control, you'll have to add everything by hand.
     * 
     * This is the simplest method to add a complicated polygon to a body.
	 *
	 * Until Box2D's b2BodyDef behavior changes, this method returns a pointer to
	 * a heap-allocated array of b2PolyDefs, which must be deleted by the user
	 * after the b2BodyDef is added to the world.
     */
#if 0
void DecomposeConvexAndAddTo(b2Polygon* p, b2Body* bd, b2FixtureDef* prototype) {

        if (p->nVertices < 3) return;
        b2Polygon* decomposed = new b2Polygon[p->nVertices - 2]; //maximum number of polys
        int32 nPolys = DecomposeConvex(p, decomposed, p->nVertices - 2);
		//printf("npolys: %d",nPolys);
		b2FixtureDef* pdarray = new b2FixtureDef[2*p->nVertices];//extra space in case of splits
		int32 extra = 0;
        for (int32 i = 0; i < nPolys; ++i) {
            b2FixtureDef* toAdd = &pdarray[i+extra];
			 *toAdd = *prototype;
			 //Hmm, shouldn't have to do all this...
			 /*
			 toAdd->type = prototype->type;
			 toAdd->friction = prototype->friction;
			 toAdd->restitution = prototype->restitution;
			 toAdd->density = prototype->density;
			 toAdd->userData = prototype->userData;
			 toAdd->categoryBits = prototype->categoryBits;
			 toAdd->maskBits = prototype->maskBits;
			 toAdd->groupIndex = prototype->groupIndex;//*/
			 //decomposed[i].print();
			b2Polygon curr = decomposed[i];
			//TODO ewjordan: move this triangle handling to a better place so that
			//it happens even if this convenience function is not called.
			if (curr.nVertices == 3){
					//Check here for near-parallel edges, since we can't
					//handle this in merge routine
					for (int j=0; j<3; ++j){
						int32 lower = (j == 0) ? (curr.nVertices - 1) : (j - 1);
						int32 middle = j;
						int32 upper = (j == curr.nVertices - 1) ? (0) : (j + 1);
						float32 dx0 = curr.x[middle] - curr.x[lower]; float32 dy0 = curr.y[middle] - curr.y[lower];
						float32 dx1 = curr.x[upper] - curr.x[middle]; float32 dy1 = curr.y[upper] - curr.y[middle];
						float32 norm0 = sqrtf(dx0*dx0+dy0*dy0);	float32 norm1 = sqrtf(dx1*dx1+dy1*dy1);
						if ( !(norm0 > 0.0f && norm1 > 0.0f) ) {
							//Identical points, don't do anything!
							goto Skip;
						}
						dx0 /= norm0; dy0 /= norm0;
						dx1 /= norm1; dy1 /= norm1;
						float32 cross = dx0 * dy1 - dx1 * dy0;
						float32 dot = dx0*dx1 + dy0*dy1;
						if (fabs(cross) < b2_angularSlop && dot > 0) {
							//Angle too close, split the triangle across from this point.
							//This is guaranteed to result in two triangles that satify
							//the tolerance (one of the angles is 90 degrees)
							float32 dx2 = curr.x[lower] - curr.x[upper]; float32 dy2 = curr.y[lower] - curr.y[upper];
							float32 norm2 = sqrtf(dx2*dx2+dy2*dy2);
							if (norm2 == 0.0f) {
								goto Skip;
							}
							dx2 /= norm2; dy2 /= norm2;
							float32 thisArea = curr.GetArea();
							float32 thisHeight = 2.0f * thisArea / norm2;
							float32 buffer2 = dx2;
							dx2 = dy2; dy2 = -buffer2;
							//Make two new polygons
							//printf("dx2: %f, dy2: %f, thisHeight: %f, middle: %d\n",dx2,dy2,thisHeight,middle);
							float32 newX1[3] = { curr.x[middle]+dx2*thisHeight, curr.x[lower], curr.x[middle] };
							float32 newY1[3] = { curr.y[middle]+dy2*thisHeight, curr.y[lower], curr.y[middle] };
							float32 newX2[3] = { newX1[0], curr.x[middle], curr.x[upper] };
							float32 newY2[3] = { newY1[0], curr.y[middle], curr.y[upper] };
							b2Polygon p1(newX1,newY1,3);
							b2Polygon p2(newX2,newY2,3);
							if (p1.IsUsable()){
								p1.AddTo(*toAdd);
								
								
								bd->CreateFixture(toAdd);
								++extra;
							} else if (B2_POLYGON_REPORT_ERRORS){
								printf("Didn't add unusable polygon.  Dumping vertices:\n");
								p1.print();
							}
							if (p2.IsUsable()){
								p2.AddTo(pdarray[i+extra]);
								
								bd->CreateFixture(toAdd);
							} else if (B2_POLYGON_REPORT_ERRORS){
								printf("Didn't add unusable polygon.  Dumping vertices:\n");
								p2.print();
							}
							goto Skip;
						}
					}

			}
			if (decomposed[i].IsUsable()){
				decomposed[i].AddTo(*toAdd);
				
				bd->CreateFixture((const b2FixtureDef*)toAdd);
			} else if (B2_POLYGON_REPORT_ERRORS){
				printf("Didn't add unusable polygon.  Dumping vertices:\n");
				decomposed[i].print();
			}
Skip:
			;
        }
		delete[] pdarray;
        delete[] decomposed;
		return;// pdarray; //needs to be deleted after body is created
}

#endif
    /**
	 * Find the convex hull of a point cloud using "Gift-wrap" algorithm - start
     * with an extremal point, and walk around the outside edge by testing
     * angles.
     * 
     * Runs in O(N*S) time where S is number of sides of resulting polygon.
     * Worst case: point cloud is all vertices of convex polygon -> O(N^2).
     * 
     * There may be faster algorithms to do this, should you need one -
     * this is just the simplest. You can get O(N log N) expected time if you
     * try, I think, and O(N) if you restrict inputs to simple polygons.
     * 
     * Returns null if number of vertices passed is less than 3.
     * 
	 * Results should be passed through convex decomposition afterwards
	 * to ensure that each shape has few enough points to be used in Box2d.
	 *
     * FIXME?: May be buggy with colinear points on hull. Couldn't find a test
     * case that resulted in wrong behavior. If one turns up, the solution is to
     * supplement angle check with an equality resolver that always picks the
     * longer edge. I think the current solution is working, though it sometimes
     * creates an extra edge along a line.
     */
	
b2Polygon ConvexHull(b2Vec2* v, int nVert) {
        float32* cloudX = new float32[nVert];
        float32* cloudY = new float32[nVert];
        for (int32 i = 0; i < nVert; ++i) {
            cloudX[i] = v[i].x;
            cloudY[i] = v[i].y;
        }
        b2Polygon result = ConvexHull(cloudX, cloudY, nVert);
		delete[] cloudX;
		delete[] cloudY;
		return result;
}
	
b2Polygon ConvexHull(float32* cloudX, float32* cloudY, int32 nVert) {
		b2Assert(nVert > 2);
        int32* edgeList = new int32[nVert];
        int32 numEdges = 0;
		
	float32 minY = 1e10;
        int32 minYIndex = nVert;
        for (int32 i = 0; i < nVert; ++i) {
            if (cloudY[i] < minY) {
                minY = cloudY[i];
                minYIndex = i;
            }
        }
		
        int32 startIndex = minYIndex;
        int32 winIndex = -1;
        float32 dx = -1.0f;
        float32 dy = 0.0f;
        while (winIndex != minYIndex) {
            float32 newdx = 0.0f;
            float32 newdy = 0.0f;
            float32 maxDot = -2.0f;
            for (int32 i = 0; i < nVert; ++i) {
                if (i == startIndex)
                    continue;
                newdx = cloudX[i] - cloudX[startIndex];
                newdy = cloudY[i] - cloudY[startIndex];
                float32 nrm = sqrtf(newdx * newdx + newdy * newdy);
                nrm = (nrm == 0.0f) ? 1.0f : nrm;
                newdx /= nrm;
                newdy /= nrm;
                
                //Cross and dot products act as proxy for angle
                //without requiring inverse trig.
                //FIXED: don't need cross test
                //float32 newCross = newdx * dy - newdy * dx;
                float32 newDot = newdx * dx + newdy * dy;
                if (newDot > maxDot) {//newCross >= 0.0f && newDot > maxDot) {
                    maxDot = newDot;
                    winIndex = i;
                }
            }
            edgeList[numEdges++] = winIndex;
            dx = cloudX[winIndex] - cloudX[startIndex];
            dy = cloudY[winIndex] - cloudY[startIndex];
            float32 nrm = sqrtf(dx * dx + dy * dy);
            nrm = (nrm == 0.0f) ? 1.0f : nrm;
            dx /= nrm;
            dy /= nrm;
            startIndex = winIndex;
        }
		
        float32* xres = new float32[numEdges];
        float32* yres = new float32[numEdges];
        for (int32 i = 0; i < numEdges; i++) {
            xres[i] = cloudX[edgeList[i]];
            yres[i] = cloudY[edgeList[i]];
			//("%f, %f\n",xres[i],yres[i]);
        }
		
        b2Polygon returnVal(xres, yres, numEdges);

        delete[] xres;
		delete[] yres;
        delete[] edgeList;
		returnVal.MergeParallelEdges(b2_angularSlop);
		return returnVal;
}


/*
 * Given sines and cosines, tells if A's angle is less than B's on -Pi, Pi
 * (in other words, is A "righter" than B)
 */
bool IsRighter(float32 sinA, float32 cosA, float32 sinB, float32 cosB){
	if (sinA < 0){
		if (sinB > 0 || cosA <= cosB) return true;
		else return false;
	} else {
		if (sinB < 0 || cosA <= cosB) return false;
		else return true;
	}
}

//Fix for obnoxious behavior for the % operator for negative numbers...
int32 remainder(int32 x, int32 modulus){
	int32 rem = x % modulus;
	while (rem < 0){
		rem += modulus;
	}
	return rem;
}

/*
Method:
Start at vertex with minimum y (pick maximum x one if there are two).  
We aim our "lastDir" vector at (1.0, 0)
We look at the two rays going off from our start vertex, and follow whichever
has the smallest angle (in -Pi -> Pi) wrt lastDir ("rightest" turn)

Loop until we hit starting vertex:

We add our current vertex to the list.
We check the seg from current vertex to next vertex for intersections
  - if no intersections, follow to next vertex and continue
  - if intersections, pick one with minimum distance
    - if more than one, pick one with "rightest" next point (two possibilities for each)

*/

b2Polygon TraceEdge(b2Polygon* p){
	b2PolyNode* nodes = new b2PolyNode[p->nVertices*p->nVertices];//overkill, but sufficient (order of mag. is right)
	int32 nNodes = 0;

	//Add base nodes (raw outline)
	for (int32 i=0; i < p->nVertices; ++i){
		b2Vec2 pos(p->x[i],p->y[i]);
		nodes[i].position = pos;
		++nNodes;
		int32 iplus = (i==p->nVertices-1)?0:i+1;
		int32 iminus = (i==0)?p->nVertices-1:i-1;
		nodes[i].AddConnection(nodes[iplus]);
		nodes[i].AddConnection(nodes[iminus]);
	}

	//Process intersection nodes - horribly inefficient
	bool dirty = true;
	int counter = 0;
	while (dirty){
		dirty = false;
		for (int32 i=0; i < nNodes; ++i){
			for (int32 j=0; j < nodes[i].nConnected; ++j){
				for (int32 k=0; k < nNodes; ++k){
					if (k==i || &nodes[k] == nodes[i].connected[j]) continue;
					for (int32 l=0; l < nodes[k].nConnected; ++l){
				
						if ( nodes[k].connected[l] == nodes[i].connected[j] ||
							 nodes[k].connected[l] == &nodes[i]) continue;
						//Check intersection
						b2Vec2 intersectPt;
						//if (counter > 100) printf("checking intersection: %d, %d, %d, %d\n",i,j,k,l);
						bool crosses = intersect(nodes[i].position,nodes[i].connected[j]->position,
												 nodes[k].position,nodes[k].connected[l]->position,
												 intersectPt);
						if (crosses){
							/*if (counter > 100) {
								printf("Found crossing at %f, %f\n",intersectPt.x, intersectPt.y);
								printf("Locations: %f,%f - %f,%f | %f,%f - %f,%f\n",
												nodes[i].position.x, nodes[i].position.y,
												nodes[i].connected[j]->position.x, nodes[i].connected[j]->position.y,
												nodes[k].position.x,nodes[k].position.y,
												nodes[k].connected[l]->position.x,nodes[k].connected[l]->position.y);
								printf("Memory addresses: %d, %d, %d, %d\n",(int)&nodes[i],(int)nodes[i].connected[j],(int)&nodes[k],(int)nodes[k].connected[l]);
							}*/
							dirty = true;
							//Destroy and re-hook connections at crossing point
							b2PolyNode* connj = nodes[i].connected[j];
							b2PolyNode* connl = nodes[k].connected[l];
							nodes[i].connected[j]->RemoveConnection(nodes[i]);
							nodes[i].RemoveConnection(*connj);
							nodes[k].connected[l]->RemoveConnection(nodes[k]);
							nodes[k].RemoveConnection(*connl);
							nodes[nNodes] = b2PolyNode(intersectPt);
							nodes[nNodes].AddConnection(nodes[i]);
							nodes[i].AddConnection(nodes[nNodes]);
							nodes[nNodes].AddConnection(nodes[k]);
							nodes[k].AddConnection(nodes[nNodes]);
							nodes[nNodes].AddConnection(*connj);
							connj->AddConnection(nodes[nNodes]);
							nodes[nNodes].AddConnection(*connl);
							connl->AddConnection(nodes[nNodes]);
							++nNodes;
							goto SkipOut;
						}
					}
				}
			}
		}
		SkipOut:
		++counter;
		//if (counter > 100) printf("Counter: %d\n",counter);
	}
	
	/*
	// Debugging: check for connection consistency
	for (int32 i=0; i<nNodes; ++i) {
		int32 nConn = nodes[i].nConnected;
		for (int32 j=0; j<nConn; ++j) {
			if (nodes[i].connected[j]->nConnected == 0) b2Assert(false);
			b2PolyNode* connect = nodes[i].connected[j];
			bool found = false;
			for (int32 k=0; k<connect->nConnected; ++k) {
				if (connect->connected[k] == &nodes[i]) found = true;
			}
			b2Assert(found);
		}
	}*/

	//Collapse duplicate points
	bool foundDupe = true;
	int nActive = nNodes;
	while (foundDupe){
		foundDupe = false;
		for (int32 i=0; i < nNodes; ++i){
			if (nodes[i].nConnected == 0) continue;
			for (int32 j=i+1; j < nNodes; ++j){
				if (nodes[j].nConnected == 0) continue;
				b2Vec2 diff = nodes[i].position - nodes[j].position;
				if (diff.LengthSquared() <= COLLAPSE_DIST_SQR){
					if (nActive <= 3) return b2Polygon();
					//printf("Found dupe, %d left\n",nActive);
					--nActive;
					foundDupe = true;
					b2PolyNode* inode = &nodes[i];
					b2PolyNode* jnode = &nodes[j];
					//Move all of j's connections to i, and orphan j
					int32 njConn = jnode->nConnected;
					for (int32 k=0; k < njConn; ++k){
						b2PolyNode* knode = jnode->connected[k];
						b2Assert(knode != jnode);
						if (knode != inode) {
							inode->AddConnection(*knode);
							knode->AddConnection(*inode);
						}
						knode->RemoveConnection(*jnode);
						//printf("knode %d on node %d now has %d connections\n",k,j,knode->nConnected);
						//printf("Found duplicate point.\n");
					}
					/*
					printf("Orphaning node at address %d\n",(int)jnode);
					for (int32 k=0; k<njConn; ++k) {
						if (jnode->connected[k]->IsConnectedTo(*jnode)) printf("Problem!!!\n");
					}
					for (int32 k=0; k < njConn; ++k){
						jnode->RemoveConnectionByIndex(k);
					}
					*/
					jnode->nConnected = 0;
				}
			}
		}
	}
	
	/*
	// Debugging: check for connection consistency
	for (int32 i=0; i<nNodes; ++i) {
		int32 nConn = nodes[i].nConnected;
		printf("Node %d has %d connections\n",i,nConn);
		for (int32 j=0; j<nConn; ++j) {
			if (nodes[i].connected[j]->nConnected == 0) {
				printf("Problem with node %d connection at address %d\n",i,(int)(nodes[i].connected[j]));
				b2Assert(false);
			}
			b2PolyNode* connect = nodes[i].connected[j];
			bool found = false;
			for (int32 k=0; k<connect->nConnected; ++k) {
				if (connect->connected[k] == &nodes[i]) found = true;
			}
			if (!found) printf("Connection %d (of %d) on node %d (of %d) did not have reciprocal connection.\n",j,nConn,i,nNodes);
			b2Assert(found);
		}
	}//*/

	//Now walk the edge of the list

	//Find node with minimum y value (max x if equal)
	float32 minY = 1e10;
	float32 maxX = -1e10;
	int32 minYIndex = -1;
	for (int32 i = 0; i < nNodes; ++i) {
		if (nodes[i].position.y < minY && nodes[i].nConnected > 1) {
			minY = nodes[i].position.y;
			minYIndex = i;
			maxX = nodes[i].position.x;
		} else if (nodes[i].position.y == minY && nodes[i].position.x > maxX && nodes[i].nConnected > 1) {
			minYIndex = i;
			maxX = nodes[i].position.x;
		}
	}

	b2Vec2 origDir(1.0f,0.0f);
	b2Vec2* resultVecs = new b2Vec2[4*nNodes];// nodes may be visited more than once, unfortunately - change to growable array!
	int32 nResultVecs = 0;
	b2PolyNode* currentNode = &nodes[minYIndex];
	b2PolyNode* startNode = currentNode;
	b2Assert(currentNode->nConnected > 0);
	b2PolyNode* nextNode = currentNode->GetRightestConnection(origDir);
	if (!nextNode) goto CleanUp; // Borked, clean up our mess and return
	resultVecs[0] = startNode->position;
	++nResultVecs;
	while (nextNode != startNode){
		if (nResultVecs > 4*nNodes){
			/*
			printf("%d, %d, %d\n",(int)startNode,(int)currentNode,(int)nextNode);
			printf("%f, %f -> %f, %f\n",currentNode->position.x,currentNode->position.y, nextNode->position.x, nextNode->position.y);
				p->printFormatted();
				printf("Dumping connection graph: \n");
				for (int32 i=0; i<nNodes; ++i) {
					printf("nodex[%d] = %f; nodey[%d] = %f;\n",i,nodes[i].position.x,i,nodes[i].position.y);
					printf("//connected to\n");
					for (int32 j=0; j<nodes[i].nConnected; ++j) {
						printf("connx[%d][%d] = %f; conny[%d][%d] = %f;\n",i,j,nodes[i].connected[j]->position.x, i,j,nodes[i].connected[j]->position.y);
					}
				}
				printf("Dumping results thus far: \n");
				for (int32 i=0; i<nResultVecs; ++i) {
					printf("x[%d]=map(%f,-3,3,0,width); y[%d] = map(%f,-3,3,height,0);\n",i,resultVecs[i].x,i,resultVecs[i].y);
				}
			//*/
			b2Assert(false); //nodes should never be visited four times apiece (proof?), so we've probably hit a loop...crap
		}
		resultVecs[nResultVecs++] = nextNode->position;
		b2PolyNode* oldNode = currentNode;
		currentNode = nextNode;
		//printf("Old node connections = %d; address %d\n",oldNode->nConnected, (int)oldNode);
		//printf("Current node connections = %d; address %d\n",currentNode->nConnected, (int)currentNode);
		nextNode = currentNode->GetRightestConnection(oldNode);
		if (!nextNode) goto CleanUp; // There was a problem, so jump out of the loop and use whatever garbage we've generated so far
		//printf("nextNode address: %d\n",(int)nextNode);
	}

	CleanUp:
	
	float32* xres = new float32[nResultVecs];
	float32* yres = new float32[nResultVecs];
	for (int32 i=0; i<nResultVecs; ++i){
		xres[i] = resultVecs[i].x;
		yres[i] = resultVecs[i].y;
	}
	b2Polygon retval(xres,yres,nResultVecs);
	delete[] resultVecs;
	delete[] yres;
	delete[] xres;
	delete[] nodes;
	return retval;
}

b2PolyNode::b2PolyNode(){
	nConnected = 0;
	visited = false;
}
b2PolyNode::b2PolyNode(b2Vec2& pos){
	position = pos;
	nConnected = 0;
	visited = false;
}

void b2PolyNode::AddConnection(b2PolyNode& toMe){
	b2Assert(nConnected < MAX_CONNECTED);
	// Ignore duplicate additions
	for (int32 i=0; i<nConnected; ++i) {
		if (connected[i] == &toMe) return;
	}
	connected[nConnected] = &toMe;
	++nConnected;
}

void b2PolyNode::RemoveConnection(b2PolyNode& fromMe){
	bool isFound = false;
	int32 foundIndex = -1;
	for (int32 i=0; i<nConnected; ++i){
		if (&fromMe == connected[i]) {//.position == connected[i]->position){
			isFound = true;
			foundIndex = i;
			break;
		}
	}
	b2Assert(isFound);
	--nConnected;
	//printf("nConnected: %d\n",nConnected);
	for (int32 i=foundIndex; i < nConnected; ++i){
		connected[i] = connected[i+1];
	}
}
void b2PolyNode::RemoveConnectionByIndex(int32 index){
	--nConnected;
	//printf("New nConnected = %d\n",nConnected);
	for (int32 i=index; i < nConnected; ++i){
		connected[i] = connected[i+1];
	}
}
bool b2PolyNode::IsConnectedTo(b2PolyNode& me){
	bool isFound = false;
	for (int32 i=0; i<nConnected; ++i){
		if (&me == connected[i]) {//.position == connected[i]->position){
			isFound = true;
			break;
		}
	}
	return isFound;
}
b2PolyNode* b2PolyNode::GetRightestConnection(b2PolyNode* incoming){
	if (nConnected == 0) b2Assert(false); // This means the connection graph is inconsistent
	if (nConnected == 1) {
		//b2Assert(false);
		// Because of the possibility of collapsing nearby points,
		// we may end up with "spider legs" dangling off of a region.
		// The correct behavior here is to turn around.
		return incoming;
	}
	b2Vec2 inDir = position - incoming->position;
	float32 inLength = inDir.Normalize();
	b2Assert(inLength > CMP_EPSILON);
	
	b2PolyNode* result = NULL;
	for (int32 i=0; i<nConnected; ++i){
		if (connected[i] == incoming) continue;
		b2Vec2 testDir = connected[i]->position - position;
		float32 testLengthSqr = testDir.LengthSquared();
		testDir.Normalize();
		/*
		if (testLengthSqr < COLLAPSE_DIST_SQR) {
			printf("Problem with connection %d\n",i);
			printf("This node has %d connections\n",nConnected);
			printf("That one has %d\n",connected[i]->nConnected);
			if (this == connected[i]) printf("This points at itself.\n");
		}*/
		b2Assert (testLengthSqr >= COLLAPSE_DIST_SQR);
		float32 myCos = b2Dot(inDir,testDir);
		float32 mySin = b2Cross(inDir,testDir);
		if (result){
			b2Vec2 resultDir = result->position - position;
			resultDir.Normalize();
			float32 resCos = b2Dot(inDir,resultDir);
			float32 resSin = b2Cross(inDir,resultDir);
			if (IsRighter(mySin,myCos,resSin,resCos)){
				result = connected[i];
			}
		} else{
			result = connected[i];
		}
	}
	if (B2_POLYGON_REPORT_ERRORS && !result) {
		printf("nConnected = %d\n",nConnected);
		for (int32 i=0; i<nConnected; ++i) {
			printf("connected[%d] @ %d\n",i,0);//(int)connected[i]);
		}
	}
	b2Assert(result);

	return result;
}

b2PolyNode* b2PolyNode::GetRightestConnection(b2Vec2& incomingDir){
	b2Vec2 diff = position-incomingDir;
	b2PolyNode temp(diff);
	b2PolyNode* res = GetRightestConnection(&temp);
	b2Assert(res);
	return res;
}
}