1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
|
/*
* Copyright (c) 2006-2009 Erin Catto http://www.gphysics.com
*
* This software is provided 'as-is', without any express or implied
* warranty. In no event will the authors be held liable for any damages
* arising from the use of this software.
* Permission is granted to anyone to use this software for any purpose,
* including commercial applications, and to alter it and redistribute it
* freely, subject to the following restrictions:
* 1. The origin of this software must not be misrepresented; you must not
* claim that you wrote the original software. If you use this software
* in a product, an acknowledgment in the product documentation would be
* appreciated but is not required.
* 2. Altered source versions must be plainly marked as such, and must not be
* misrepresented as being the original software.
* 3. This notice may not be removed or altered from any source distribution.
*/
#ifndef B2GLUE_H
#define B2GLUE_H
#include "math_2d.h"
#include <limits.h>
namespace b2ConvexDecomp {
typedef real_t float32;
typedef int32_t int32;
static inline float32 b2Sqrt(float32 val) { return Math::sqrt(val); }
#define b2_maxFloat FLT_MAX
#define b2_epsilon CMP_EPSILON
#define b2_pi 3.14159265359f
#define b2_maxPolygonVertices 16
#define b2Max MAX
#define b2Min MIN
#define b2Clamp CLAMP
#define b2Abs ABS
/// A small length used as a collision and constraint tolerance. Usually it is
/// chosen to be numerically significant, but visually insignificant.
#define b2_linearSlop 0.005f
/// A small angle used as a collision and constraint tolerance. Usually it is
/// chosen to be numerically significant, but visually insignificant.
#define b2_angularSlop (2.0f / 180.0f * b2_pi)
/// A 2D column vector.
struct b2Vec2
{
/// Default constructor does nothing (for performance).
b2Vec2() {}
/// Construct using coordinates.
b2Vec2(float32 x, float32 y) : x(x), y(y) {}
/// Set this vector to all zeros.
void SetZero() { x = 0.0f; y = 0.0f; }
/// Set this vector to some specified coordinates.
void Set(float32 x_, float32 y_) { x = x_; y = y_; }
/// Negate this vector.
b2Vec2 operator -() const { b2Vec2 v; v.Set(-x, -y); return v; }
/// Read from and indexed element.
float32 operator () (int32 i) const
{
return (&x)[i];
}
/// Write to an indexed element.
float32& operator () (int32 i)
{
return (&x)[i];
}
/// Add a vector to this vector.
void operator += (const b2Vec2& v)
{
x += v.x; y += v.y;
}
/// Subtract a vector from this vector.
void operator -= (const b2Vec2& v)
{
x -= v.x; y -= v.y;
}
/// Multiply this vector by a scalar.
void operator *= (float32 a)
{
x *= a; y *= a;
}
/// Get the length of this vector (the norm).
float32 Length() const
{
return b2Sqrt(x * x + y * y);
}
/// Get the length squared. For performance, use this instead of
/// b2Vec2::Length (if possible).
float32 LengthSquared() const
{
return x * x + y * y;
}
bool operator==(const b2Vec2& p_v) const {
return x==p_v.x && y==p_v.y;
}
b2Vec2 operator+(const b2Vec2& p_v) const {
return b2Vec2(x+p_v.x,y+p_v.y);
}
b2Vec2 operator-(const b2Vec2& p_v) const {
return b2Vec2(x-p_v.x,y-p_v.y);
}
b2Vec2 operator*(float32 f) const {
return b2Vec2(f*x,f*y);
}
/// Convert this vector into a unit vector. Returns the length.
float32 Normalize()
{
float32 length = Length();
if (length < b2_epsilon)
{
return 0.0f;
}
float32 invLength = 1.0f / length;
x *= invLength;
y *= invLength;
return length;
}
/*
/// Does this vector contain finite coordinates?
bool IsValid() const
{
return b2IsValid(x) && b2IsValid(y);
}
*/
float32 x, y;
};
inline b2Vec2 operator*(float32 f,const b2Vec2& p_v) {
return b2Vec2(f*p_v.x,f*p_v.y);
}
/// Perform the dot product on two vectors.
inline float32 b2Dot(const b2Vec2& a, const b2Vec2& b)
{
return a.x * b.x + a.y * b.y;
}
/// Perform the cross product on two vectors. In 2D this produces a scalar.
inline float32 b2Cross(const b2Vec2& a, const b2Vec2& b)
{
return a.x * b.y - a.y * b.x;
}
/// Perform the cross product on a vector and a scalar. In 2D this produces
/// a vector.
inline b2Vec2 b2Cross(const b2Vec2& a, float32 s)
{
return b2Vec2(s * a.y, -s * a.x);
}
}
#endif
|