summaryrefslogtreecommitdiff
path: root/drivers/builtin_openssl2/crypto/sha/asm/sha1-586.pl
blob: 2b119ffa4615b96a1faef34d0233551fc7af585e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
#!/usr/bin/env perl

# ====================================================================
# [Re]written by Andy Polyakov <appro@fy.chalmers.se> for the OpenSSL
# project. The module is, however, dual licensed under OpenSSL and
# CRYPTOGAMS licenses depending on where you obtain it. For further
# details see http://www.openssl.org/~appro/cryptogams/.
# ====================================================================

# "[Re]written" was achieved in two major overhauls. In 2004 BODY_*
# functions were re-implemented to address P4 performance issue [see
# commentary below], and in 2006 the rest was rewritten in order to
# gain freedom to liberate licensing terms.

# January, September 2004.
#
# It was noted that Intel IA-32 C compiler generates code which
# performs ~30% *faster* on P4 CPU than original *hand-coded*
# SHA1 assembler implementation. To address this problem (and
# prove that humans are still better than machines:-), the
# original code was overhauled, which resulted in following
# performance changes:
#
#		compared with original	compared with Intel cc
#		assembler impl.		generated code
# Pentium	-16%			+48%
# PIII/AMD	+8%			+16%
# P4		+85%(!)			+45%
#
# As you can see Pentium came out as looser:-( Yet I reckoned that
# improvement on P4 outweights the loss and incorporate this
# re-tuned code to 0.9.7 and later.
# ----------------------------------------------------------------
#					<appro@fy.chalmers.se>

# August 2009.
#
# George Spelvin has tipped that F_40_59(b,c,d) can be rewritten as
# '(c&d) + (b&(c^d))', which allows to accumulate partial results
# and lighten "pressure" on scratch registers. This resulted in
# >12% performance improvement on contemporary AMD cores (with no
# degradation on other CPUs:-). Also, the code was revised to maximize
# "distance" between instructions producing input to 'lea' instruction
# and the 'lea' instruction itself, which is essential for Intel Atom
# core and resulted in ~15% improvement.

# October 2010.
#
# Add SSSE3, Supplemental[!] SSE3, implementation. The idea behind it
# is to offload message schedule denoted by Wt in NIST specification,
# or Xupdate in OpenSSL source, to SIMD unit. The idea is not novel,
# and in SSE2 context was first explored by Dean Gaudet in 2004, see
# http://arctic.org/~dean/crypto/sha1.html. Since then several things
# have changed that made it interesting again:
#
# a) XMM units became faster and wider;
# b) instruction set became more versatile;
# c) an important observation was made by Max Locktykhin, which made
#    it possible to reduce amount of instructions required to perform
#    the operation in question, for further details see
#    http://software.intel.com/en-us/articles/improving-the-performance-of-the-secure-hash-algorithm-1/.

# April 2011.
#
# Add AVX code path, probably most controversial... The thing is that
# switch to AVX alone improves performance by as little as 4% in
# comparison to SSSE3 code path. But below result doesn't look like
# 4% improvement... Trouble is that Sandy Bridge decodes 'ro[rl]' as
# pair of µ-ops, and it's the additional µ-ops, two per round, that
# make it run slower than Core2 and Westmere. But 'sh[rl]d' is decoded
# as single µ-op by Sandy Bridge and it's replacing 'ro[rl]' with
# equivalent 'sh[rl]d' that is responsible for the impressive 5.1
# cycles per processed byte. But 'sh[rl]d' is not something that used
# to be fast, nor does it appear to be fast in upcoming Bulldozer
# [according to its optimization manual]. Which is why AVX code path
# is guarded by *both* AVX and synthetic bit denoting Intel CPUs.
# One can argue that it's unfair to AMD, but without 'sh[rl]d' it
# makes no sense to keep the AVX code path. If somebody feels that
# strongly, it's probably more appropriate to discuss possibility of
# using vector rotate XOP on AMD...

######################################################################
# Current performance is summarized in following table. Numbers are
# CPU clock cycles spent to process single byte (less is better).
#
#		x86		SSSE3		AVX
# Pentium	15.7		-
# PIII		11.5		-
# P4		10.6		-
# AMD K8	7.1		-
# Core2		7.3		6.1/+20%	-
# Atom		12.5		9.5(*)/+32%	-
# Westmere	7.3		5.6/+30%	-
# Sandy Bridge	8.8		6.2/+40%	5.1(**)/+70%
#
# (*)	Loop is 1056 instructions long and expected result is ~8.25.
#	It remains mystery [to me] why ILP is limited to 1.7.
#
# (**)	As per above comment, the result is for AVX *plus* sh[rl]d.

$0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1;
push(@INC,"${dir}","${dir}../../perlasm");
require "x86asm.pl";

&asm_init($ARGV[0],"sha1-586.pl",$ARGV[$#ARGV] eq "386");

$xmm=$ymm=0;
for (@ARGV) { $xmm=1 if (/-DOPENSSL_IA32_SSE2/); }

$ymm=1 if ($xmm &&
		`$ENV{CC} -Wa,-v -c -o /dev/null -x assembler /dev/null 2>&1`
			=~ /GNU assembler version ([2-9]\.[0-9]+)/ &&
		$1>=2.19);	# first version supporting AVX

$ymm=1 if ($xmm && !$ymm && $ARGV[0] eq "win32n" && 
		`nasm -v 2>&1` =~ /NASM version ([2-9]\.[0-9]+)/ &&
		$1>=2.03);	# first version supporting AVX

&external_label("OPENSSL_ia32cap_P") if ($xmm);


$A="eax";
$B="ebx";
$C="ecx";
$D="edx";
$E="edi";
$T="esi";
$tmp1="ebp";

@V=($A,$B,$C,$D,$E,$T);

$alt=0;	# 1 denotes alternative IALU implementation, which performs
	# 8% *worse* on P4, same on Westmere and Atom, 2% better on
	# Sandy Bridge...

sub BODY_00_15
	{
	local($n,$a,$b,$c,$d,$e,$f)=@_;

	&comment("00_15 $n");

	&mov($f,$c);			# f to hold F_00_19(b,c,d)
	 if ($n==0)  { &mov($tmp1,$a); }
	 else        { &mov($a,$tmp1); }
	&rotl($tmp1,5);			# tmp1=ROTATE(a,5)
	 &xor($f,$d);
	&add($tmp1,$e);			# tmp1+=e;
	 &mov($e,&swtmp($n%16));	# e becomes volatile and is loaded
	 				# with xi, also note that e becomes
					# f in next round...
	&and($f,$b);
	&rotr($b,2);			# b=ROTATE(b,30)
	 &xor($f,$d);			# f holds F_00_19(b,c,d)
	&lea($tmp1,&DWP(0x5a827999,$tmp1,$e));	# tmp1+=K_00_19+xi

	if ($n==15) { &mov($e,&swtmp(($n+1)%16));# pre-fetch f for next round
		      &add($f,$tmp1); }	# f+=tmp1
	else        { &add($tmp1,$f); }	# f becomes a in next round
	&mov($tmp1,$a)			if ($alt && $n==15);
	}

sub BODY_16_19
	{
	local($n,$a,$b,$c,$d,$e,$f)=@_;

	&comment("16_19 $n");

if ($alt) {
	&xor($c,$d);
	 &xor($f,&swtmp(($n+2)%16));	# f to hold Xupdate(xi,xa,xb,xc,xd)
	&and($tmp1,$c);			# tmp1 to hold F_00_19(b,c,d), b&=c^d
	 &xor($f,&swtmp(($n+8)%16));
	&xor($tmp1,$d);			# tmp1=F_00_19(b,c,d)
	 &xor($f,&swtmp(($n+13)%16));	# f holds xa^xb^xc^xd
	&rotl($f,1);			# f=ROTATE(f,1)
	 &add($e,$tmp1);		# e+=F_00_19(b,c,d)
	&xor($c,$d);			# restore $c
	 &mov($tmp1,$a);		# b in next round
	&rotr($b,$n==16?2:7);		# b=ROTATE(b,30)
	 &mov(&swtmp($n%16),$f);	# xi=f
	&rotl($a,5);			# ROTATE(a,5)
	 &lea($f,&DWP(0x5a827999,$f,$e));# f+=F_00_19(b,c,d)+e
	&mov($e,&swtmp(($n+1)%16));	# pre-fetch f for next round
	 &add($f,$a);			# f+=ROTATE(a,5)
} else {
	&mov($tmp1,$c);			# tmp1 to hold F_00_19(b,c,d)
	 &xor($f,&swtmp(($n+2)%16));	# f to hold Xupdate(xi,xa,xb,xc,xd)
	&xor($tmp1,$d);
	 &xor($f,&swtmp(($n+8)%16));
	&and($tmp1,$b);
	 &xor($f,&swtmp(($n+13)%16));	# f holds xa^xb^xc^xd
	&rotl($f,1);			# f=ROTATE(f,1)
	 &xor($tmp1,$d);		# tmp1=F_00_19(b,c,d)
	&add($e,$tmp1);			# e+=F_00_19(b,c,d)
	 &mov($tmp1,$a);
	&rotr($b,2);			# b=ROTATE(b,30)
	 &mov(&swtmp($n%16),$f);	# xi=f
	&rotl($tmp1,5);			# ROTATE(a,5)
	 &lea($f,&DWP(0x5a827999,$f,$e));# f+=F_00_19(b,c,d)+e
	&mov($e,&swtmp(($n+1)%16));	# pre-fetch f for next round
	 &add($f,$tmp1);		# f+=ROTATE(a,5)
}
	}

sub BODY_20_39
	{
	local($n,$a,$b,$c,$d,$e,$f)=@_;
	local $K=($n<40)?0x6ed9eba1:0xca62c1d6;

	&comment("20_39 $n");

if ($alt) {
	&xor($tmp1,$c);			# tmp1 to hold F_20_39(b,c,d), b^=c
	 &xor($f,&swtmp(($n+2)%16));	# f to hold Xupdate(xi,xa,xb,xc,xd)
	&xor($tmp1,$d);			# tmp1 holds F_20_39(b,c,d)
	 &xor($f,&swtmp(($n+8)%16));
	&add($e,$tmp1);			# e+=F_20_39(b,c,d)
	 &xor($f,&swtmp(($n+13)%16));	# f holds xa^xb^xc^xd
	&rotl($f,1);			# f=ROTATE(f,1)
	 &mov($tmp1,$a);		# b in next round
	&rotr($b,7);			# b=ROTATE(b,30)
	 &mov(&swtmp($n%16),$f)		if($n<77);# xi=f
	&rotl($a,5);			# ROTATE(a,5)
	 &xor($b,$c)			if($n==39);# warm up for BODY_40_59
	&and($tmp1,$b)			if($n==39);
	 &lea($f,&DWP($K,$f,$e));	# f+=e+K_XX_YY
	&mov($e,&swtmp(($n+1)%16))	if($n<79);# pre-fetch f for next round
	 &add($f,$a);			# f+=ROTATE(a,5)
	&rotr($a,5)			if ($n==79);
} else {
	&mov($tmp1,$b);			# tmp1 to hold F_20_39(b,c,d)
	 &xor($f,&swtmp(($n+2)%16));	# f to hold Xupdate(xi,xa,xb,xc,xd)
	&xor($tmp1,$c);
	 &xor($f,&swtmp(($n+8)%16));
	&xor($tmp1,$d);			# tmp1 holds F_20_39(b,c,d)
	 &xor($f,&swtmp(($n+13)%16));	# f holds xa^xb^xc^xd
	&rotl($f,1);			# f=ROTATE(f,1)
	 &add($e,$tmp1);		# e+=F_20_39(b,c,d)
	&rotr($b,2);			# b=ROTATE(b,30)
	 &mov($tmp1,$a);
	&rotl($tmp1,5);			# ROTATE(a,5)
	 &mov(&swtmp($n%16),$f) if($n<77);# xi=f
	&lea($f,&DWP($K,$f,$e));	# f+=e+K_XX_YY
	 &mov($e,&swtmp(($n+1)%16)) if($n<79);# pre-fetch f for next round
	&add($f,$tmp1);			# f+=ROTATE(a,5)
}
	}

sub BODY_40_59
	{
	local($n,$a,$b,$c,$d,$e,$f)=@_;

	&comment("40_59 $n");

if ($alt) {
	&add($e,$tmp1);			# e+=b&(c^d)
	 &xor($f,&swtmp(($n+2)%16));	# f to hold Xupdate(xi,xa,xb,xc,xd)
	&mov($tmp1,$d);
	 &xor($f,&swtmp(($n+8)%16));
	&xor($c,$d);			# restore $c
	 &xor($f,&swtmp(($n+13)%16));	# f holds xa^xb^xc^xd
	&rotl($f,1);			# f=ROTATE(f,1)
	 &and($tmp1,$c);
	&rotr($b,7);			# b=ROTATE(b,30)
	 &add($e,$tmp1);		# e+=c&d
	&mov($tmp1,$a);			# b in next round
	 &mov(&swtmp($n%16),$f);	# xi=f
	&rotl($a,5);			# ROTATE(a,5)
	 &xor($b,$c)			if ($n<59);
	&and($tmp1,$b)			if ($n<59);# tmp1 to hold F_40_59(b,c,d)
	 &lea($f,&DWP(0x8f1bbcdc,$f,$e));# f+=K_40_59+e+(b&(c^d))
	&mov($e,&swtmp(($n+1)%16));	# pre-fetch f for next round
	 &add($f,$a);			# f+=ROTATE(a,5)
} else {
	&mov($tmp1,$c);			# tmp1 to hold F_40_59(b,c,d)
	 &xor($f,&swtmp(($n+2)%16));	# f to hold Xupdate(xi,xa,xb,xc,xd)
	&xor($tmp1,$d);
	 &xor($f,&swtmp(($n+8)%16));
	&and($tmp1,$b);
	 &xor($f,&swtmp(($n+13)%16));	# f holds xa^xb^xc^xd
	&rotl($f,1);			# f=ROTATE(f,1)
	 &add($tmp1,$e);		# b&(c^d)+=e
	&rotr($b,2);			# b=ROTATE(b,30)
	 &mov($e,$a);			# e becomes volatile
	&rotl($e,5);			# ROTATE(a,5)
	 &mov(&swtmp($n%16),$f);	# xi=f
	&lea($f,&DWP(0x8f1bbcdc,$f,$tmp1));# f+=K_40_59+e+(b&(c^d))
	 &mov($tmp1,$c);
	&add($f,$e);			# f+=ROTATE(a,5)
	 &and($tmp1,$d);
	&mov($e,&swtmp(($n+1)%16));	# pre-fetch f for next round
	 &add($f,$tmp1);		# f+=c&d
}
	}

&function_begin("sha1_block_data_order");
if ($xmm) {
  &static_label("ssse3_shortcut");
  &static_label("avx_shortcut")		if ($ymm);
  &static_label("K_XX_XX");

	&call	(&label("pic_point"));	# make it PIC!
  &set_label("pic_point");
	&blindpop($tmp1);
	&picmeup($T,"OPENSSL_ia32cap_P",$tmp1,&label("pic_point"));
	&lea	($tmp1,&DWP(&label("K_XX_XX")."-".&label("pic_point"),$tmp1));

	&mov	($A,&DWP(0,$T));
	&mov	($D,&DWP(4,$T));
	&test	($D,1<<9);		# check SSSE3 bit
	&jz	(&label("x86"));
	&test	($A,1<<24);		# check FXSR bit
	&jz	(&label("x86"));
	if ($ymm) {
		&and	($D,1<<28);		# mask AVX bit
		&and	($A,1<<30);		# mask "Intel CPU" bit
		&or	($A,$D);
		&cmp	($A,1<<28|1<<30);
		&je	(&label("avx_shortcut"));
	}
	&jmp	(&label("ssse3_shortcut"));
  &set_label("x86",16);
}
	&mov($tmp1,&wparam(0));	# SHA_CTX *c
	&mov($T,&wparam(1));	# const void *input
	&mov($A,&wparam(2));	# size_t num
	&stack_push(16+3);	# allocate X[16]
	&shl($A,6);
	&add($A,$T);
	&mov(&wparam(2),$A);	# pointer beyond the end of input
	&mov($E,&DWP(16,$tmp1));# pre-load E
	&jmp(&label("loop"));

&set_label("loop",16);

	# copy input chunk to X, but reversing byte order!
	for ($i=0; $i<16; $i+=4)
		{
		&mov($A,&DWP(4*($i+0),$T));
		&mov($B,&DWP(4*($i+1),$T));
		&mov($C,&DWP(4*($i+2),$T));
		&mov($D,&DWP(4*($i+3),$T));
		&bswap($A);
		&bswap($B);
		&bswap($C);
		&bswap($D);
		&mov(&swtmp($i+0),$A);
		&mov(&swtmp($i+1),$B);
		&mov(&swtmp($i+2),$C);
		&mov(&swtmp($i+3),$D);
		}
	&mov(&wparam(1),$T);	# redundant in 1st spin

	&mov($A,&DWP(0,$tmp1));	# load SHA_CTX
	&mov($B,&DWP(4,$tmp1));
	&mov($C,&DWP(8,$tmp1));
	&mov($D,&DWP(12,$tmp1));
	# E is pre-loaded

	for($i=0;$i<16;$i++)	{ &BODY_00_15($i,@V); unshift(@V,pop(@V)); }
	for(;$i<20;$i++)	{ &BODY_16_19($i,@V); unshift(@V,pop(@V)); }
	for(;$i<40;$i++)	{ &BODY_20_39($i,@V); unshift(@V,pop(@V)); }
	for(;$i<60;$i++)	{ &BODY_40_59($i,@V); unshift(@V,pop(@V)); }
	for(;$i<80;$i++)	{ &BODY_20_39($i,@V); unshift(@V,pop(@V)); }

	(($V[5] eq $D) and ($V[0] eq $E)) or die;	# double-check

	&mov($tmp1,&wparam(0));	# re-load SHA_CTX*
	&mov($D,&wparam(1));	# D is last "T" and is discarded

	&add($E,&DWP(0,$tmp1));	# E is last "A"...
	&add($T,&DWP(4,$tmp1));
	&add($A,&DWP(8,$tmp1));
	&add($B,&DWP(12,$tmp1));
	&add($C,&DWP(16,$tmp1));

	&mov(&DWP(0,$tmp1),$E);	# update SHA_CTX
	 &add($D,64);		# advance input pointer
	&mov(&DWP(4,$tmp1),$T);
	 &cmp($D,&wparam(2));	# have we reached the end yet?
	&mov(&DWP(8,$tmp1),$A);
	 &mov($E,$C);		# C is last "E" which needs to be "pre-loaded"
	&mov(&DWP(12,$tmp1),$B);
	 &mov($T,$D);		# input pointer
	&mov(&DWP(16,$tmp1),$C);
	&jb(&label("loop"));

	&stack_pop(16+3);
&function_end("sha1_block_data_order");

if ($xmm) {
######################################################################
# The SSSE3 implementation.
#
# %xmm[0-7] are used as ring @X[] buffer containing quadruples of last
# 32 elements of the message schedule or Xupdate outputs. First 4
# quadruples are simply byte-swapped input, next 4 are calculated
# according to method originally suggested by Dean Gaudet (modulo
# being implemented in SSSE3). Once 8 quadruples or 32 elements are
# collected, it switches to routine proposed by Max Locktyukhin.
#
# Calculations inevitably require temporary reqisters, and there are
# no %xmm registers left to spare. For this reason part of the ring
# buffer, X[2..4] to be specific, is offloaded to 3 quadriples ring
# buffer on the stack. Keep in mind that X[2] is alias X[-6], X[3] -
# X[-5], and X[4] - X[-4]...
#
# Another notable optimization is aggressive stack frame compression
# aiming to minimize amount of 9-byte instructions...
#
# Yet another notable optimization is "jumping" $B variable. It means
# that there is no register permanently allocated for $B value. This
# allowed to eliminate one instruction from body_20_39...
#
my $Xi=4;			# 4xSIMD Xupdate round, start pre-seeded
my @X=map("xmm$_",(4..7,0..3));	# pre-seeded for $Xi=4
my @V=($A,$B,$C,$D,$E);
my $j=0;			# hash round
my @T=($T,$tmp1);
my $inp;

my $_rol=sub { &rol(@_) };
my $_ror=sub { &ror(@_) };

&function_begin("_sha1_block_data_order_ssse3");
	&call	(&label("pic_point"));	# make it PIC!
	&set_label("pic_point");
	&blindpop($tmp1);
	&lea	($tmp1,&DWP(&label("K_XX_XX")."-".&label("pic_point"),$tmp1));
&set_label("ssse3_shortcut");

	&movdqa	(@X[3],&QWP(0,$tmp1));		# K_00_19
	&movdqa	(@X[4],&QWP(16,$tmp1));		# K_20_39
	&movdqa	(@X[5],&QWP(32,$tmp1));		# K_40_59
	&movdqa	(@X[6],&QWP(48,$tmp1));		# K_60_79
	&movdqa	(@X[2],&QWP(64,$tmp1));		# pbswap mask

	&mov	($E,&wparam(0));		# load argument block
	&mov	($inp=@T[1],&wparam(1));
	&mov	($D,&wparam(2));
	&mov	(@T[0],"esp");

	# stack frame layout
	#
	# +0	X[0]+K	X[1]+K	X[2]+K	X[3]+K	# XMM->IALU xfer area
	#	X[4]+K	X[5]+K	X[6]+K	X[7]+K
	#	X[8]+K	X[9]+K	X[10]+K	X[11]+K
	#	X[12]+K	X[13]+K	X[14]+K	X[15]+K
	#
	# +64	X[0]	X[1]	X[2]	X[3]	# XMM->XMM backtrace area
	#	X[4]	X[5]	X[6]	X[7]
	#	X[8]	X[9]	X[10]	X[11]	# even borrowed for K_00_19
	#
	# +112	K_20_39	K_20_39	K_20_39	K_20_39	# constants
	#	K_40_59	K_40_59	K_40_59	K_40_59
	#	K_60_79	K_60_79	K_60_79	K_60_79
	#	K_00_19	K_00_19	K_00_19	K_00_19
	#	pbswap mask
	#
	# +192	ctx				# argument block
	# +196	inp
	# +200	end
	# +204	esp
	&sub	("esp",208);
	&and	("esp",-64);

	&movdqa	(&QWP(112+0,"esp"),@X[4]);	# copy constants
	&movdqa	(&QWP(112+16,"esp"),@X[5]);
	&movdqa	(&QWP(112+32,"esp"),@X[6]);
	&shl	($D,6);				# len*64
	&movdqa	(&QWP(112+48,"esp"),@X[3]);
	&add	($D,$inp);			# end of input
	&movdqa	(&QWP(112+64,"esp"),@X[2]);
	&add	($inp,64);
	&mov	(&DWP(192+0,"esp"),$E);		# save argument block
	&mov	(&DWP(192+4,"esp"),$inp);
	&mov	(&DWP(192+8,"esp"),$D);
	&mov	(&DWP(192+12,"esp"),@T[0]);	# save original %esp

	&mov	($A,&DWP(0,$E));		# load context
	&mov	($B,&DWP(4,$E));
	&mov	($C,&DWP(8,$E));
	&mov	($D,&DWP(12,$E));
	&mov	($E,&DWP(16,$E));
	&mov	(@T[0],$B);			# magic seed

	&movdqu	(@X[-4&7],&QWP(-64,$inp));	# load input to %xmm[0-3]
	&movdqu	(@X[-3&7],&QWP(-48,$inp));
	&movdqu	(@X[-2&7],&QWP(-32,$inp));
	&movdqu	(@X[-1&7],&QWP(-16,$inp));
	&pshufb	(@X[-4&7],@X[2]);		# byte swap
	&pshufb	(@X[-3&7],@X[2]);
	&pshufb	(@X[-2&7],@X[2]);
	&movdqa	(&QWP(112-16,"esp"),@X[3]);	# borrow last backtrace slot
	&pshufb	(@X[-1&7],@X[2]);
	&paddd	(@X[-4&7],@X[3]);		# add K_00_19
	&paddd	(@X[-3&7],@X[3]);
	&paddd	(@X[-2&7],@X[3]);
	&movdqa	(&QWP(0,"esp"),@X[-4&7]);	# X[]+K xfer to IALU
	&psubd	(@X[-4&7],@X[3]);		# restore X[]
	&movdqa	(&QWP(0+16,"esp"),@X[-3&7]);
	&psubd	(@X[-3&7],@X[3]);
	&movdqa	(&QWP(0+32,"esp"),@X[-2&7]);
	&psubd	(@X[-2&7],@X[3]);
	&movdqa	(@X[0],@X[-3&7]);
	&jmp	(&label("loop"));

######################################################################
# SSE instruction sequence is first broken to groups of indepentent
# instructions, independent in respect to their inputs and shifter
# (not all architectures have more than one). Then IALU instructions
# are "knitted in" between the SSE groups. Distance is maintained for
# SSE latency of 2 in hope that it fits better upcoming AMD Bulldozer
# [which allegedly also implements SSSE3]...
#
# Temporary registers usage. X[2] is volatile at the entry and at the
# end is restored from backtrace ring buffer. X[3] is expected to
# contain current K_XX_XX constant and is used to caclulate X[-1]+K
# from previous round, it becomes volatile the moment the value is
# saved to stack for transfer to IALU. X[4] becomes volatile whenever
# X[-4] is accumulated and offloaded to backtrace ring buffer, at the
# end it is loaded with next K_XX_XX [which becomes X[3] in next
# round]...
#
sub Xupdate_ssse3_16_31()		# recall that $Xi starts wtih 4
{ use integer;
  my $body = shift;
  my @insns = (&$body,&$body,&$body,&$body);	# 40 instructions
  my ($a,$b,$c,$d,$e);

	 eval(shift(@insns));
	 eval(shift(@insns));
	&palignr(@X[0],@X[-4&7],8);	# compose "X[-14]" in "X[0]"
	&movdqa	(@X[2],@X[-1&7]);
	 eval(shift(@insns));
	 eval(shift(@insns));

	  &paddd	(@X[3],@X[-1&7]);
	  &movdqa	(&QWP(64+16*(($Xi-4)%3),"esp"),@X[-4&7]);# save X[] to backtrace buffer
	 eval(shift(@insns));
	 eval(shift(@insns));
	&psrldq	(@X[2],4);		# "X[-3]", 3 dwords
	 eval(shift(@insns));
	 eval(shift(@insns));
	&pxor	(@X[0],@X[-4&7]);	# "X[0]"^="X[-16]"
	 eval(shift(@insns));
	 eval(shift(@insns));

	&pxor	(@X[2],@X[-2&7]);	# "X[-3]"^"X[-8]"
	 eval(shift(@insns));
	 eval(shift(@insns));
	 eval(shift(@insns));
	 eval(shift(@insns));

	&pxor	(@X[0],@X[2]);		# "X[0]"^="X[-3]"^"X[-8]"
	 eval(shift(@insns));
	 eval(shift(@insns));
	  &movdqa	(&QWP(0+16*(($Xi-1)&3),"esp"),@X[3]);	# X[]+K xfer to IALU
	 eval(shift(@insns));
	 eval(shift(@insns));

	&movdqa	(@X[4],@X[0]);
	&movdqa	(@X[2],@X[0]);
	 eval(shift(@insns));
	 eval(shift(@insns));
	 eval(shift(@insns));
	 eval(shift(@insns));

	&pslldq	(@X[4],12);		# "X[0]"<<96, extract one dword
	&paddd	(@X[0],@X[0]);
	 eval(shift(@insns));
	 eval(shift(@insns));
	 eval(shift(@insns));
	 eval(shift(@insns));

	&psrld	(@X[2],31);
	 eval(shift(@insns));
	 eval(shift(@insns));
	&movdqa	(@X[3],@X[4]);
	 eval(shift(@insns));
	 eval(shift(@insns));

	&psrld	(@X[4],30);
	&por	(@X[0],@X[2]);		# "X[0]"<<<=1
	 eval(shift(@insns));
	 eval(shift(@insns));
	  &movdqa	(@X[2],&QWP(64+16*(($Xi-6)%3),"esp")) if ($Xi>5);	# restore X[] from backtrace buffer
	 eval(shift(@insns));
	 eval(shift(@insns));

	&pslld	(@X[3],2);
	&pxor	(@X[0],@X[4]);
	 eval(shift(@insns));
	 eval(shift(@insns));
	  &movdqa	(@X[4],&QWP(112-16+16*(($Xi)/5),"esp"));	# K_XX_XX
	 eval(shift(@insns));
	 eval(shift(@insns));

	&pxor	(@X[0],@X[3]);		# "X[0]"^=("X[0]"<<96)<<<2
	  &movdqa	(@X[1],@X[-2&7])	if ($Xi<7);
	 eval(shift(@insns));
	 eval(shift(@insns));

	 foreach (@insns) { eval; }	# remaining instructions [if any]

  $Xi++;	push(@X,shift(@X));	# "rotate" X[]
}

sub Xupdate_ssse3_32_79()
{ use integer;
  my $body = shift;
  my @insns = (&$body,&$body,&$body,&$body);	# 32 to 48 instructions
  my ($a,$b,$c,$d,$e);

	&movdqa	(@X[2],@X[-1&7])	if ($Xi==8);
	 eval(shift(@insns));		# body_20_39
	&pxor	(@X[0],@X[-4&7]);	# "X[0]"="X[-32]"^"X[-16]"
	&palignr(@X[2],@X[-2&7],8);	# compose "X[-6]"
	 eval(shift(@insns));
	 eval(shift(@insns));
	 eval(shift(@insns));		# rol

	&pxor	(@X[0],@X[-7&7]);	# "X[0]"^="X[-28]"
	  &movdqa	(&QWP(64+16*(($Xi-4)%3),"esp"),@X[-4&7]);	# save X[] to backtrace buffer
	 eval(shift(@insns));
	 eval(shift(@insns));
	 if ($Xi%5) {
	  &movdqa	(@X[4],@X[3]);	# "perpetuate" K_XX_XX...
	 } else {			# ... or load next one
	  &movdqa	(@X[4],&QWP(112-16+16*($Xi/5),"esp"));
	 }
	  &paddd	(@X[3],@X[-1&7]);
	 eval(shift(@insns));		# ror
	 eval(shift(@insns));

	&pxor	(@X[0],@X[2]);		# "X[0]"^="X[-6]"
	 eval(shift(@insns));		# body_20_39
	 eval(shift(@insns));
	 eval(shift(@insns));
	 eval(shift(@insns));		# rol

	&movdqa	(@X[2],@X[0]);
	  &movdqa	(&QWP(0+16*(($Xi-1)&3),"esp"),@X[3]);	# X[]+K xfer to IALU
	 eval(shift(@insns));
	 eval(shift(@insns));
	 eval(shift(@insns));		# ror
	 eval(shift(@insns));

	&pslld	(@X[0],2);
	 eval(shift(@insns));		# body_20_39
	 eval(shift(@insns));
	&psrld	(@X[2],30);
	 eval(shift(@insns));
	 eval(shift(@insns));		# rol
	 eval(shift(@insns));
	 eval(shift(@insns));
	 eval(shift(@insns));		# ror
	 eval(shift(@insns));

	&por	(@X[0],@X[2]);		# "X[0]"<<<=2
	 eval(shift(@insns));		# body_20_39
	 eval(shift(@insns));
	  &movdqa	(@X[2],&QWP(64+16*(($Xi-6)%3),"esp")) if($Xi<19);	# restore X[] from backtrace buffer
	 eval(shift(@insns));
	 eval(shift(@insns));		# rol
	 eval(shift(@insns));
	 eval(shift(@insns));
	 eval(shift(@insns));		# ror
	  &movdqa	(@X[3],@X[0])	if ($Xi<19);
	 eval(shift(@insns));

	 foreach (@insns) { eval; }	# remaining instructions

  $Xi++;	push(@X,shift(@X));	# "rotate" X[]
}

sub Xuplast_ssse3_80()
{ use integer;
  my $body = shift;
  my @insns = (&$body,&$body,&$body,&$body);	# 32 instructions
  my ($a,$b,$c,$d,$e);

	 eval(shift(@insns));
	  &paddd	(@X[3],@X[-1&7]);
	 eval(shift(@insns));
	 eval(shift(@insns));
	 eval(shift(@insns));
	 eval(shift(@insns));

	  &movdqa	(&QWP(0+16*(($Xi-1)&3),"esp"),@X[3]);	# X[]+K xfer IALU

	 foreach (@insns) { eval; }		# remaining instructions

	&mov	($inp=@T[1],&DWP(192+4,"esp"));
	&cmp	($inp,&DWP(192+8,"esp"));
	&je	(&label("done"));

	&movdqa	(@X[3],&QWP(112+48,"esp"));	# K_00_19
	&movdqa	(@X[2],&QWP(112+64,"esp"));	# pbswap mask
	&movdqu	(@X[-4&7],&QWP(0,$inp));	# load input
	&movdqu	(@X[-3&7],&QWP(16,$inp));
	&movdqu	(@X[-2&7],&QWP(32,$inp));
	&movdqu	(@X[-1&7],&QWP(48,$inp));
	&add	($inp,64);
	&pshufb	(@X[-4&7],@X[2]);		# byte swap
	&mov	(&DWP(192+4,"esp"),$inp);
	&movdqa	(&QWP(112-16,"esp"),@X[3]);	# borrow last backtrace slot

  $Xi=0;
}

sub Xloop_ssse3()
{ use integer;
  my $body = shift;
  my @insns = (&$body,&$body,&$body,&$body);	# 32 instructions
  my ($a,$b,$c,$d,$e);

	 eval(shift(@insns));
	 eval(shift(@insns));
	&pshufb	(@X[($Xi-3)&7],@X[2]);
	 eval(shift(@insns));
	 eval(shift(@insns));
	&paddd	(@X[($Xi-4)&7],@X[3]);
	 eval(shift(@insns));
	 eval(shift(@insns));
	 eval(shift(@insns));
	 eval(shift(@insns));
	&movdqa	(&QWP(0+16*$Xi,"esp"),@X[($Xi-4)&7]);	# X[]+K xfer to IALU
	 eval(shift(@insns));
	 eval(shift(@insns));
	&psubd	(@X[($Xi-4)&7],@X[3]);

	foreach (@insns) { eval; }
  $Xi++;
}

sub Xtail_ssse3()
{ use integer;
  my $body = shift;
  my @insns = (&$body,&$body,&$body,&$body);	# 32 instructions
  my ($a,$b,$c,$d,$e);

	foreach (@insns) { eval; }
}

sub body_00_19 () {
	(
	'($a,$b,$c,$d,$e)=@V;'.
	'&add	($e,&DWP(4*($j&15),"esp"));',	# X[]+K xfer
	'&xor	($c,$d);',
	'&mov	(@T[1],$a);',	# $b in next round
	'&$_rol	($a,5);',
	'&and	(@T[0],$c);',	# ($b&($c^$d))
	'&xor	($c,$d);',	# restore $c
	'&xor	(@T[0],$d);',
	'&add	($e,$a);',
	'&$_ror	($b,$j?7:2);',	# $b>>>2
	'&add	($e,@T[0]);'	.'$j++; unshift(@V,pop(@V)); unshift(@T,pop(@T));'
	);
}

sub body_20_39 () {
	(
	'($a,$b,$c,$d,$e)=@V;'.
	'&add	($e,&DWP(4*($j++&15),"esp"));',	# X[]+K xfer
	'&xor	(@T[0],$d);',	# ($b^$d)
	'&mov	(@T[1],$a);',	# $b in next round
	'&$_rol	($a,5);',
	'&xor	(@T[0],$c);',	# ($b^$d^$c)
	'&add	($e,$a);',
	'&$_ror	($b,7);',	# $b>>>2
	'&add	($e,@T[0]);'	.'unshift(@V,pop(@V)); unshift(@T,pop(@T));'
	);
}

sub body_40_59 () {
	(
	'($a,$b,$c,$d,$e)=@V;'.
	'&mov	(@T[1],$c);',
	'&xor	($c,$d);',
	'&add	($e,&DWP(4*($j++&15),"esp"));',	# X[]+K xfer
	'&and	(@T[1],$d);',
	'&and	(@T[0],$c);',	# ($b&($c^$d))
	'&$_ror	($b,7);',	# $b>>>2
	'&add	($e,@T[1]);',
	'&mov	(@T[1],$a);',	# $b in next round
	'&$_rol	($a,5);',
	'&add	($e,@T[0]);',
	'&xor	($c,$d);',	# restore $c
	'&add	($e,$a);'	.'unshift(@V,pop(@V)); unshift(@T,pop(@T));'
	);
}

&set_label("loop",16);
	&Xupdate_ssse3_16_31(\&body_00_19);
	&Xupdate_ssse3_16_31(\&body_00_19);
	&Xupdate_ssse3_16_31(\&body_00_19);
	&Xupdate_ssse3_16_31(\&body_00_19);
	&Xupdate_ssse3_32_79(\&body_00_19);
	&Xupdate_ssse3_32_79(\&body_20_39);
	&Xupdate_ssse3_32_79(\&body_20_39);
	&Xupdate_ssse3_32_79(\&body_20_39);
	&Xupdate_ssse3_32_79(\&body_20_39);
	&Xupdate_ssse3_32_79(\&body_20_39);
	&Xupdate_ssse3_32_79(\&body_40_59);
	&Xupdate_ssse3_32_79(\&body_40_59);
	&Xupdate_ssse3_32_79(\&body_40_59);
	&Xupdate_ssse3_32_79(\&body_40_59);
	&Xupdate_ssse3_32_79(\&body_40_59);
	&Xupdate_ssse3_32_79(\&body_20_39);
	&Xuplast_ssse3_80(\&body_20_39);	# can jump to "done"

				$saved_j=$j; @saved_V=@V;

	&Xloop_ssse3(\&body_20_39);
	&Xloop_ssse3(\&body_20_39);
	&Xloop_ssse3(\&body_20_39);

	&mov	(@T[1],&DWP(192,"esp"));	# update context
	&add	($A,&DWP(0,@T[1]));
	&add	(@T[0],&DWP(4,@T[1]));		# $b
	&add	($C,&DWP(8,@T[1]));
	&mov	(&DWP(0,@T[1]),$A);
	&add	($D,&DWP(12,@T[1]));
	&mov	(&DWP(4,@T[1]),@T[0]);
	&add	($E,&DWP(16,@T[1]));
	&mov	(&DWP(8,@T[1]),$C);
	&mov	($B,@T[0]);
	&mov	(&DWP(12,@T[1]),$D);
	&mov	(&DWP(16,@T[1]),$E);
	&movdqa	(@X[0],@X[-3&7]);

	&jmp	(&label("loop"));

&set_label("done",16);		$j=$saved_j; @V=@saved_V;

	&Xtail_ssse3(\&body_20_39);
	&Xtail_ssse3(\&body_20_39);
	&Xtail_ssse3(\&body_20_39);

	&mov	(@T[1],&DWP(192,"esp"));	# update context
	&add	($A,&DWP(0,@T[1]));
	&mov	("esp",&DWP(192+12,"esp"));	# restore %esp
	&add	(@T[0],&DWP(4,@T[1]));		# $b
	&add	($C,&DWP(8,@T[1]));
	&mov	(&DWP(0,@T[1]),$A);
	&add	($D,&DWP(12,@T[1]));
	&mov	(&DWP(4,@T[1]),@T[0]);
	&add	($E,&DWP(16,@T[1]));
	&mov	(&DWP(8,@T[1]),$C);
	&mov	(&DWP(12,@T[1]),$D);
	&mov	(&DWP(16,@T[1]),$E);

&function_end("_sha1_block_data_order_ssse3");

if ($ymm) {
my $Xi=4;			# 4xSIMD Xupdate round, start pre-seeded
my @X=map("xmm$_",(4..7,0..3));	# pre-seeded for $Xi=4
my @V=($A,$B,$C,$D,$E);
my $j=0;			# hash round
my @T=($T,$tmp1);
my $inp;

my $_rol=sub { &shld(@_[0],@_) };
my $_ror=sub { &shrd(@_[0],@_) };

&function_begin("_sha1_block_data_order_avx");
	&call	(&label("pic_point"));	# make it PIC!
	&set_label("pic_point");
	&blindpop($tmp1);
	&lea	($tmp1,&DWP(&label("K_XX_XX")."-".&label("pic_point"),$tmp1));
&set_label("avx_shortcut");
	&vzeroall();

	&vmovdqa(@X[3],&QWP(0,$tmp1));		# K_00_19
	&vmovdqa(@X[4],&QWP(16,$tmp1));		# K_20_39
	&vmovdqa(@X[5],&QWP(32,$tmp1));		# K_40_59
	&vmovdqa(@X[6],&QWP(48,$tmp1));		# K_60_79
	&vmovdqa(@X[2],&QWP(64,$tmp1));		# pbswap mask

	&mov	($E,&wparam(0));		# load argument block
	&mov	($inp=@T[1],&wparam(1));
	&mov	($D,&wparam(2));
	&mov	(@T[0],"esp");

	# stack frame layout
	#
	# +0	X[0]+K	X[1]+K	X[2]+K	X[3]+K	# XMM->IALU xfer area
	#	X[4]+K	X[5]+K	X[6]+K	X[7]+K
	#	X[8]+K	X[9]+K	X[10]+K	X[11]+K
	#	X[12]+K	X[13]+K	X[14]+K	X[15]+K
	#
	# +64	X[0]	X[1]	X[2]	X[3]	# XMM->XMM backtrace area
	#	X[4]	X[5]	X[6]	X[7]
	#	X[8]	X[9]	X[10]	X[11]	# even borrowed for K_00_19
	#
	# +112	K_20_39	K_20_39	K_20_39	K_20_39	# constants
	#	K_40_59	K_40_59	K_40_59	K_40_59
	#	K_60_79	K_60_79	K_60_79	K_60_79
	#	K_00_19	K_00_19	K_00_19	K_00_19
	#	pbswap mask
	#
	# +192	ctx				# argument block
	# +196	inp
	# +200	end
	# +204	esp
	&sub	("esp",208);
	&and	("esp",-64);

	&vmovdqa(&QWP(112+0,"esp"),@X[4]);	# copy constants
	&vmovdqa(&QWP(112+16,"esp"),@X[5]);
	&vmovdqa(&QWP(112+32,"esp"),@X[6]);
	&shl	($D,6);				# len*64
	&vmovdqa(&QWP(112+48,"esp"),@X[3]);
	&add	($D,$inp);			# end of input
	&vmovdqa(&QWP(112+64,"esp"),@X[2]);
	&add	($inp,64);
	&mov	(&DWP(192+0,"esp"),$E);		# save argument block
	&mov	(&DWP(192+4,"esp"),$inp);
	&mov	(&DWP(192+8,"esp"),$D);
	&mov	(&DWP(192+12,"esp"),@T[0]);	# save original %esp

	&mov	($A,&DWP(0,$E));		# load context
	&mov	($B,&DWP(4,$E));
	&mov	($C,&DWP(8,$E));
	&mov	($D,&DWP(12,$E));
	&mov	($E,&DWP(16,$E));
	&mov	(@T[0],$B);			# magic seed

	&vmovdqu(@X[-4&7],&QWP(-64,$inp));	# load input to %xmm[0-3]
	&vmovdqu(@X[-3&7],&QWP(-48,$inp));
	&vmovdqu(@X[-2&7],&QWP(-32,$inp));
	&vmovdqu(@X[-1&7],&QWP(-16,$inp));
	&vpshufb(@X[-4&7],@X[-4&7],@X[2]);	# byte swap
	&vpshufb(@X[-3&7],@X[-3&7],@X[2]);
	&vpshufb(@X[-2&7],@X[-2&7],@X[2]);
	&vmovdqa(&QWP(112-16,"esp"),@X[3]);	# borrow last backtrace slot
	&vpshufb(@X[-1&7],@X[-1&7],@X[2]);
	&vpaddd	(@X[0],@X[-4&7],@X[3]);		# add K_00_19
	&vpaddd	(@X[1],@X[-3&7],@X[3]);
	&vpaddd	(@X[2],@X[-2&7],@X[3]);
	&vmovdqa(&QWP(0,"esp"),@X[0]);		# X[]+K xfer to IALU
	&vmovdqa(&QWP(0+16,"esp"),@X[1]);
	&vmovdqa(&QWP(0+32,"esp"),@X[2]);
	&jmp	(&label("loop"));

sub Xupdate_avx_16_31()		# recall that $Xi starts wtih 4
{ use integer;
  my $body = shift;
  my @insns = (&$body,&$body,&$body,&$body);	# 40 instructions
  my ($a,$b,$c,$d,$e);

	 eval(shift(@insns));
	 eval(shift(@insns));
	&vpalignr(@X[0],@X[-3&7],@X[-4&7],8);	# compose "X[-14]" in "X[0]"
	 eval(shift(@insns));
	 eval(shift(@insns));

	  &vpaddd	(@X[3],@X[3],@X[-1&7]);
	  &vmovdqa	(&QWP(64+16*(($Xi-4)%3),"esp"),@X[-4&7]);# save X[] to backtrace buffer
	 eval(shift(@insns));
	 eval(shift(@insns));
	&vpsrldq(@X[2],@X[-1&7],4);		# "X[-3]", 3 dwords
	 eval(shift(@insns));
	 eval(shift(@insns));
	&vpxor	(@X[0],@X[0],@X[-4&7]);		# "X[0]"^="X[-16]"
	 eval(shift(@insns));
	 eval(shift(@insns));

	&vpxor	(@X[2],@X[2],@X[-2&7]);		# "X[-3]"^"X[-8]"
	 eval(shift(@insns));
	 eval(shift(@insns));
	  &vmovdqa	(&QWP(0+16*(($Xi-1)&3),"esp"),@X[3]);	# X[]+K xfer to IALU
	 eval(shift(@insns));
	 eval(shift(@insns));

	&vpxor	(@X[0],@X[0],@X[2]);		# "X[0]"^="X[-3]"^"X[-8]"
	 eval(shift(@insns));
	 eval(shift(@insns));
	 eval(shift(@insns));
	 eval(shift(@insns));

	&vpsrld	(@X[2],@X[0],31);
	 eval(shift(@insns));
	 eval(shift(@insns));
	 eval(shift(@insns));
	 eval(shift(@insns));

	&vpslldq(@X[4],@X[0],12);		# "X[0]"<<96, extract one dword
	&vpaddd	(@X[0],@X[0],@X[0]);
	 eval(shift(@insns));
	 eval(shift(@insns));
	 eval(shift(@insns));
	 eval(shift(@insns));

	&vpsrld	(@X[3],@X[4],30);
	&vpor	(@X[0],@X[0],@X[2]);		# "X[0]"<<<=1
	 eval(shift(@insns));
	 eval(shift(@insns));
	 eval(shift(@insns));
	 eval(shift(@insns));

	&vpslld	(@X[4],@X[4],2);
	  &vmovdqa	(@X[2],&QWP(64+16*(($Xi-6)%3),"esp")) if ($Xi>5);	# restore X[] from backtrace buffer
	 eval(shift(@insns));
	 eval(shift(@insns));
	&vpxor	(@X[0],@X[0],@X[3]);
	 eval(shift(@insns));
	 eval(shift(@insns));
	 eval(shift(@insns));
	 eval(shift(@insns));

	&vpxor	(@X[0],@X[0],@X[4]);		# "X[0]"^=("X[0]"<<96)<<<2
	 eval(shift(@insns));
	 eval(shift(@insns));
	  &vmovdqa	(@X[4],&QWP(112-16+16*(($Xi)/5),"esp"));	# K_XX_XX
	 eval(shift(@insns));
	 eval(shift(@insns));

	 foreach (@insns) { eval; }	# remaining instructions [if any]

  $Xi++;	push(@X,shift(@X));	# "rotate" X[]
}

sub Xupdate_avx_32_79()
{ use integer;
  my $body = shift;
  my @insns = (&$body,&$body,&$body,&$body);	# 32 to 48 instructions
  my ($a,$b,$c,$d,$e);

	&vpalignr(@X[2],@X[-1&7],@X[-2&7],8);	# compose "X[-6]"
	&vpxor	(@X[0],@X[0],@X[-4&7]);	# "X[0]"="X[-32]"^"X[-16]"
	 eval(shift(@insns));		# body_20_39
	 eval(shift(@insns));
	 eval(shift(@insns));
	 eval(shift(@insns));		# rol

	&vpxor	(@X[0],@X[0],@X[-7&7]);	# "X[0]"^="X[-28]"
	  &vmovdqa	(&QWP(64+16*(($Xi-4)%3),"esp"),@X[-4&7]);	# save X[] to backtrace buffer
	 eval(shift(@insns));
	 eval(shift(@insns));
	 if ($Xi%5) {
	  &vmovdqa	(@X[4],@X[3]);	# "perpetuate" K_XX_XX...
	 } else {			# ... or load next one
	  &vmovdqa	(@X[4],&QWP(112-16+16*($Xi/5),"esp"));
	 }
	  &vpaddd	(@X[3],@X[3],@X[-1&7]);
	 eval(shift(@insns));		# ror
	 eval(shift(@insns));

	&vpxor	(@X[0],@X[0],@X[2]);		# "X[0]"^="X[-6]"
	 eval(shift(@insns));		# body_20_39
	 eval(shift(@insns));
	 eval(shift(@insns));
	 eval(shift(@insns));		# rol

	&vpsrld	(@X[2],@X[0],30);
	  &vmovdqa	(&QWP(0+16*(($Xi-1)&3),"esp"),@X[3]);	# X[]+K xfer to IALU
	 eval(shift(@insns));
	 eval(shift(@insns));
	 eval(shift(@insns));		# ror
	 eval(shift(@insns));

	&vpslld	(@X[0],@X[0],2);
	 eval(shift(@insns));		# body_20_39
	 eval(shift(@insns));
	 eval(shift(@insns));
	 eval(shift(@insns));		# rol
	 eval(shift(@insns));
	 eval(shift(@insns));
	 eval(shift(@insns));		# ror
	 eval(shift(@insns));

	&vpor	(@X[0],@X[0],@X[2]);	# "X[0]"<<<=2
	 eval(shift(@insns));		# body_20_39
	 eval(shift(@insns));
	  &vmovdqa	(@X[2],&QWP(64+16*(($Xi-6)%3),"esp")) if($Xi<19);	# restore X[] from backtrace buffer
	 eval(shift(@insns));
	 eval(shift(@insns));		# rol
	 eval(shift(@insns));
	 eval(shift(@insns));
	 eval(shift(@insns));		# ror
	 eval(shift(@insns));

	 foreach (@insns) { eval; }	# remaining instructions

  $Xi++;	push(@X,shift(@X));	# "rotate" X[]
}

sub Xuplast_avx_80()
{ use integer;
  my $body = shift;
  my @insns = (&$body,&$body,&$body,&$body);	# 32 instructions
  my ($a,$b,$c,$d,$e);

	 eval(shift(@insns));
	  &vpaddd	(@X[3],@X[3],@X[-1&7]);
	 eval(shift(@insns));
	 eval(shift(@insns));
	 eval(shift(@insns));
	 eval(shift(@insns));

	  &vmovdqa	(&QWP(0+16*(($Xi-1)&3),"esp"),@X[3]);	# X[]+K xfer IALU

	 foreach (@insns) { eval; }		# remaining instructions

	&mov	($inp=@T[1],&DWP(192+4,"esp"));
	&cmp	($inp,&DWP(192+8,"esp"));
	&je	(&label("done"));

	&vmovdqa(@X[3],&QWP(112+48,"esp"));	# K_00_19
	&vmovdqa(@X[2],&QWP(112+64,"esp"));	# pbswap mask
	&vmovdqu(@X[-4&7],&QWP(0,$inp));	# load input
	&vmovdqu(@X[-3&7],&QWP(16,$inp));
	&vmovdqu(@X[-2&7],&QWP(32,$inp));
	&vmovdqu(@X[-1&7],&QWP(48,$inp));
	&add	($inp,64);
	&vpshufb(@X[-4&7],@X[-4&7],@X[2]);		# byte swap
	&mov	(&DWP(192+4,"esp"),$inp);
	&vmovdqa(&QWP(112-16,"esp"),@X[3]);	# borrow last backtrace slot

  $Xi=0;
}

sub Xloop_avx()
{ use integer;
  my $body = shift;
  my @insns = (&$body,&$body,&$body,&$body);	# 32 instructions
  my ($a,$b,$c,$d,$e);

	 eval(shift(@insns));
	 eval(shift(@insns));
	&vpshufb	(@X[($Xi-3)&7],@X[($Xi-3)&7],@X[2]);
	 eval(shift(@insns));
	 eval(shift(@insns));
	&vpaddd	(@X[$Xi&7],@X[($Xi-4)&7],@X[3]);
	 eval(shift(@insns));
	 eval(shift(@insns));
	 eval(shift(@insns));
	 eval(shift(@insns));
	&vmovdqa	(&QWP(0+16*$Xi,"esp"),@X[$Xi&7]);	# X[]+K xfer to IALU
	 eval(shift(@insns));
	 eval(shift(@insns));

	foreach (@insns) { eval; }
  $Xi++;
}

sub Xtail_avx()
{ use integer;
  my $body = shift;
  my @insns = (&$body,&$body,&$body,&$body);	# 32 instructions
  my ($a,$b,$c,$d,$e);

	foreach (@insns) { eval; }
}

&set_label("loop",16);
	&Xupdate_avx_16_31(\&body_00_19);
	&Xupdate_avx_16_31(\&body_00_19);
	&Xupdate_avx_16_31(\&body_00_19);
	&Xupdate_avx_16_31(\&body_00_19);
	&Xupdate_avx_32_79(\&body_00_19);
	&Xupdate_avx_32_79(\&body_20_39);
	&Xupdate_avx_32_79(\&body_20_39);
	&Xupdate_avx_32_79(\&body_20_39);
	&Xupdate_avx_32_79(\&body_20_39);
	&Xupdate_avx_32_79(\&body_20_39);
	&Xupdate_avx_32_79(\&body_40_59);
	&Xupdate_avx_32_79(\&body_40_59);
	&Xupdate_avx_32_79(\&body_40_59);
	&Xupdate_avx_32_79(\&body_40_59);
	&Xupdate_avx_32_79(\&body_40_59);
	&Xupdate_avx_32_79(\&body_20_39);
	&Xuplast_avx_80(\&body_20_39);	# can jump to "done"

				$saved_j=$j; @saved_V=@V;

	&Xloop_avx(\&body_20_39);
	&Xloop_avx(\&body_20_39);
	&Xloop_avx(\&body_20_39);

	&mov	(@T[1],&DWP(192,"esp"));	# update context
	&add	($A,&DWP(0,@T[1]));
	&add	(@T[0],&DWP(4,@T[1]));		# $b
	&add	($C,&DWP(8,@T[1]));
	&mov	(&DWP(0,@T[1]),$A);
	&add	($D,&DWP(12,@T[1]));
	&mov	(&DWP(4,@T[1]),@T[0]);
	&add	($E,&DWP(16,@T[1]));
	&mov	(&DWP(8,@T[1]),$C);
	&mov	($B,@T[0]);
	&mov	(&DWP(12,@T[1]),$D);
	&mov	(&DWP(16,@T[1]),$E);

	&jmp	(&label("loop"));

&set_label("done",16);		$j=$saved_j; @V=@saved_V;

	&Xtail_avx(\&body_20_39);
	&Xtail_avx(\&body_20_39);
	&Xtail_avx(\&body_20_39);

	&vzeroall();

	&mov	(@T[1],&DWP(192,"esp"));	# update context
	&add	($A,&DWP(0,@T[1]));
	&mov	("esp",&DWP(192+12,"esp"));	# restore %esp
	&add	(@T[0],&DWP(4,@T[1]));		# $b
	&add	($C,&DWP(8,@T[1]));
	&mov	(&DWP(0,@T[1]),$A);
	&add	($D,&DWP(12,@T[1]));
	&mov	(&DWP(4,@T[1]),@T[0]);
	&add	($E,&DWP(16,@T[1]));
	&mov	(&DWP(8,@T[1]),$C);
	&mov	(&DWP(12,@T[1]),$D);
	&mov	(&DWP(16,@T[1]),$E);
&function_end("_sha1_block_data_order_avx");
}
&set_label("K_XX_XX",64);
&data_word(0x5a827999,0x5a827999,0x5a827999,0x5a827999);	# K_00_19
&data_word(0x6ed9eba1,0x6ed9eba1,0x6ed9eba1,0x6ed9eba1);	# K_20_39
&data_word(0x8f1bbcdc,0x8f1bbcdc,0x8f1bbcdc,0x8f1bbcdc);	# K_40_59
&data_word(0xca62c1d6,0xca62c1d6,0xca62c1d6,0xca62c1d6);	# K_60_79
&data_word(0x00010203,0x04050607,0x08090a0b,0x0c0d0e0f);	# pbswap mask
}
&asciz("SHA1 block transform for x86, CRYPTOGAMS by <appro\@openssl.org>");

&asm_finish();