summaryrefslogtreecommitdiff
path: root/drivers/builtin_openssl2/crypto/modes/asm/ghash-x86.pl
blob: 2426cd0c8a01d17a7d01886826d88bbf75229dae (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
#!/usr/bin/env perl
#
# ====================================================================
# Written by Andy Polyakov <appro@openssl.org> for the OpenSSL
# project. The module is, however, dual licensed under OpenSSL and
# CRYPTOGAMS licenses depending on where you obtain it. For further
# details see http://www.openssl.org/~appro/cryptogams/.
# ====================================================================
#
# March, May, June 2010
#
# The module implements "4-bit" GCM GHASH function and underlying
# single multiplication operation in GF(2^128). "4-bit" means that it
# uses 256 bytes per-key table [+64/128 bytes fixed table]. It has two
# code paths: vanilla x86 and vanilla MMX. Former will be executed on
# 486 and Pentium, latter on all others. MMX GHASH features so called
# "528B" variant of "4-bit" method utilizing additional 256+16 bytes
# of per-key storage [+512 bytes shared table]. Performance results
# are for streamed GHASH subroutine and are expressed in cycles per
# processed byte, less is better:
#
#		gcc 2.95.3(*)	MMX assembler	x86 assembler
#
# Pentium	105/111(**)	-		50
# PIII		68 /75		12.2		24
# P4		125/125		17.8		84(***)
# Opteron	66 /70		10.1		30
# Core2		54 /67		8.4		18
#
# (*)	gcc 3.4.x was observed to generate few percent slower code,
#	which is one of reasons why 2.95.3 results were chosen,
#	another reason is lack of 3.4.x results for older CPUs;
#	comparison with MMX results is not completely fair, because C
#	results are for vanilla "256B" implementation, while
#	assembler results are for "528B";-)
# (**)	second number is result for code compiled with -fPIC flag,
#	which is actually more relevant, because assembler code is
#	position-independent;
# (***)	see comment in non-MMX routine for further details;
#
# To summarize, it's >2-5 times faster than gcc-generated code. To
# anchor it to something else SHA1 assembler processes one byte in
# 11-13 cycles on contemporary x86 cores. As for choice of MMX in
# particular, see comment at the end of the file...

# May 2010
#
# Add PCLMULQDQ version performing at 2.10 cycles per processed byte.
# The question is how close is it to theoretical limit? The pclmulqdq
# instruction latency appears to be 14 cycles and there can't be more
# than 2 of them executing at any given time. This means that single
# Karatsuba multiplication would take 28 cycles *plus* few cycles for
# pre- and post-processing. Then multiplication has to be followed by
# modulo-reduction. Given that aggregated reduction method [see
# "Carry-less Multiplication and Its Usage for Computing the GCM Mode"
# white paper by Intel] allows you to perform reduction only once in
# a while we can assume that asymptotic performance can be estimated
# as (28+Tmod/Naggr)/16, where Tmod is time to perform reduction
# and Naggr is the aggregation factor.
#
# Before we proceed to this implementation let's have closer look at
# the best-performing code suggested by Intel in their white paper.
# By tracing inter-register dependencies Tmod is estimated as ~19
# cycles and Naggr chosen by Intel is 4, resulting in 2.05 cycles per
# processed byte. As implied, this is quite optimistic estimate,
# because it does not account for Karatsuba pre- and post-processing,
# which for a single multiplication is ~5 cycles. Unfortunately Intel
# does not provide performance data for GHASH alone. But benchmarking
# AES_GCM_encrypt ripped out of Fig. 15 of the white paper with aadt
# alone resulted in 2.46 cycles per byte of out 16KB buffer. Note that
# the result accounts even for pre-computing of degrees of the hash
# key H, but its portion is negligible at 16KB buffer size.
#
# Moving on to the implementation in question. Tmod is estimated as
# ~13 cycles and Naggr is 2, giving asymptotic performance of ...
# 2.16. How is it possible that measured performance is better than
# optimistic theoretical estimate? There is one thing Intel failed
# to recognize. By serializing GHASH with CTR in same subroutine
# former's performance is really limited to above (Tmul + Tmod/Naggr)
# equation. But if GHASH procedure is detached, the modulo-reduction
# can be interleaved with Naggr-1 multiplications at instruction level
# and under ideal conditions even disappear from the equation. So that
# optimistic theoretical estimate for this implementation is ...
# 28/16=1.75, and not 2.16. Well, it's probably way too optimistic,
# at least for such small Naggr. I'd argue that (28+Tproc/Naggr),
# where Tproc is time required for Karatsuba pre- and post-processing,
# is more realistic estimate. In this case it gives ... 1.91 cycles.
# Or in other words, depending on how well we can interleave reduction
# and one of the two multiplications the performance should be betwen
# 1.91 and 2.16. As already mentioned, this implementation processes
# one byte out of 8KB buffer in 2.10 cycles, while x86_64 counterpart
# - in 2.02. x86_64 performance is better, because larger register
# bank allows to interleave reduction and multiplication better.
#
# Does it make sense to increase Naggr? To start with it's virtually
# impossible in 32-bit mode, because of limited register bank
# capacity. Otherwise improvement has to be weighed agiainst slower
# setup, as well as code size and complexity increase. As even
# optimistic estimate doesn't promise 30% performance improvement,
# there are currently no plans to increase Naggr.
#
# Special thanks to David Woodhouse <dwmw2@infradead.org> for
# providing access to a Westmere-based system on behalf of Intel
# Open Source Technology Centre.

# January 2010
#
# Tweaked to optimize transitions between integer and FP operations
# on same XMM register, PCLMULQDQ subroutine was measured to process
# one byte in 2.07 cycles on Sandy Bridge, and in 2.12 - on Westmere.
# The minor regression on Westmere is outweighed by ~15% improvement
# on Sandy Bridge. Strangely enough attempt to modify 64-bit code in
# similar manner resulted in almost 20% degradation on Sandy Bridge,
# where original 64-bit code processes one byte in 1.95 cycles.

$0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1;
push(@INC,"${dir}","${dir}../../perlasm");
require "x86asm.pl";

&asm_init($ARGV[0],"ghash-x86.pl",$x86only = $ARGV[$#ARGV] eq "386");

$sse2=0;
for (@ARGV) { $sse2=1 if (/-DOPENSSL_IA32_SSE2/); }

($Zhh,$Zhl,$Zlh,$Zll) = ("ebp","edx","ecx","ebx");
$inp  = "edi";
$Htbl = "esi";

$unroll = 0;	# Affects x86 loop. Folded loop performs ~7% worse
		# than unrolled, which has to be weighted against
		# 2.5x x86-specific code size reduction.

sub x86_loop {
    my $off = shift;
    my $rem = "eax";

	&mov	($Zhh,&DWP(4,$Htbl,$Zll));
	&mov	($Zhl,&DWP(0,$Htbl,$Zll));
	&mov	($Zlh,&DWP(12,$Htbl,$Zll));
	&mov	($Zll,&DWP(8,$Htbl,$Zll));
	&xor	($rem,$rem);	# avoid partial register stalls on PIII

	# shrd practically kills P4, 2.5x deterioration, but P4 has
	# MMX code-path to execute. shrd runs tad faster [than twice
	# the shifts, move's and or's] on pre-MMX Pentium (as well as
	# PIII and Core2), *but* minimizes code size, spares register
	# and thus allows to fold the loop...
	if (!$unroll) {
	my $cnt = $inp;
	&mov	($cnt,15);
	&jmp	(&label("x86_loop"));
	&set_label("x86_loop",16);
	    for($i=1;$i<=2;$i++) {
		&mov	(&LB($rem),&LB($Zll));
		&shrd	($Zll,$Zlh,4);
		&and	(&LB($rem),0xf);
		&shrd	($Zlh,$Zhl,4);
		&shrd	($Zhl,$Zhh,4);
		&shr	($Zhh,4);
		&xor	($Zhh,&DWP($off+16,"esp",$rem,4));

		&mov	(&LB($rem),&BP($off,"esp",$cnt));
		if ($i&1) {
			&and	(&LB($rem),0xf0);
		} else {
			&shl	(&LB($rem),4);
		}

		&xor	($Zll,&DWP(8,$Htbl,$rem));
		&xor	($Zlh,&DWP(12,$Htbl,$rem));
		&xor	($Zhl,&DWP(0,$Htbl,$rem));
		&xor	($Zhh,&DWP(4,$Htbl,$rem));

		if ($i&1) {
			&dec	($cnt);
			&js	(&label("x86_break"));
		} else {
			&jmp	(&label("x86_loop"));
		}
	    }
	&set_label("x86_break",16);
	} else {
	    for($i=1;$i<32;$i++) {
		&comment($i);
		&mov	(&LB($rem),&LB($Zll));
		&shrd	($Zll,$Zlh,4);
		&and	(&LB($rem),0xf);
		&shrd	($Zlh,$Zhl,4);
		&shrd	($Zhl,$Zhh,4);
		&shr	($Zhh,4);
		&xor	($Zhh,&DWP($off+16,"esp",$rem,4));

		if ($i&1) {
			&mov	(&LB($rem),&BP($off+15-($i>>1),"esp"));
			&and	(&LB($rem),0xf0);
		} else {
			&mov	(&LB($rem),&BP($off+15-($i>>1),"esp"));
			&shl	(&LB($rem),4);
		}

		&xor	($Zll,&DWP(8,$Htbl,$rem));
		&xor	($Zlh,&DWP(12,$Htbl,$rem));
		&xor	($Zhl,&DWP(0,$Htbl,$rem));
		&xor	($Zhh,&DWP(4,$Htbl,$rem));
	    }
	}
	&bswap	($Zll);
	&bswap	($Zlh);
	&bswap	($Zhl);
	if (!$x86only) {
		&bswap	($Zhh);
	} else {
		&mov	("eax",$Zhh);
		&bswap	("eax");
		&mov	($Zhh,"eax");
	}
}

if ($unroll) {
    &function_begin_B("_x86_gmult_4bit_inner");
	&x86_loop(4);
	&ret	();
    &function_end_B("_x86_gmult_4bit_inner");
}

sub deposit_rem_4bit {
    my $bias = shift;

	&mov	(&DWP($bias+0, "esp"),0x0000<<16);
	&mov	(&DWP($bias+4, "esp"),0x1C20<<16);
	&mov	(&DWP($bias+8, "esp"),0x3840<<16);
	&mov	(&DWP($bias+12,"esp"),0x2460<<16);
	&mov	(&DWP($bias+16,"esp"),0x7080<<16);
	&mov	(&DWP($bias+20,"esp"),0x6CA0<<16);
	&mov	(&DWP($bias+24,"esp"),0x48C0<<16);
	&mov	(&DWP($bias+28,"esp"),0x54E0<<16);
	&mov	(&DWP($bias+32,"esp"),0xE100<<16);
	&mov	(&DWP($bias+36,"esp"),0xFD20<<16);
	&mov	(&DWP($bias+40,"esp"),0xD940<<16);
	&mov	(&DWP($bias+44,"esp"),0xC560<<16);
	&mov	(&DWP($bias+48,"esp"),0x9180<<16);
	&mov	(&DWP($bias+52,"esp"),0x8DA0<<16);
	&mov	(&DWP($bias+56,"esp"),0xA9C0<<16);
	&mov	(&DWP($bias+60,"esp"),0xB5E0<<16);
}

$suffix = $x86only ? "" : "_x86";

&function_begin("gcm_gmult_4bit".$suffix);
	&stack_push(16+4+1);			# +1 for stack alignment
	&mov	($inp,&wparam(0));		# load Xi
	&mov	($Htbl,&wparam(1));		# load Htable

	&mov	($Zhh,&DWP(0,$inp));		# load Xi[16]
	&mov	($Zhl,&DWP(4,$inp));
	&mov	($Zlh,&DWP(8,$inp));
	&mov	($Zll,&DWP(12,$inp));

	&deposit_rem_4bit(16);

	&mov	(&DWP(0,"esp"),$Zhh);		# copy Xi[16] on stack
	&mov	(&DWP(4,"esp"),$Zhl);
	&mov	(&DWP(8,"esp"),$Zlh);
	&mov	(&DWP(12,"esp"),$Zll);
	&shr	($Zll,20);
	&and	($Zll,0xf0);

	if ($unroll) {
		&call	("_x86_gmult_4bit_inner");
	} else {
		&x86_loop(0);
		&mov	($inp,&wparam(0));
	}

	&mov	(&DWP(12,$inp),$Zll);
	&mov	(&DWP(8,$inp),$Zlh);
	&mov	(&DWP(4,$inp),$Zhl);
	&mov	(&DWP(0,$inp),$Zhh);
	&stack_pop(16+4+1);
&function_end("gcm_gmult_4bit".$suffix);

&function_begin("gcm_ghash_4bit".$suffix);
	&stack_push(16+4+1);			# +1 for 64-bit alignment
	&mov	($Zll,&wparam(0));		# load Xi
	&mov	($Htbl,&wparam(1));		# load Htable
	&mov	($inp,&wparam(2));		# load in
	&mov	("ecx",&wparam(3));		# load len
	&add	("ecx",$inp);
	&mov	(&wparam(3),"ecx");

	&mov	($Zhh,&DWP(0,$Zll));		# load Xi[16]
	&mov	($Zhl,&DWP(4,$Zll));
	&mov	($Zlh,&DWP(8,$Zll));
	&mov	($Zll,&DWP(12,$Zll));

	&deposit_rem_4bit(16);

    &set_label("x86_outer_loop",16);
	&xor	($Zll,&DWP(12,$inp));		# xor with input
	&xor	($Zlh,&DWP(8,$inp));
	&xor	($Zhl,&DWP(4,$inp));
	&xor	($Zhh,&DWP(0,$inp));
	&mov	(&DWP(12,"esp"),$Zll);		# dump it on stack
	&mov	(&DWP(8,"esp"),$Zlh);
	&mov	(&DWP(4,"esp"),$Zhl);
	&mov	(&DWP(0,"esp"),$Zhh);

	&shr	($Zll,20);
	&and	($Zll,0xf0);

	if ($unroll) {
		&call	("_x86_gmult_4bit_inner");
	} else {
		&x86_loop(0);
		&mov	($inp,&wparam(2));
	}
	&lea	($inp,&DWP(16,$inp));
	&cmp	($inp,&wparam(3));
	&mov	(&wparam(2),$inp)	if (!$unroll);
	&jb	(&label("x86_outer_loop"));

	&mov	($inp,&wparam(0));	# load Xi
	&mov	(&DWP(12,$inp),$Zll);
	&mov	(&DWP(8,$inp),$Zlh);
	&mov	(&DWP(4,$inp),$Zhl);
	&mov	(&DWP(0,$inp),$Zhh);
	&stack_pop(16+4+1);
&function_end("gcm_ghash_4bit".$suffix);

if (!$x86only) {{{

&static_label("rem_4bit");

if (!$sse2) {{	# pure-MMX "May" version...

$S=12;		# shift factor for rem_4bit

&function_begin_B("_mmx_gmult_4bit_inner");
# MMX version performs 3.5 times better on P4 (see comment in non-MMX
# routine for further details), 100% better on Opteron, ~70% better
# on Core2 and PIII... In other words effort is considered to be well
# spent... Since initial release the loop was unrolled in order to
# "liberate" register previously used as loop counter. Instead it's
# used to optimize critical path in 'Z.hi ^= rem_4bit[Z.lo&0xf]'.
# The path involves move of Z.lo from MMX to integer register,
# effective address calculation and finally merge of value to Z.hi.
# Reference to rem_4bit is scheduled so late that I had to >>4
# rem_4bit elements. This resulted in 20-45% procent improvement
# on contemporary µ-archs.
{
    my $cnt;
    my $rem_4bit = "eax";
    my @rem = ($Zhh,$Zll);
    my $nhi = $Zhl;
    my $nlo = $Zlh;

    my ($Zlo,$Zhi) = ("mm0","mm1");
    my $tmp = "mm2";

	&xor	($nlo,$nlo);	# avoid partial register stalls on PIII
	&mov	($nhi,$Zll);
	&mov	(&LB($nlo),&LB($nhi));
	&shl	(&LB($nlo),4);
	&and	($nhi,0xf0);
	&movq	($Zlo,&QWP(8,$Htbl,$nlo));
	&movq	($Zhi,&QWP(0,$Htbl,$nlo));
	&movd	($rem[0],$Zlo);

	for ($cnt=28;$cnt>=-2;$cnt--) {
	    my $odd = $cnt&1;
	    my $nix = $odd ? $nlo : $nhi;

		&shl	(&LB($nlo),4)			if ($odd);
		&psrlq	($Zlo,4);
		&movq	($tmp,$Zhi);
		&psrlq	($Zhi,4);
		&pxor	($Zlo,&QWP(8,$Htbl,$nix));
		&mov	(&LB($nlo),&BP($cnt/2,$inp))	if (!$odd && $cnt>=0);
		&psllq	($tmp,60);
		&and	($nhi,0xf0)			if ($odd);
		&pxor	($Zhi,&QWP(0,$rem_4bit,$rem[1],8)) if ($cnt<28);
		&and	($rem[0],0xf);
		&pxor	($Zhi,&QWP(0,$Htbl,$nix));
		&mov	($nhi,$nlo)			if (!$odd && $cnt>=0);
		&movd	($rem[1],$Zlo);
		&pxor	($Zlo,$tmp);

		push	(@rem,shift(@rem));		# "rotate" registers
	}

	&mov	($inp,&DWP(4,$rem_4bit,$rem[1],8));	# last rem_4bit[rem]

	&psrlq	($Zlo,32);	# lower part of Zlo is already there
	&movd	($Zhl,$Zhi);
	&psrlq	($Zhi,32);
	&movd	($Zlh,$Zlo);
	&movd	($Zhh,$Zhi);
	&shl	($inp,4);	# compensate for rem_4bit[i] being >>4

	&bswap	($Zll);
	&bswap	($Zhl);
	&bswap	($Zlh);
	&xor	($Zhh,$inp);
	&bswap	($Zhh);

	&ret	();
}
&function_end_B("_mmx_gmult_4bit_inner");

&function_begin("gcm_gmult_4bit_mmx");
	&mov	($inp,&wparam(0));	# load Xi
	&mov	($Htbl,&wparam(1));	# load Htable

	&call	(&label("pic_point"));
	&set_label("pic_point");
	&blindpop("eax");
	&lea	("eax",&DWP(&label("rem_4bit")."-".&label("pic_point"),"eax"));

	&movz	($Zll,&BP(15,$inp));

	&call	("_mmx_gmult_4bit_inner");

	&mov	($inp,&wparam(0));	# load Xi
	&emms	();
	&mov	(&DWP(12,$inp),$Zll);
	&mov	(&DWP(4,$inp),$Zhl);
	&mov	(&DWP(8,$inp),$Zlh);
	&mov	(&DWP(0,$inp),$Zhh);
&function_end("gcm_gmult_4bit_mmx");

# Streamed version performs 20% better on P4, 7% on Opteron,
# 10% on Core2 and PIII...
&function_begin("gcm_ghash_4bit_mmx");
	&mov	($Zhh,&wparam(0));	# load Xi
	&mov	($Htbl,&wparam(1));	# load Htable
	&mov	($inp,&wparam(2));	# load in
	&mov	($Zlh,&wparam(3));	# load len

	&call	(&label("pic_point"));
	&set_label("pic_point");
	&blindpop("eax");
	&lea	("eax",&DWP(&label("rem_4bit")."-".&label("pic_point"),"eax"));

	&add	($Zlh,$inp);
	&mov	(&wparam(3),$Zlh);	# len to point at the end of input
	&stack_push(4+1);		# +1 for stack alignment

	&mov	($Zll,&DWP(12,$Zhh));	# load Xi[16]
	&mov	($Zhl,&DWP(4,$Zhh));
	&mov	($Zlh,&DWP(8,$Zhh));
	&mov	($Zhh,&DWP(0,$Zhh));
	&jmp	(&label("mmx_outer_loop"));

    &set_label("mmx_outer_loop",16);
	&xor	($Zll,&DWP(12,$inp));
	&xor	($Zhl,&DWP(4,$inp));
	&xor	($Zlh,&DWP(8,$inp));
	&xor	($Zhh,&DWP(0,$inp));
	&mov	(&wparam(2),$inp);
	&mov	(&DWP(12,"esp"),$Zll);
	&mov	(&DWP(4,"esp"),$Zhl);
	&mov	(&DWP(8,"esp"),$Zlh);
	&mov	(&DWP(0,"esp"),$Zhh);

	&mov	($inp,"esp");
	&shr	($Zll,24);

	&call	("_mmx_gmult_4bit_inner");

	&mov	($inp,&wparam(2));
	&lea	($inp,&DWP(16,$inp));
	&cmp	($inp,&wparam(3));
	&jb	(&label("mmx_outer_loop"));

	&mov	($inp,&wparam(0));	# load Xi
	&emms	();
	&mov	(&DWP(12,$inp),$Zll);
	&mov	(&DWP(4,$inp),$Zhl);
	&mov	(&DWP(8,$inp),$Zlh);
	&mov	(&DWP(0,$inp),$Zhh);

	&stack_pop(4+1);
&function_end("gcm_ghash_4bit_mmx");

}} else {{	# "June" MMX version...
		# ... has slower "April" gcm_gmult_4bit_mmx with folded
		# loop. This is done to conserve code size...
$S=16;		# shift factor for rem_4bit

sub mmx_loop() {
# MMX version performs 2.8 times better on P4 (see comment in non-MMX
# routine for further details), 40% better on Opteron and Core2, 50%
# better on PIII... In other words effort is considered to be well
# spent...
    my $inp = shift;
    my $rem_4bit = shift;
    my $cnt = $Zhh;
    my $nhi = $Zhl;
    my $nlo = $Zlh;
    my $rem = $Zll;

    my ($Zlo,$Zhi) = ("mm0","mm1");
    my $tmp = "mm2";

	&xor	($nlo,$nlo);	# avoid partial register stalls on PIII
	&mov	($nhi,$Zll);
	&mov	(&LB($nlo),&LB($nhi));
	&mov	($cnt,14);
	&shl	(&LB($nlo),4);
	&and	($nhi,0xf0);
	&movq	($Zlo,&QWP(8,$Htbl,$nlo));
	&movq	($Zhi,&QWP(0,$Htbl,$nlo));
	&movd	($rem,$Zlo);
	&jmp	(&label("mmx_loop"));

    &set_label("mmx_loop",16);
	&psrlq	($Zlo,4);
	&and	($rem,0xf);
	&movq	($tmp,$Zhi);
	&psrlq	($Zhi,4);
	&pxor	($Zlo,&QWP(8,$Htbl,$nhi));
	&mov	(&LB($nlo),&BP(0,$inp,$cnt));
	&psllq	($tmp,60);
	&pxor	($Zhi,&QWP(0,$rem_4bit,$rem,8));
	&dec	($cnt);
	&movd	($rem,$Zlo);
	&pxor	($Zhi,&QWP(0,$Htbl,$nhi));
	&mov	($nhi,$nlo);
	&pxor	($Zlo,$tmp);
	&js	(&label("mmx_break"));

	&shl	(&LB($nlo),4);
	&and	($rem,0xf);
	&psrlq	($Zlo,4);
	&and	($nhi,0xf0);
	&movq	($tmp,$Zhi);
	&psrlq	($Zhi,4);
	&pxor	($Zlo,&QWP(8,$Htbl,$nlo));
	&psllq	($tmp,60);
	&pxor	($Zhi,&QWP(0,$rem_4bit,$rem,8));
	&movd	($rem,$Zlo);
	&pxor	($Zhi,&QWP(0,$Htbl,$nlo));
	&pxor	($Zlo,$tmp);
	&jmp	(&label("mmx_loop"));

    &set_label("mmx_break",16);
	&shl	(&LB($nlo),4);
	&and	($rem,0xf);
	&psrlq	($Zlo,4);
	&and	($nhi,0xf0);
	&movq	($tmp,$Zhi);
	&psrlq	($Zhi,4);
	&pxor	($Zlo,&QWP(8,$Htbl,$nlo));
	&psllq	($tmp,60);
	&pxor	($Zhi,&QWP(0,$rem_4bit,$rem,8));
	&movd	($rem,$Zlo);
	&pxor	($Zhi,&QWP(0,$Htbl,$nlo));
	&pxor	($Zlo,$tmp);

	&psrlq	($Zlo,4);
	&and	($rem,0xf);
	&movq	($tmp,$Zhi);
	&psrlq	($Zhi,4);
	&pxor	($Zlo,&QWP(8,$Htbl,$nhi));
	&psllq	($tmp,60);
	&pxor	($Zhi,&QWP(0,$rem_4bit,$rem,8));
	&movd	($rem,$Zlo);
	&pxor	($Zhi,&QWP(0,$Htbl,$nhi));
	&pxor	($Zlo,$tmp);

	&psrlq	($Zlo,32);	# lower part of Zlo is already there
	&movd	($Zhl,$Zhi);
	&psrlq	($Zhi,32);
	&movd	($Zlh,$Zlo);
	&movd	($Zhh,$Zhi);

	&bswap	($Zll);
	&bswap	($Zhl);
	&bswap	($Zlh);
	&bswap	($Zhh);
}

&function_begin("gcm_gmult_4bit_mmx");
	&mov	($inp,&wparam(0));	# load Xi
	&mov	($Htbl,&wparam(1));	# load Htable

	&call	(&label("pic_point"));
	&set_label("pic_point");
	&blindpop("eax");
	&lea	("eax",&DWP(&label("rem_4bit")."-".&label("pic_point"),"eax"));

	&movz	($Zll,&BP(15,$inp));

	&mmx_loop($inp,"eax");

	&emms	();
	&mov	(&DWP(12,$inp),$Zll);
	&mov	(&DWP(4,$inp),$Zhl);
	&mov	(&DWP(8,$inp),$Zlh);
	&mov	(&DWP(0,$inp),$Zhh);
&function_end("gcm_gmult_4bit_mmx");

######################################################################
# Below subroutine is "528B" variant of "4-bit" GCM GHASH function
# (see gcm128.c for details). It provides further 20-40% performance
# improvement over above mentioned "May" version.

&static_label("rem_8bit");

&function_begin("gcm_ghash_4bit_mmx");
{ my ($Zlo,$Zhi) = ("mm7","mm6");
  my $rem_8bit = "esi";
  my $Htbl = "ebx";

    # parameter block
    &mov	("eax",&wparam(0));		# Xi
    &mov	("ebx",&wparam(1));		# Htable
    &mov	("ecx",&wparam(2));		# inp
    &mov	("edx",&wparam(3));		# len
    &mov	("ebp","esp");			# original %esp
    &call	(&label("pic_point"));
    &set_label	("pic_point");
    &blindpop	($rem_8bit);
    &lea	($rem_8bit,&DWP(&label("rem_8bit")."-".&label("pic_point"),$rem_8bit));

    &sub	("esp",512+16+16);		# allocate stack frame...
    &and	("esp",-64);			# ...and align it
    &sub	("esp",16);			# place for (u8)(H[]<<4)

    &add	("edx","ecx");			# pointer to the end of input
    &mov	(&DWP(528+16+0,"esp"),"eax");	# save Xi
    &mov	(&DWP(528+16+8,"esp"),"edx");	# save inp+len
    &mov	(&DWP(528+16+12,"esp"),"ebp");	# save original %esp

    { my @lo  = ("mm0","mm1","mm2");
      my @hi  = ("mm3","mm4","mm5");
      my @tmp = ("mm6","mm7");
      my ($off1,$off2,$i) = (0,0,);

      &add	($Htbl,128);			# optimize for size
      &lea	("edi",&DWP(16+128,"esp"));
      &lea	("ebp",&DWP(16+256+128,"esp"));

      # decompose Htable (low and high parts are kept separately),
      # generate Htable[]>>4, (u8)(Htable[]<<4), save to stack...
      for ($i=0;$i<18;$i++) {

	&mov	("edx",&DWP(16*$i+8-128,$Htbl))		if ($i<16);
	&movq	($lo[0],&QWP(16*$i+8-128,$Htbl))	if ($i<16);
	&psllq	($tmp[1],60)				if ($i>1);
	&movq	($hi[0],&QWP(16*$i+0-128,$Htbl))	if ($i<16);
	&por	($lo[2],$tmp[1])			if ($i>1);
	&movq	(&QWP($off1-128,"edi"),$lo[1])		if ($i>0 && $i<17);
	&psrlq	($lo[1],4)				if ($i>0 && $i<17);
	&movq	(&QWP($off1,"edi"),$hi[1])		if ($i>0 && $i<17);
	&movq	($tmp[0],$hi[1])			if ($i>0 && $i<17);
	&movq	(&QWP($off2-128,"ebp"),$lo[2])		if ($i>1);
	&psrlq	($hi[1],4)				if ($i>0 && $i<17);
	&movq	(&QWP($off2,"ebp"),$hi[2])		if ($i>1);
	&shl	("edx",4)				if ($i<16);
	&mov	(&BP($i,"esp"),&LB("edx"))		if ($i<16);

	unshift	(@lo,pop(@lo));			# "rotate" registers
	unshift	(@hi,pop(@hi));
	unshift	(@tmp,pop(@tmp));
	$off1 += 8	if ($i>0);
	$off2 += 8	if ($i>1);
      }
    }

    &movq	($Zhi,&QWP(0,"eax"));
    &mov	("ebx",&DWP(8,"eax"));
    &mov	("edx",&DWP(12,"eax"));		# load Xi

&set_label("outer",16);
  { my $nlo = "eax";
    my $dat = "edx";
    my @nhi = ("edi","ebp");
    my @rem = ("ebx","ecx");
    my @red = ("mm0","mm1","mm2");
    my $tmp = "mm3";

    &xor	($dat,&DWP(12,"ecx"));		# merge input data
    &xor	("ebx",&DWP(8,"ecx"));
    &pxor	($Zhi,&QWP(0,"ecx"));
    &lea	("ecx",&DWP(16,"ecx"));		# inp+=16
    #&mov	(&DWP(528+12,"esp"),$dat);	# save inp^Xi
    &mov	(&DWP(528+8,"esp"),"ebx");
    &movq	(&QWP(528+0,"esp"),$Zhi);
    &mov	(&DWP(528+16+4,"esp"),"ecx");	# save inp

    &xor	($nlo,$nlo);
    &rol	($dat,8);
    &mov	(&LB($nlo),&LB($dat));
    &mov	($nhi[1],$nlo);
    &and	(&LB($nlo),0x0f);
    &shr	($nhi[1],4);
    &pxor	($red[0],$red[0]);
    &rol	($dat,8);			# next byte
    &pxor	($red[1],$red[1]);
    &pxor	($red[2],$red[2]);

    # Just like in "May" verson modulo-schedule for critical path in
    # 'Z.hi ^= rem_8bit[Z.lo&0xff^((u8)H[nhi]<<4)]<<48'. Final 'pxor'
    # is scheduled so late that rem_8bit[] has to be shifted *right*
    # by 16, which is why last argument to pinsrw is 2, which
    # corresponds to <<32=<<48>>16...
    for ($j=11,$i=0;$i<15;$i++) {

      if ($i>0) {
	&pxor	($Zlo,&QWP(16,"esp",$nlo,8));		# Z^=H[nlo]
	&rol	($dat,8);				# next byte
	&pxor	($Zhi,&QWP(16+128,"esp",$nlo,8));

	&pxor	($Zlo,$tmp);
	&pxor	($Zhi,&QWP(16+256+128,"esp",$nhi[0],8));
	&xor	(&LB($rem[1]),&BP(0,"esp",$nhi[0]));	# rem^(H[nhi]<<4)
      } else {
	&movq	($Zlo,&QWP(16,"esp",$nlo,8));
	&movq	($Zhi,&QWP(16+128,"esp",$nlo,8));
      }

	&mov	(&LB($nlo),&LB($dat));
	&mov	($dat,&DWP(528+$j,"esp"))		if (--$j%4==0);

	&movd	($rem[0],$Zlo);
	&movz	($rem[1],&LB($rem[1]))			if ($i>0);
	&psrlq	($Zlo,8);				# Z>>=8

	&movq	($tmp,$Zhi);
	&mov	($nhi[0],$nlo);
	&psrlq	($Zhi,8);

	&pxor	($Zlo,&QWP(16+256+0,"esp",$nhi[1],8));	# Z^=H[nhi]>>4
	&and	(&LB($nlo),0x0f);
	&psllq	($tmp,56);

	&pxor	($Zhi,$red[1])				if ($i>1);
	&shr	($nhi[0],4);
	&pinsrw	($red[0],&WP(0,$rem_8bit,$rem[1],2),2)	if ($i>0);

	unshift	(@red,pop(@red));			# "rotate" registers
	unshift	(@rem,pop(@rem));
	unshift	(@nhi,pop(@nhi));
    }

    &pxor	($Zlo,&QWP(16,"esp",$nlo,8));		# Z^=H[nlo]
    &pxor	($Zhi,&QWP(16+128,"esp",$nlo,8));
    &xor	(&LB($rem[1]),&BP(0,"esp",$nhi[0]));	# rem^(H[nhi]<<4)

    &pxor	($Zlo,$tmp);
    &pxor	($Zhi,&QWP(16+256+128,"esp",$nhi[0],8));
    &movz	($rem[1],&LB($rem[1]));

    &pxor	($red[2],$red[2]);			# clear 2nd word
    &psllq	($red[1],4);

    &movd	($rem[0],$Zlo);
    &psrlq	($Zlo,4);				# Z>>=4

    &movq	($tmp,$Zhi);
    &psrlq	($Zhi,4);
    &shl	($rem[0],4);				# rem<<4

    &pxor	($Zlo,&QWP(16,"esp",$nhi[1],8));	# Z^=H[nhi]
    &psllq	($tmp,60);
    &movz	($rem[0],&LB($rem[0]));

    &pxor	($Zlo,$tmp);
    &pxor	($Zhi,&QWP(16+128,"esp",$nhi[1],8));

    &pinsrw	($red[0],&WP(0,$rem_8bit,$rem[1],2),2);
    &pxor	($Zhi,$red[1]);

    &movd	($dat,$Zlo);
    &pinsrw	($red[2],&WP(0,$rem_8bit,$rem[0],2),3);	# last is <<48

    &psllq	($red[0],12);				# correct by <<16>>4
    &pxor	($Zhi,$red[0]);
    &psrlq	($Zlo,32);
    &pxor	($Zhi,$red[2]);

    &mov	("ecx",&DWP(528+16+4,"esp"));	# restore inp
    &movd	("ebx",$Zlo);
    &movq	($tmp,$Zhi);			# 01234567
    &psllw	($Zhi,8);			# 1.3.5.7.
    &psrlw	($tmp,8);			# .0.2.4.6
    &por	($Zhi,$tmp);			# 10325476
    &bswap	($dat);
    &pshufw	($Zhi,$Zhi,0b00011011);		# 76543210
    &bswap	("ebx");
    
    &cmp	("ecx",&DWP(528+16+8,"esp"));	# are we done?
    &jne	(&label("outer"));
  }

    &mov	("eax",&DWP(528+16+0,"esp"));	# restore Xi
    &mov	(&DWP(12,"eax"),"edx");
    &mov	(&DWP(8,"eax"),"ebx");
    &movq	(&QWP(0,"eax"),$Zhi);

    &mov	("esp",&DWP(528+16+12,"esp"));	# restore original %esp
    &emms	();
}
&function_end("gcm_ghash_4bit_mmx");
}}

if ($sse2) {{
######################################################################
# PCLMULQDQ version.

$Xip="eax";
$Htbl="edx";
$const="ecx";
$inp="esi";
$len="ebx";

($Xi,$Xhi)=("xmm0","xmm1");	$Hkey="xmm2";
($T1,$T2,$T3)=("xmm3","xmm4","xmm5");
($Xn,$Xhn)=("xmm6","xmm7");

&static_label("bswap");

sub clmul64x64_T2 {	# minimal "register" pressure
my ($Xhi,$Xi,$Hkey)=@_;

	&movdqa		($Xhi,$Xi);		#
	&pshufd		($T1,$Xi,0b01001110);
	&pshufd		($T2,$Hkey,0b01001110);
	&pxor		($T1,$Xi);		#
	&pxor		($T2,$Hkey);

	&pclmulqdq	($Xi,$Hkey,0x00);	#######
	&pclmulqdq	($Xhi,$Hkey,0x11);	#######
	&pclmulqdq	($T1,$T2,0x00);		#######
	&xorps		($T1,$Xi);		#
	&xorps		($T1,$Xhi);		#

	&movdqa		($T2,$T1);		#
	&psrldq		($T1,8);
	&pslldq		($T2,8);		#
	&pxor		($Xhi,$T1);
	&pxor		($Xi,$T2);		#
}

sub clmul64x64_T3 {
# Even though this subroutine offers visually better ILP, it
# was empirically found to be a tad slower than above version.
# At least in gcm_ghash_clmul context. But it's just as well,
# because loop modulo-scheduling is possible only thanks to
# minimized "register" pressure...
my ($Xhi,$Xi,$Hkey)=@_;

	&movdqa		($T1,$Xi);		#
	&movdqa		($Xhi,$Xi);
	&pclmulqdq	($Xi,$Hkey,0x00);	#######
	&pclmulqdq	($Xhi,$Hkey,0x11);	#######
	&pshufd		($T2,$T1,0b01001110);	#
	&pshufd		($T3,$Hkey,0b01001110);
	&pxor		($T2,$T1);		#
	&pxor		($T3,$Hkey);
	&pclmulqdq	($T2,$T3,0x00);		#######
	&pxor		($T2,$Xi);		#
	&pxor		($T2,$Xhi);		#

	&movdqa		($T3,$T2);		#
	&psrldq		($T2,8);
	&pslldq		($T3,8);		#
	&pxor		($Xhi,$T2);
	&pxor		($Xi,$T3);		#
}

if (1) {		# Algorithm 9 with <<1 twist.
			# Reduction is shorter and uses only two
			# temporary registers, which makes it better
			# candidate for interleaving with 64x64
			# multiplication. Pre-modulo-scheduled loop
			# was found to be ~20% faster than Algorithm 5
			# below. Algorithm 9 was therefore chosen for
			# further optimization...

sub reduction_alg9 {	# 17/13 times faster than Intel version
my ($Xhi,$Xi) = @_;

	# 1st phase
	&movdqa		($T1,$Xi);		#
	&psllq		($Xi,1);
	&pxor		($Xi,$T1);		#
	&psllq		($Xi,5);		#
	&pxor		($Xi,$T1);		#
	&psllq		($Xi,57);		#
	&movdqa		($T2,$Xi);		#
	&pslldq		($Xi,8);
	&psrldq		($T2,8);		#
	&pxor		($Xi,$T1);
	&pxor		($Xhi,$T2);		#

	# 2nd phase
	&movdqa		($T2,$Xi);
	&psrlq		($Xi,5);
	&pxor		($Xi,$T2);		#
	&psrlq		($Xi,1);		#
	&pxor		($Xi,$T2);		#
	&pxor		($T2,$Xhi);
	&psrlq		($Xi,1);		#
	&pxor		($Xi,$T2);		#
}

&function_begin_B("gcm_init_clmul");
	&mov		($Htbl,&wparam(0));
	&mov		($Xip,&wparam(1));

	&call		(&label("pic"));
&set_label("pic");
	&blindpop	($const);
	&lea		($const,&DWP(&label("bswap")."-".&label("pic"),$const));

	&movdqu		($Hkey,&QWP(0,$Xip));
	&pshufd		($Hkey,$Hkey,0b01001110);# dword swap

	# <<1 twist
	&pshufd		($T2,$Hkey,0b11111111);	# broadcast uppermost dword
	&movdqa		($T1,$Hkey);
	&psllq		($Hkey,1);
	&pxor		($T3,$T3);		#
	&psrlq		($T1,63);
	&pcmpgtd	($T3,$T2);		# broadcast carry bit
	&pslldq		($T1,8);
	&por		($Hkey,$T1);		# H<<=1

	# magic reduction
	&pand		($T3,&QWP(16,$const));	# 0x1c2_polynomial
	&pxor		($Hkey,$T3);		# if(carry) H^=0x1c2_polynomial

	# calculate H^2
	&movdqa		($Xi,$Hkey);
	&clmul64x64_T2	($Xhi,$Xi,$Hkey);
	&reduction_alg9	($Xhi,$Xi);

	&movdqu		(&QWP(0,$Htbl),$Hkey);	# save H
	&movdqu		(&QWP(16,$Htbl),$Xi);	# save H^2

	&ret		();
&function_end_B("gcm_init_clmul");

&function_begin_B("gcm_gmult_clmul");
	&mov		($Xip,&wparam(0));
	&mov		($Htbl,&wparam(1));

	&call		(&label("pic"));
&set_label("pic");
	&blindpop	($const);
	&lea		($const,&DWP(&label("bswap")."-".&label("pic"),$const));

	&movdqu		($Xi,&QWP(0,$Xip));
	&movdqa		($T3,&QWP(0,$const));
	&movups		($Hkey,&QWP(0,$Htbl));
	&pshufb		($Xi,$T3);

	&clmul64x64_T2	($Xhi,$Xi,$Hkey);
	&reduction_alg9	($Xhi,$Xi);

	&pshufb		($Xi,$T3);
	&movdqu		(&QWP(0,$Xip),$Xi);

	&ret	();
&function_end_B("gcm_gmult_clmul");

&function_begin("gcm_ghash_clmul");
	&mov		($Xip,&wparam(0));
	&mov		($Htbl,&wparam(1));
	&mov		($inp,&wparam(2));
	&mov		($len,&wparam(3));

	&call		(&label("pic"));
&set_label("pic");
	&blindpop	($const);
	&lea		($const,&DWP(&label("bswap")."-".&label("pic"),$const));

	&movdqu		($Xi,&QWP(0,$Xip));
	&movdqa		($T3,&QWP(0,$const));
	&movdqu		($Hkey,&QWP(0,$Htbl));
	&pshufb		($Xi,$T3);

	&sub		($len,0x10);
	&jz		(&label("odd_tail"));

	#######
	# Xi+2 =[H*(Ii+1 + Xi+1)] mod P =
	#	[(H*Ii+1) + (H*Xi+1)] mod P =
	#	[(H*Ii+1) + H^2*(Ii+Xi)] mod P
	#
	&movdqu		($T1,&QWP(0,$inp));	# Ii
	&movdqu		($Xn,&QWP(16,$inp));	# Ii+1
	&pshufb		($T1,$T3);
	&pshufb		($Xn,$T3);
	&pxor		($Xi,$T1);		# Ii+Xi

	&clmul64x64_T2	($Xhn,$Xn,$Hkey);	# H*Ii+1
	&movups		($Hkey,&QWP(16,$Htbl));	# load H^2

	&lea		($inp,&DWP(32,$inp));	# i+=2
	&sub		($len,0x20);
	&jbe		(&label("even_tail"));

&set_label("mod_loop");
	&clmul64x64_T2	($Xhi,$Xi,$Hkey);	# H^2*(Ii+Xi)
	&movdqu		($T1,&QWP(0,$inp));	# Ii
	&movups		($Hkey,&QWP(0,$Htbl));	# load H

	&pxor		($Xi,$Xn);		# (H*Ii+1) + H^2*(Ii+Xi)
	&pxor		($Xhi,$Xhn);

	&movdqu		($Xn,&QWP(16,$inp));	# Ii+1
	&pshufb		($T1,$T3);
	&pshufb		($Xn,$T3);

	&movdqa		($T3,$Xn);		#&clmul64x64_TX	($Xhn,$Xn,$Hkey); H*Ii+1
	&movdqa		($Xhn,$Xn);
	 &pxor		($Xhi,$T1);		# "Ii+Xi", consume early

	  &movdqa	($T1,$Xi);		#&reduction_alg9($Xhi,$Xi); 1st phase
	  &psllq	($Xi,1);
	  &pxor		($Xi,$T1);		#
	  &psllq	($Xi,5);		#
	  &pxor		($Xi,$T1);		#
	&pclmulqdq	($Xn,$Hkey,0x00);	#######
	  &psllq	($Xi,57);		#
	  &movdqa	($T2,$Xi);		#
	  &pslldq	($Xi,8);
	  &psrldq	($T2,8);		#	
	  &pxor		($Xi,$T1);
	&pshufd		($T1,$T3,0b01001110);
	  &pxor		($Xhi,$T2);		#
	&pxor		($T1,$T3);
	&pshufd		($T3,$Hkey,0b01001110);
	&pxor		($T3,$Hkey);		#

	&pclmulqdq	($Xhn,$Hkey,0x11);	#######
	  &movdqa	($T2,$Xi);		# 2nd phase
	  &psrlq	($Xi,5);
	  &pxor		($Xi,$T2);		#
	  &psrlq	($Xi,1);		#
	  &pxor		($Xi,$T2);		#
	  &pxor		($T2,$Xhi);
	  &psrlq	($Xi,1);		#
	  &pxor		($Xi,$T2);		#

	&pclmulqdq	($T1,$T3,0x00);		#######
	&movups		($Hkey,&QWP(16,$Htbl));	# load H^2
	&xorps		($T1,$Xn);		#
	&xorps		($T1,$Xhn);		#

	&movdqa		($T3,$T1);		#
	&psrldq		($T1,8);
	&pslldq		($T3,8);		#
	&pxor		($Xhn,$T1);
	&pxor		($Xn,$T3);		#
	&movdqa		($T3,&QWP(0,$const));

	&lea		($inp,&DWP(32,$inp));
	&sub		($len,0x20);
	&ja		(&label("mod_loop"));

&set_label("even_tail");
	&clmul64x64_T2	($Xhi,$Xi,$Hkey);	# H^2*(Ii+Xi)

	&pxor		($Xi,$Xn);		# (H*Ii+1) + H^2*(Ii+Xi)
	&pxor		($Xhi,$Xhn);

	&reduction_alg9	($Xhi,$Xi);

	&test		($len,$len);
	&jnz		(&label("done"));

	&movups		($Hkey,&QWP(0,$Htbl));	# load H
&set_label("odd_tail");
	&movdqu		($T1,&QWP(0,$inp));	# Ii
	&pshufb		($T1,$T3);
	&pxor		($Xi,$T1);		# Ii+Xi

	&clmul64x64_T2	($Xhi,$Xi,$Hkey);	# H*(Ii+Xi)
	&reduction_alg9	($Xhi,$Xi);

&set_label("done");
	&pshufb		($Xi,$T3);
	&movdqu		(&QWP(0,$Xip),$Xi);
&function_end("gcm_ghash_clmul");

} else {		# Algorith 5. Kept for reference purposes.

sub reduction_alg5 {	# 19/16 times faster than Intel version
my ($Xhi,$Xi)=@_;

	# <<1
	&movdqa		($T1,$Xi);		#
	&movdqa		($T2,$Xhi);
	&pslld		($Xi,1);
	&pslld		($Xhi,1);		#
	&psrld		($T1,31);
	&psrld		($T2,31);		#
	&movdqa		($T3,$T1);
	&pslldq		($T1,4);
	&psrldq		($T3,12);		#
	&pslldq		($T2,4);
	&por		($Xhi,$T3);		#
	&por		($Xi,$T1);
	&por		($Xhi,$T2);		#

	# 1st phase
	&movdqa		($T1,$Xi);
	&movdqa		($T2,$Xi);
	&movdqa		($T3,$Xi);		#
	&pslld		($T1,31);
	&pslld		($T2,30);
	&pslld		($Xi,25);		#
	&pxor		($T1,$T2);
	&pxor		($T1,$Xi);		#
	&movdqa		($T2,$T1);		#
	&pslldq		($T1,12);
	&psrldq		($T2,4);		#
	&pxor		($T3,$T1);

	# 2nd phase
	&pxor		($Xhi,$T3);		#
	&movdqa		($Xi,$T3);
	&movdqa		($T1,$T3);
	&psrld		($Xi,1);		#
	&psrld		($T1,2);
	&psrld		($T3,7);		#
	&pxor		($Xi,$T1);
	&pxor		($Xhi,$T2);
	&pxor		($Xi,$T3);		#
	&pxor		($Xi,$Xhi);		#
}

&function_begin_B("gcm_init_clmul");
	&mov		($Htbl,&wparam(0));
	&mov		($Xip,&wparam(1));

	&call		(&label("pic"));
&set_label("pic");
	&blindpop	($const);
	&lea		($const,&DWP(&label("bswap")."-".&label("pic"),$const));

	&movdqu		($Hkey,&QWP(0,$Xip));
	&pshufd		($Hkey,$Hkey,0b01001110);# dword swap

	# calculate H^2
	&movdqa		($Xi,$Hkey);
	&clmul64x64_T3	($Xhi,$Xi,$Hkey);
	&reduction_alg5	($Xhi,$Xi);

	&movdqu		(&QWP(0,$Htbl),$Hkey);	# save H
	&movdqu		(&QWP(16,$Htbl),$Xi);	# save H^2

	&ret		();
&function_end_B("gcm_init_clmul");

&function_begin_B("gcm_gmult_clmul");
	&mov		($Xip,&wparam(0));
	&mov		($Htbl,&wparam(1));

	&call		(&label("pic"));
&set_label("pic");
	&blindpop	($const);
	&lea		($const,&DWP(&label("bswap")."-".&label("pic"),$const));

	&movdqu		($Xi,&QWP(0,$Xip));
	&movdqa		($Xn,&QWP(0,$const));
	&movdqu		($Hkey,&QWP(0,$Htbl));
	&pshufb		($Xi,$Xn);

	&clmul64x64_T3	($Xhi,$Xi,$Hkey);
	&reduction_alg5	($Xhi,$Xi);

	&pshufb		($Xi,$Xn);
	&movdqu		(&QWP(0,$Xip),$Xi);

	&ret	();
&function_end_B("gcm_gmult_clmul");

&function_begin("gcm_ghash_clmul");
	&mov		($Xip,&wparam(0));
	&mov		($Htbl,&wparam(1));
	&mov		($inp,&wparam(2));
	&mov		($len,&wparam(3));

	&call		(&label("pic"));
&set_label("pic");
	&blindpop	($const);
	&lea		($const,&DWP(&label("bswap")."-".&label("pic"),$const));

	&movdqu		($Xi,&QWP(0,$Xip));
	&movdqa		($T3,&QWP(0,$const));
	&movdqu		($Hkey,&QWP(0,$Htbl));
	&pshufb		($Xi,$T3);

	&sub		($len,0x10);
	&jz		(&label("odd_tail"));

	#######
	# Xi+2 =[H*(Ii+1 + Xi+1)] mod P =
	#	[(H*Ii+1) + (H*Xi+1)] mod P =
	#	[(H*Ii+1) + H^2*(Ii+Xi)] mod P
	#
	&movdqu		($T1,&QWP(0,$inp));	# Ii
	&movdqu		($Xn,&QWP(16,$inp));	# Ii+1
	&pshufb		($T1,$T3);
	&pshufb		($Xn,$T3);
	&pxor		($Xi,$T1);		# Ii+Xi

	&clmul64x64_T3	($Xhn,$Xn,$Hkey);	# H*Ii+1
	&movdqu		($Hkey,&QWP(16,$Htbl));	# load H^2

	&sub		($len,0x20);
	&lea		($inp,&DWP(32,$inp));	# i+=2
	&jbe		(&label("even_tail"));

&set_label("mod_loop");
	&clmul64x64_T3	($Xhi,$Xi,$Hkey);	# H^2*(Ii+Xi)
	&movdqu		($Hkey,&QWP(0,$Htbl));	# load H

	&pxor		($Xi,$Xn);		# (H*Ii+1) + H^2*(Ii+Xi)
	&pxor		($Xhi,$Xhn);

	&reduction_alg5	($Xhi,$Xi);

	#######
	&movdqa		($T3,&QWP(0,$const));
	&movdqu		($T1,&QWP(0,$inp));	# Ii
	&movdqu		($Xn,&QWP(16,$inp));	# Ii+1
	&pshufb		($T1,$T3);
	&pshufb		($Xn,$T3);
	&pxor		($Xi,$T1);		# Ii+Xi

	&clmul64x64_T3	($Xhn,$Xn,$Hkey);	# H*Ii+1
	&movdqu		($Hkey,&QWP(16,$Htbl));	# load H^2

	&sub		($len,0x20);
	&lea		($inp,&DWP(32,$inp));
	&ja		(&label("mod_loop"));

&set_label("even_tail");
	&clmul64x64_T3	($Xhi,$Xi,$Hkey);	# H^2*(Ii+Xi)

	&pxor		($Xi,$Xn);		# (H*Ii+1) + H^2*(Ii+Xi)
	&pxor		($Xhi,$Xhn);

	&reduction_alg5	($Xhi,$Xi);

	&movdqa		($T3,&QWP(0,$const));
	&test		($len,$len);
	&jnz		(&label("done"));

	&movdqu		($Hkey,&QWP(0,$Htbl));	# load H
&set_label("odd_tail");
	&movdqu		($T1,&QWP(0,$inp));	# Ii
	&pshufb		($T1,$T3);
	&pxor		($Xi,$T1);		# Ii+Xi

	&clmul64x64_T3	($Xhi,$Xi,$Hkey);	# H*(Ii+Xi)
	&reduction_alg5	($Xhi,$Xi);

	&movdqa		($T3,&QWP(0,$const));
&set_label("done");
	&pshufb		($Xi,$T3);
	&movdqu		(&QWP(0,$Xip),$Xi);
&function_end("gcm_ghash_clmul");

}

&set_label("bswap",64);
	&data_byte(15,14,13,12,11,10,9,8,7,6,5,4,3,2,1,0);
	&data_byte(1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0xc2);	# 0x1c2_polynomial
}}	# $sse2

&set_label("rem_4bit",64);
	&data_word(0,0x0000<<$S,0,0x1C20<<$S,0,0x3840<<$S,0,0x2460<<$S);
	&data_word(0,0x7080<<$S,0,0x6CA0<<$S,0,0x48C0<<$S,0,0x54E0<<$S);
	&data_word(0,0xE100<<$S,0,0xFD20<<$S,0,0xD940<<$S,0,0xC560<<$S);
	&data_word(0,0x9180<<$S,0,0x8DA0<<$S,0,0xA9C0<<$S,0,0xB5E0<<$S);
&set_label("rem_8bit",64);
	&data_short(0x0000,0x01C2,0x0384,0x0246,0x0708,0x06CA,0x048C,0x054E);
	&data_short(0x0E10,0x0FD2,0x0D94,0x0C56,0x0918,0x08DA,0x0A9C,0x0B5E);
	&data_short(0x1C20,0x1DE2,0x1FA4,0x1E66,0x1B28,0x1AEA,0x18AC,0x196E);
	&data_short(0x1230,0x13F2,0x11B4,0x1076,0x1538,0x14FA,0x16BC,0x177E);
	&data_short(0x3840,0x3982,0x3BC4,0x3A06,0x3F48,0x3E8A,0x3CCC,0x3D0E);
	&data_short(0x3650,0x3792,0x35D4,0x3416,0x3158,0x309A,0x32DC,0x331E);
	&data_short(0x2460,0x25A2,0x27E4,0x2626,0x2368,0x22AA,0x20EC,0x212E);
	&data_short(0x2A70,0x2BB2,0x29F4,0x2836,0x2D78,0x2CBA,0x2EFC,0x2F3E);
	&data_short(0x7080,0x7142,0x7304,0x72C6,0x7788,0x764A,0x740C,0x75CE);
	&data_short(0x7E90,0x7F52,0x7D14,0x7CD6,0x7998,0x785A,0x7A1C,0x7BDE);
	&data_short(0x6CA0,0x6D62,0x6F24,0x6EE6,0x6BA8,0x6A6A,0x682C,0x69EE);
	&data_short(0x62B0,0x6372,0x6134,0x60F6,0x65B8,0x647A,0x663C,0x67FE);
	&data_short(0x48C0,0x4902,0x4B44,0x4A86,0x4FC8,0x4E0A,0x4C4C,0x4D8E);
	&data_short(0x46D0,0x4712,0x4554,0x4496,0x41D8,0x401A,0x425C,0x439E);
	&data_short(0x54E0,0x5522,0x5764,0x56A6,0x53E8,0x522A,0x506C,0x51AE);
	&data_short(0x5AF0,0x5B32,0x5974,0x58B6,0x5DF8,0x5C3A,0x5E7C,0x5FBE);
	&data_short(0xE100,0xE0C2,0xE284,0xE346,0xE608,0xE7CA,0xE58C,0xE44E);
	&data_short(0xEF10,0xEED2,0xEC94,0xED56,0xE818,0xE9DA,0xEB9C,0xEA5E);
	&data_short(0xFD20,0xFCE2,0xFEA4,0xFF66,0xFA28,0xFBEA,0xF9AC,0xF86E);
	&data_short(0xF330,0xF2F2,0xF0B4,0xF176,0xF438,0xF5FA,0xF7BC,0xF67E);
	&data_short(0xD940,0xD882,0xDAC4,0xDB06,0xDE48,0xDF8A,0xDDCC,0xDC0E);
	&data_short(0xD750,0xD692,0xD4D4,0xD516,0xD058,0xD19A,0xD3DC,0xD21E);
	&data_short(0xC560,0xC4A2,0xC6E4,0xC726,0xC268,0xC3AA,0xC1EC,0xC02E);
	&data_short(0xCB70,0xCAB2,0xC8F4,0xC936,0xCC78,0xCDBA,0xCFFC,0xCE3E);
	&data_short(0x9180,0x9042,0x9204,0x93C6,0x9688,0x974A,0x950C,0x94CE);
	&data_short(0x9F90,0x9E52,0x9C14,0x9DD6,0x9898,0x995A,0x9B1C,0x9ADE);
	&data_short(0x8DA0,0x8C62,0x8E24,0x8FE6,0x8AA8,0x8B6A,0x892C,0x88EE);
	&data_short(0x83B0,0x8272,0x8034,0x81F6,0x84B8,0x857A,0x873C,0x86FE);
	&data_short(0xA9C0,0xA802,0xAA44,0xAB86,0xAEC8,0xAF0A,0xAD4C,0xAC8E);
	&data_short(0xA7D0,0xA612,0xA454,0xA596,0xA0D8,0xA11A,0xA35C,0xA29E);
	&data_short(0xB5E0,0xB422,0xB664,0xB7A6,0xB2E8,0xB32A,0xB16C,0xB0AE);
	&data_short(0xBBF0,0xBA32,0xB874,0xB9B6,0xBCF8,0xBD3A,0xBF7C,0xBEBE);
}}}	# !$x86only

&asciz("GHASH for x86, CRYPTOGAMS by <appro\@openssl.org>");
&asm_finish();

# A question was risen about choice of vanilla MMX. Or rather why wasn't
# SSE2 chosen instead? In addition to the fact that MMX runs on legacy
# CPUs such as PIII, "4-bit" MMX version was observed to provide better
# performance than *corresponding* SSE2 one even on contemporary CPUs.
# SSE2 results were provided by Peter-Michael Hager. He maintains SSE2
# implementation featuring full range of lookup-table sizes, but with
# per-invocation lookup table setup. Latter means that table size is
# chosen depending on how much data is to be hashed in every given call,
# more data - larger table. Best reported result for Core2 is ~4 cycles
# per processed byte out of 64KB block. This number accounts even for
# 64KB table setup overhead. As discussed in gcm128.c we choose to be
# more conservative in respect to lookup table sizes, but how do the
# results compare? Minimalistic "256B" MMX version delivers ~11 cycles
# on same platform. As also discussed in gcm128.c, next in line "8-bit
# Shoup's" or "4KB" method should deliver twice the performance of
# "256B" one, in other words not worse than ~6 cycles per byte. It
# should be also be noted that in SSE2 case improvement can be "super-
# linear," i.e. more than twice, mostly because >>8 maps to single
# instruction on SSE2 register. This is unlike "4-bit" case when >>4
# maps to same amount of instructions in both MMX and SSE2 cases.
# Bottom line is that switch to SSE2 is considered to be justifiable
# only in case we choose to implement "8-bit" method...