1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
|
/* crypto/bn/bn_lcl.h */
/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
* All rights reserved.
*
* This package is an SSL implementation written
* by Eric Young (eay@cryptsoft.com).
* The implementation was written so as to conform with Netscapes SSL.
*
* This library is free for commercial and non-commercial use as long as
* the following conditions are aheared to. The following conditions
* apply to all code found in this distribution, be it the RC4, RSA,
* lhash, DES, etc., code; not just the SSL code. The SSL documentation
* included with this distribution is covered by the same copyright terms
* except that the holder is Tim Hudson (tjh@cryptsoft.com).
*
* Copyright remains Eric Young's, and as such any Copyright notices in
* the code are not to be removed.
* If this package is used in a product, Eric Young should be given attribution
* as the author of the parts of the library used.
* This can be in the form of a textual message at program startup or
* in documentation (online or textual) provided with the package.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* "This product includes cryptographic software written by
* Eric Young (eay@cryptsoft.com)"
* The word 'cryptographic' can be left out if the rouines from the library
* being used are not cryptographic related :-).
* 4. If you include any Windows specific code (or a derivative thereof) from
* the apps directory (application code) you must include an acknowledgement:
* "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
*
* THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* The licence and distribution terms for any publically available version or
* derivative of this code cannot be changed. i.e. this code cannot simply be
* copied and put under another distribution licence
* [including the GNU Public Licence.]
*/
/* ====================================================================
* Copyright (c) 1998-2000 The OpenSSL Project. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
*
* 3. All advertising materials mentioning features or use of this
* software must display the following acknowledgment:
* "This product includes software developed by the OpenSSL Project
* for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
*
* 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
* endorse or promote products derived from this software without
* prior written permission. For written permission, please contact
* openssl-core@openssl.org.
*
* 5. Products derived from this software may not be called "OpenSSL"
* nor may "OpenSSL" appear in their names without prior written
* permission of the OpenSSL Project.
*
* 6. Redistributions of any form whatsoever must retain the following
* acknowledgment:
* "This product includes software developed by the OpenSSL Project
* for use in the OpenSSL Toolkit (http://www.openssl.org/)"
*
* THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
* EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
* ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
* OF THE POSSIBILITY OF SUCH DAMAGE.
* ====================================================================
*
* This product includes cryptographic software written by Eric Young
* (eay@cryptsoft.com). This product includes software written by Tim
* Hudson (tjh@cryptsoft.com).
*
*/
#ifndef HEADER_BN_LCL_H
# define HEADER_BN_LCL_H
# include <openssl/bn.h>
#ifdef __cplusplus
extern "C" {
#endif
/*-
* BN_window_bits_for_exponent_size -- macro for sliding window mod_exp functions
*
*
* For window size 'w' (w >= 2) and a random 'b' bits exponent,
* the number of multiplications is a constant plus on average
*
* 2^(w-1) + (b-w)/(w+1);
*
* here 2^(w-1) is for precomputing the table (we actually need
* entries only for windows that have the lowest bit set), and
* (b-w)/(w+1) is an approximation for the expected number of
* w-bit windows, not counting the first one.
*
* Thus we should use
*
* w >= 6 if b > 671
* w = 5 if 671 > b > 239
* w = 4 if 239 > b > 79
* w = 3 if 79 > b > 23
* w <= 2 if 23 > b
*
* (with draws in between). Very small exponents are often selected
* with low Hamming weight, so we use w = 1 for b <= 23.
*/
# if 1
# define BN_window_bits_for_exponent_size(b) \
((b) > 671 ? 6 : \
(b) > 239 ? 5 : \
(b) > 79 ? 4 : \
(b) > 23 ? 3 : 1)
# else
/*
* Old SSLeay/OpenSSL table. Maximum window size was 5, so this table differs
* for b==1024; but it coincides for other interesting values (b==160,
* b==512).
*/
# define BN_window_bits_for_exponent_size(b) \
((b) > 255 ? 5 : \
(b) > 127 ? 4 : \
(b) > 17 ? 3 : 1)
# endif
/*
* BN_mod_exp_mont_conttime is based on the assumption that the L1 data cache
* line width of the target processor is at least the following value.
*/
# define MOD_EXP_CTIME_MIN_CACHE_LINE_WIDTH ( 64 )
# define MOD_EXP_CTIME_MIN_CACHE_LINE_MASK (MOD_EXP_CTIME_MIN_CACHE_LINE_WIDTH - 1)
/*
* Window sizes optimized for fixed window size modular exponentiation
* algorithm (BN_mod_exp_mont_consttime). To achieve the security goals of
* BN_mode_exp_mont_consttime, the maximum size of the window must not exceed
* log_2(MOD_EXP_CTIME_MIN_CACHE_LINE_WIDTH). Window size thresholds are
* defined for cache line sizes of 32 and 64, cache line sizes where
* log_2(32)=5 and log_2(64)=6 respectively. A window size of 7 should only be
* used on processors that have a 128 byte or greater cache line size.
*/
# if MOD_EXP_CTIME_MIN_CACHE_LINE_WIDTH == 64
# define BN_window_bits_for_ctime_exponent_size(b) \
((b) > 937 ? 6 : \
(b) > 306 ? 5 : \
(b) > 89 ? 4 : \
(b) > 22 ? 3 : 1)
# define BN_MAX_WINDOW_BITS_FOR_CTIME_EXPONENT_SIZE (6)
# elif MOD_EXP_CTIME_MIN_CACHE_LINE_WIDTH == 32
# define BN_window_bits_for_ctime_exponent_size(b) \
((b) > 306 ? 5 : \
(b) > 89 ? 4 : \
(b) > 22 ? 3 : 1)
# define BN_MAX_WINDOW_BITS_FOR_CTIME_EXPONENT_SIZE (5)
# endif
/* Pentium pro 16,16,16,32,64 */
/* Alpha 16,16,16,16.64 */
# define BN_MULL_SIZE_NORMAL (16)/* 32 */
# define BN_MUL_RECURSIVE_SIZE_NORMAL (16)/* 32 less than */
# define BN_SQR_RECURSIVE_SIZE_NORMAL (16)/* 32 */
# define BN_MUL_LOW_RECURSIVE_SIZE_NORMAL (32)/* 32 */
# define BN_MONT_CTX_SET_SIZE_WORD (64)/* 32 */
# if !defined(OPENSSL_NO_ASM) && !defined(OPENSSL_NO_INLINE_ASM) && !defined(PEDANTIC)
/*
* BN_UMULT_HIGH section.
*
* No, I'm not trying to overwhelm you when stating that the
* product of N-bit numbers is 2*N bits wide:-) No, I don't expect
* you to be impressed when I say that if the compiler doesn't
* support 2*N integer type, then you have to replace every N*N
* multiplication with 4 (N/2)*(N/2) accompanied by some shifts
* and additions which unavoidably results in severe performance
* penalties. Of course provided that the hardware is capable of
* producing 2*N result... That's when you normally start
* considering assembler implementation. However! It should be
* pointed out that some CPUs (most notably Alpha, PowerPC and
* upcoming IA-64 family:-) provide *separate* instruction
* calculating the upper half of the product placing the result
* into a general purpose register. Now *if* the compiler supports
* inline assembler, then it's not impossible to implement the
* "bignum" routines (and have the compiler optimize 'em)
* exhibiting "native" performance in C. That's what BN_UMULT_HIGH
* macro is about:-)
*
* <appro@fy.chalmers.se>
*/
# if defined(__alpha) && (defined(SIXTY_FOUR_BIT_LONG) || defined(SIXTY_FOUR_BIT))
# if defined(__DECC)
# include <c_asm.h>
# define BN_UMULT_HIGH(a,b) (BN_ULONG)asm("umulh %a0,%a1,%v0",(a),(b))
# elif defined(__GNUC__) && __GNUC__>=2
# define BN_UMULT_HIGH(a,b) ({ \
register BN_ULONG ret; \
asm ("umulh %1,%2,%0" \
: "=r"(ret) \
: "r"(a), "r"(b)); \
ret; })
# endif /* compiler */
# elif defined(_ARCH_PPC) && defined(__64BIT__) && defined(SIXTY_FOUR_BIT_LONG)
# if defined(__GNUC__) && __GNUC__>=2
# define BN_UMULT_HIGH(a,b) ({ \
register BN_ULONG ret; \
asm ("mulhdu %0,%1,%2" \
: "=r"(ret) \
: "r"(a), "r"(b)); \
ret; })
# endif /* compiler */
# elif (defined(__x86_64) || defined(__x86_64__)) && \
(defined(SIXTY_FOUR_BIT_LONG) || defined(SIXTY_FOUR_BIT))
# if defined(__GNUC__) && __GNUC__>=2
# define BN_UMULT_HIGH(a,b) ({ \
register BN_ULONG ret,discard; \
asm ("mulq %3" \
: "=a"(discard),"=d"(ret) \
: "a"(a), "g"(b) \
: "cc"); \
ret; })
# define BN_UMULT_LOHI(low,high,a,b) \
asm ("mulq %3" \
: "=a"(low),"=d"(high) \
: "a"(a),"g"(b) \
: "cc");
# endif
# elif (defined(_M_AMD64) || defined(_M_X64)) && defined(SIXTY_FOUR_BIT)
# if defined(_MSC_VER) && _MSC_VER>=1400
unsigned __int64 __umulh(unsigned __int64 a, unsigned __int64 b);
unsigned __int64 _umul128(unsigned __int64 a, unsigned __int64 b,
unsigned __int64 *h);
# pragma intrinsic(__umulh,_umul128)
# define BN_UMULT_HIGH(a,b) __umulh((a),(b))
# define BN_UMULT_LOHI(low,high,a,b) ((low)=_umul128((a),(b),&(high)))
# endif
# elif defined(__mips) && (defined(SIXTY_FOUR_BIT) || defined(SIXTY_FOUR_BIT_LONG))
# if defined(__GNUC__) && __GNUC__>=2
# if __GNUC__>4 || (__GNUC__>=4 && __GNUC_MINOR__>=4)
/* "h" constraint is no more since 4.4 */
# define BN_UMULT_HIGH(a,b) (((__uint128_t)(a)*(b))>>64)
# define BN_UMULT_LOHI(low,high,a,b) ({ \
__uint128_t ret=(__uint128_t)(a)*(b); \
(high)=ret>>64; (low)=ret; })
# else
# define BN_UMULT_HIGH(a,b) ({ \
register BN_ULONG ret; \
asm ("dmultu %1,%2" \
: "=h"(ret) \
: "r"(a), "r"(b) : "l"); \
ret; })
# define BN_UMULT_LOHI(low,high,a,b)\
asm ("dmultu %2,%3" \
: "=l"(low),"=h"(high) \
: "r"(a), "r"(b));
# endif
# endif
# endif /* cpu */
# endif /* OPENSSL_NO_ASM */
/*************************************************************
* Using the long long type
*/
# define Lw(t) (((BN_ULONG)(t))&BN_MASK2)
# define Hw(t) (((BN_ULONG)((t)>>BN_BITS2))&BN_MASK2)
# ifdef BN_DEBUG_RAND
# define bn_clear_top2max(a) \
{ \
int ind = (a)->dmax - (a)->top; \
BN_ULONG *ftl = &(a)->d[(a)->top-1]; \
for (; ind != 0; ind--) \
*(++ftl) = 0x0; \
}
# else
# define bn_clear_top2max(a)
# endif
# ifdef BN_LLONG
# define mul_add(r,a,w,c) { \
BN_ULLONG t; \
t=(BN_ULLONG)w * (a) + (r) + (c); \
(r)= Lw(t); \
(c)= Hw(t); \
}
# define mul(r,a,w,c) { \
BN_ULLONG t; \
t=(BN_ULLONG)w * (a) + (c); \
(r)= Lw(t); \
(c)= Hw(t); \
}
# define sqr(r0,r1,a) { \
BN_ULLONG t; \
t=(BN_ULLONG)(a)*(a); \
(r0)=Lw(t); \
(r1)=Hw(t); \
}
# elif defined(BN_UMULT_LOHI)
# define mul_add(r,a,w,c) { \
BN_ULONG high,low,ret,tmp=(a); \
ret = (r); \
BN_UMULT_LOHI(low,high,w,tmp); \
ret += (c); \
(c) = (ret<(c))?1:0; \
(c) += high; \
ret += low; \
(c) += (ret<low)?1:0; \
(r) = ret; \
}
# define mul(r,a,w,c) { \
BN_ULONG high,low,ret,ta=(a); \
BN_UMULT_LOHI(low,high,w,ta); \
ret = low + (c); \
(c) = high; \
(c) += (ret<low)?1:0; \
(r) = ret; \
}
# define sqr(r0,r1,a) { \
BN_ULONG tmp=(a); \
BN_UMULT_LOHI(r0,r1,tmp,tmp); \
}
# elif defined(BN_UMULT_HIGH)
# define mul_add(r,a,w,c) { \
BN_ULONG high,low,ret,tmp=(a); \
ret = (r); \
high= BN_UMULT_HIGH(w,tmp); \
ret += (c); \
low = (w) * tmp; \
(c) = (ret<(c))?1:0; \
(c) += high; \
ret += low; \
(c) += (ret<low)?1:0; \
(r) = ret; \
}
# define mul(r,a,w,c) { \
BN_ULONG high,low,ret,ta=(a); \
low = (w) * ta; \
high= BN_UMULT_HIGH(w,ta); \
ret = low + (c); \
(c) = high; \
(c) += (ret<low)?1:0; \
(r) = ret; \
}
# define sqr(r0,r1,a) { \
BN_ULONG tmp=(a); \
(r0) = tmp * tmp; \
(r1) = BN_UMULT_HIGH(tmp,tmp); \
}
# else
/*************************************************************
* No long long type
*/
# define LBITS(a) ((a)&BN_MASK2l)
# define HBITS(a) (((a)>>BN_BITS4)&BN_MASK2l)
# define L2HBITS(a) (((a)<<BN_BITS4)&BN_MASK2)
# define LLBITS(a) ((a)&BN_MASKl)
# define LHBITS(a) (((a)>>BN_BITS2)&BN_MASKl)
# define LL2HBITS(a) ((BN_ULLONG)((a)&BN_MASKl)<<BN_BITS2)
# define mul64(l,h,bl,bh) \
{ \
BN_ULONG m,m1,lt,ht; \
\
lt=l; \
ht=h; \
m =(bh)*(lt); \
lt=(bl)*(lt); \
m1=(bl)*(ht); \
ht =(bh)*(ht); \
m=(m+m1)&BN_MASK2; if (m < m1) ht+=L2HBITS((BN_ULONG)1); \
ht+=HBITS(m); \
m1=L2HBITS(m); \
lt=(lt+m1)&BN_MASK2; if (lt < m1) ht++; \
(l)=lt; \
(h)=ht; \
}
# define sqr64(lo,ho,in) \
{ \
BN_ULONG l,h,m; \
\
h=(in); \
l=LBITS(h); \
h=HBITS(h); \
m =(l)*(h); \
l*=l; \
h*=h; \
h+=(m&BN_MASK2h1)>>(BN_BITS4-1); \
m =(m&BN_MASK2l)<<(BN_BITS4+1); \
l=(l+m)&BN_MASK2; if (l < m) h++; \
(lo)=l; \
(ho)=h; \
}
# define mul_add(r,a,bl,bh,c) { \
BN_ULONG l,h; \
\
h= (a); \
l=LBITS(h); \
h=HBITS(h); \
mul64(l,h,(bl),(bh)); \
\
/* non-multiply part */ \
l=(l+(c))&BN_MASK2; if (l < (c)) h++; \
(c)=(r); \
l=(l+(c))&BN_MASK2; if (l < (c)) h++; \
(c)=h&BN_MASK2; \
(r)=l; \
}
# define mul(r,a,bl,bh,c) { \
BN_ULONG l,h; \
\
h= (a); \
l=LBITS(h); \
h=HBITS(h); \
mul64(l,h,(bl),(bh)); \
\
/* non-multiply part */ \
l+=(c); if ((l&BN_MASK2) < (c)) h++; \
(c)=h&BN_MASK2; \
(r)=l&BN_MASK2; \
}
# endif /* !BN_LLONG */
# if defined(OPENSSL_DOING_MAKEDEPEND) && defined(OPENSSL_FIPS)
# undef bn_div_words
# endif
void bn_mul_normal(BN_ULONG *r, BN_ULONG *a, int na, BN_ULONG *b, int nb);
void bn_mul_comba8(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b);
void bn_mul_comba4(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b);
void bn_sqr_normal(BN_ULONG *r, const BN_ULONG *a, int n, BN_ULONG *tmp);
void bn_sqr_comba8(BN_ULONG *r, const BN_ULONG *a);
void bn_sqr_comba4(BN_ULONG *r, const BN_ULONG *a);
int bn_cmp_words(const BN_ULONG *a, const BN_ULONG *b, int n);
int bn_cmp_part_words(const BN_ULONG *a, const BN_ULONG *b, int cl, int dl);
void bn_mul_recursive(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n2,
int dna, int dnb, BN_ULONG *t);
void bn_mul_part_recursive(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b,
int n, int tna, int tnb, BN_ULONG *t);
void bn_sqr_recursive(BN_ULONG *r, const BN_ULONG *a, int n2, BN_ULONG *t);
void bn_mul_low_normal(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n);
void bn_mul_low_recursive(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n2,
BN_ULONG *t);
void bn_mul_high(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, BN_ULONG *l, int n2,
BN_ULONG *t);
BN_ULONG bn_add_part_words(BN_ULONG *r, const BN_ULONG *a, const BN_ULONG *b,
int cl, int dl);
BN_ULONG bn_sub_part_words(BN_ULONG *r, const BN_ULONG *a, const BN_ULONG *b,
int cl, int dl);
int bn_mul_mont(BN_ULONG *rp, const BN_ULONG *ap, const BN_ULONG *bp,
const BN_ULONG *np, const BN_ULONG *n0, int num);
#ifdef __cplusplus
}
#endif
#endif
|