1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
|
<?xml version="1.0" encoding="UTF-8" ?>
<class name="Vector3" category="Built-In Types" version="3.1">
<brief_description>
Vector class, which performs basic 3D vector math operations.
</brief_description>
<description>
Vector3 is one of the core classes of the engine, and includes several built-in helper functions to perform basic vector math operations.
</description>
<tutorials>
http://docs.godotengine.org/en/3.0/tutorials/math/index.html
</tutorials>
<demos>
</demos>
<methods>
<method name="Vector3">
<return type="Vector3">
</return>
<argument index="0" name="x" type="float">
</argument>
<argument index="1" name="y" type="float">
</argument>
<argument index="2" name="z" type="float">
</argument>
<description>
Returns a Vector3 with the given components.
</description>
</method>
<method name="abs">
<return type="Vector3">
</return>
<description>
Returns a new vector with all components in absolute values (i.e. positive).
</description>
</method>
<method name="angle_to">
<return type="float">
</return>
<argument index="0" name="to" type="Vector3">
</argument>
<description>
Returns the vector's minimum angle to the vector [code]to[/code].
</description>
</method>
<method name="bounce">
<return type="Vector3">
</return>
<argument index="0" name="n" type="Vector3">
</argument>
<description>
Bounce returns the vector "bounced off" from the given plane, specified by its normal vector.
</description>
</method>
<method name="ceil">
<return type="Vector3">
</return>
<description>
Returns a new vector with all components rounded up.
</description>
</method>
<method name="cross">
<return type="Vector3">
</return>
<argument index="0" name="b" type="Vector3">
</argument>
<description>
Returns the cross product with [code]b[/code].
</description>
</method>
<method name="cubic_interpolate">
<return type="Vector3">
</return>
<argument index="0" name="b" type="Vector3">
</argument>
<argument index="1" name="pre_a" type="Vector3">
</argument>
<argument index="2" name="post_b" type="Vector3">
</argument>
<argument index="3" name="t" type="float">
</argument>
<description>
Performs a cubic interpolation between vectors [code]pre_a[/code], [code]a[/code], [code]b[/code], [code]post_b[/code] ([code]a[/code] is current), by the given amount (t). (t) should be a float of 0.0-1.0, a percentage of how far along the interpolation is.
</description>
</method>
<method name="distance_squared_to">
<return type="float">
</return>
<argument index="0" name="b" type="Vector3">
</argument>
<description>
Returns the squared distance to [code]b[/code]. Prefer this function over distance_to if you need to sort vectors or need the squared distance for some formula.
</description>
</method>
<method name="distance_to">
<return type="float">
</return>
<argument index="0" name="b" type="Vector3">
</argument>
<description>
Returns the distance to b.
</description>
</method>
<method name="dot">
<return type="float">
</return>
<argument index="0" name="b" type="Vector3">
</argument>
<description>
Returns the dot product with b.
</description>
</method>
<method name="floor">
<return type="Vector3">
</return>
<description>
Returns a new vector with all components rounded down.
</description>
</method>
<method name="inverse">
<return type="Vector3">
</return>
<description>
Returns the inverse of the vector. This is the same as Vector3( 1.0 / v.x, 1.0 / v.y, 1.0 / v.z )
</description>
</method>
<method name="is_normalized">
<return type="bool">
</return>
<description>
Returns whether the vector is normalized or not.
</description>
</method>
<method name="length">
<return type="float">
</return>
<description>
Returns the length of the vector.
</description>
</method>
<method name="length_squared">
<return type="float">
</return>
<description>
Returns the length of the vector, squared. Prefer this function over "length" if you need to sort vectors or need the squared length for some formula.
</description>
</method>
<method name="linear_interpolate">
<return type="Vector3">
</return>
<argument index="0" name="b" type="Vector3">
</argument>
<argument index="1" name="t" type="float">
</argument>
<description>
Linearly interpolates the vector to a given one (b), by the given amount (t). (t) should be a float of 0.0-1.0, a percentage of how far along the interpolation is.
</description>
</method>
<method name="max_axis">
<return type="int">
</return>
<description>
Returns AXIS_X, AXIS_Y or AXIS_Z depending on which axis is the largest.
</description>
</method>
<method name="min_axis">
<return type="int">
</return>
<description>
Returns AXIS_X, AXIS_Y or AXIS_Z depending on which axis is the smallest.
</description>
</method>
<method name="normalized">
<return type="Vector3">
</return>
<description>
Returns a copy of the normalized vector to unit length. This is the same as v / v.length().
</description>
</method>
<method name="outer">
<return type="Basis">
</return>
<argument index="0" name="b" type="Vector3">
</argument>
<description>
Returns the outer product with b.
</description>
</method>
<method name="reflect">
<return type="Vector3">
</return>
<argument index="0" name="n" type="Vector3">
</argument>
<description>
Reflects the vector along the given plane, specified by its normal vector.
</description>
</method>
<method name="rotated">
<return type="Vector3">
</return>
<argument index="0" name="axis" type="Vector3">
</argument>
<argument index="1" name="phi" type="float">
</argument>
<description>
Rotates the vector around some axis by phi radians. The axis must be a normalized vector.
</description>
</method>
<method name="slide">
<return type="Vector3">
</return>
<argument index="0" name="n" type="Vector3">
</argument>
<description>
Slide returns the component of the vector along the given plane, specified by its normal vector.
</description>
</method>
<method name="snapped">
<return type="Vector3">
</return>
<argument index="0" name="by" type="Vector3">
</argument>
<description>
Returns a copy of the vector, snapped to the lowest neared multiple.
</description>
</method>
<method name="to_diagonal_matrix">
<return type="Basis">
</return>
<description>
Returns a diagonal matrix with the vector as main diagonal.
</description>
</method>
</methods>
<members>
<member name="x" type="float" setter="" getter="">
X component of the vector.
</member>
<member name="y" type="float" setter="" getter="">
Y component of the vector.
</member>
<member name="z" type="float" setter="" getter="">
Z component of the vector.
</member>
</members>
<constants>
<constant name="AXIS_X" value="0">
Enumerated value for the X axis. Returned by functions like max_axis or min_axis.
</constant>
<constant name="AXIS_Y" value="1">
Enumerated value for the Y axis.
</constant>
<constant name="AXIS_Z" value="2">
Enumerated value for the Z axis.
</constant>
</constants>
</class>
|