summaryrefslogtreecommitdiff
path: root/doc/classes/Vector2.xml
blob: b293ec3368b048e9c5278fbf228d01ead6e42ca3 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
<?xml version="1.0" encoding="UTF-8" ?>
<class name="Vector2" category="Built-In Types" version="3.1">
	<brief_description>
		Vector used for 2D Math.
	</brief_description>
	<description>
		2-element structure that can be used to represent positions in 2d-space, or any other pair of numeric values.
	</description>
	<tutorials>
		http://docs.godotengine.org/en/3.0/tutorials/math/index.html
	</tutorials>
	<demos>
	</demos>
	<methods>
		<method name="Vector2">
			<return type="Vector2">
			</return>
			<argument index="0" name="x" type="float">
			</argument>
			<argument index="1" name="y" type="float">
			</argument>
			<description>
				Constructs a new Vector2 from the given x and y.
			</description>
		</method>
		<method name="abs">
			<return type="Vector2">
			</return>
			<description>
				Returns a new vector with all components in absolute values (i.e. positive).
			</description>
		</method>
		<method name="angle">
			<return type="float">
			</return>
			<description>
				Returns the result of atan2 when called with the Vector's x and y as parameters (Math::atan2(x,y)).
				Be aware that it therefore returns an angle oriented clockwise with regard to the (0, 1) unit vector, and not an angle oriented counter-clockwise with regard to the (1, 0) unit vector (which would be the typical trigonometric representation of the angle when calling Math::atan2(y,x)).
			</description>
		</method>
		<method name="angle_to">
			<return type="float">
			</return>
			<argument index="0" name="to" type="Vector2">
			</argument>
			<description>
				Returns the angle in radians between the two vectors.
			</description>
		</method>
		<method name="angle_to_point">
			<return type="float">
			</return>
			<argument index="0" name="to" type="Vector2">
			</argument>
			<description>
				Returns the angle in radians between the line connecting the two points and the x coordinate.
			</description>
		</method>
		<method name="aspect">
			<return type="float">
			</return>
			<description>
				Returns the ratio of X to Y.
			</description>
		</method>
		<method name="bounce">
			<return type="Vector2">
			</return>
			<argument index="0" name="n" type="Vector2">
			</argument>
			<description>
				Bounce returns the vector "bounced off" from the given plane, specified by its normal vector.
			</description>
		</method>
		<method name="clamped">
			<return type="Vector2">
			</return>
			<argument index="0" name="length" type="float">
			</argument>
			<description>
				Returns the vector with a maximum length.
			</description>
		</method>
		<method name="cross">
			<return type="float">
			</return>
			<argument index="0" name="b" type="Vector2">
			</argument>
			<description>
				Returns the 2-dimensional analog of the cross product with [code]b[/code].
			</description>
		</method>
		<method name="cubic_interpolate">
			<return type="Vector2">
			</return>
			<argument index="0" name="b" type="Vector2">
			</argument>
			<argument index="1" name="pre_a" type="Vector2">
			</argument>
			<argument index="2" name="post_b" type="Vector2">
			</argument>
			<argument index="3" name="t" type="float">
			</argument>
			<description>
				Cubicly interpolates between this Vector and "b", using "pre_a" and "post_b" as handles, and returning the result at position "t". "t" should be a float of 0.0-1.0, a percentage of how far along the interpolation is.
			</description>
		</method>
		<method name="distance_squared_to">
			<return type="float">
			</return>
			<argument index="0" name="to" type="Vector2">
			</argument>
			<description>
				Returns the squared distance to vector "b". Prefer this function over "distance_to" if you need to sort vectors or need the squared distance for some formula.
			</description>
		</method>
		<method name="distance_to">
			<return type="float">
			</return>
			<argument index="0" name="to" type="Vector2">
			</argument>
			<description>
				Returns the distance to vector "b".
			</description>
		</method>
		<method name="dot">
			<return type="float">
			</return>
			<argument index="0" name="with" type="Vector2">
			</argument>
			<description>
				Returns the dot product with vector "b".
			</description>
		</method>
		<method name="floor">
			<return type="Vector2">
			</return>
			<description>
				Remove the fractional part of x and y.
			</description>
		</method>
		<method name="is_normalized">
			<return type="bool">
			</return>
			<description>
				Returns whether the vector is normalized or not.
			</description>
		</method>
		<method name="length">
			<return type="float">
			</return>
			<description>
				Returns the length of the vector.
			</description>
		</method>
		<method name="length_squared">
			<return type="float">
			</return>
			<description>
				Returns the squared length of the vector. Prefer this function over "length" if you need to sort vectors or need the squared length for some formula.
			</description>
		</method>
		<method name="linear_interpolate">
			<return type="Vector2">
			</return>
			<argument index="0" name="b" type="Vector2">
			</argument>
			<argument index="1" name="t" type="float">
			</argument>
			<description>
				Returns the result of the linear interpolation between this vector and "b", by amount "t". "t" should be a float of 0.0-1.0, a percentage of how far along the interpolation is.
			</description>
		</method>
		<method name="normalized">
			<return type="Vector2">
			</return>
			<description>
				Returns a normalized vector to unit length.
			</description>
		</method>
		<method name="reflect">
			<return type="Vector2">
			</return>
			<argument index="0" name="n" type="Vector2">
			</argument>
			<description>
				Reflects the vector along the given plane, specified by its normal vector.
			</description>
		</method>
		<method name="rotated">
			<return type="Vector2">
			</return>
			<argument index="0" name="phi" type="float">
			</argument>
			<description>
				Rotates the vector by "phi" radians.
			</description>
		</method>
		<method name="slide">
			<return type="Vector2">
			</return>
			<argument index="0" name="n" type="Vector2">
			</argument>
			<description>
				Slide returns the component of the vector along the given plane, specified by its normal vector.
			</description>
		</method>
		<method name="snapped">
			<return type="Vector2">
			</return>
			<argument index="0" name="by" type="Vector2">
			</argument>
			<description>
				Snaps the vector to a grid with the given size.
			</description>
		</method>
		<method name="tangent">
			<return type="Vector2">
			</return>
			<description>
				Returns a perpendicular vector.
			</description>
		</method>
	</methods>
	<members>
		<member name="x" type="float" setter="" getter="">
			X component of the vector.
		</member>
		<member name="y" type="float" setter="" getter="">
			Y component of the vector.
		</member>
	</members>
	<constants>
	</constants>
</class>