summaryrefslogtreecommitdiff
path: root/doc/classes/Vector2.xml
blob: 6c39efd2f9ff2d5e3c30fcc0e871e73241f027f0 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
<?xml version="1.0" encoding="UTF-8" ?>
<class name="Vector2" version="4.0">
	<brief_description>
		Vector used for 2D math using floating point coordinates.
	</brief_description>
	<description>
		2-element structure that can be used to represent positions in 2D space or any other pair of numeric values.
		It uses floating-point coordinates. See [Vector2i] for its integer counterpart.
		[b]Note:[/b] In a boolean context, a Vector2 will evaluate to [code]false[/code] if it's equal to [code]Vector2(0, 0)[/code]. Otherwise, a Vector2 will always evaluate to [code]true[/code].
	</description>
	<tutorials>
		<link title="Math documentation index">$DOCS_URL/tutorials/math/index.html</link>
		<link title="Vector math">$DOCS_URL/tutorials/math/vector_math.html</link>
		<link title="Advanced vector math">$DOCS_URL/tutorials/math/vectors_advanced.html</link>
		<link title="3Blue1Brown Essence of Linear Algebra">https://www.youtube.com/playlist?list=PLZHQObOWTQDPD3MizzM2xVFitgF8hE_ab</link>
		<link title="Matrix Transform Demo">https://godotengine.org/asset-library/asset/584</link>
		<link title="All 2D Demos">https://github.com/godotengine/godot-demo-projects/tree/master/2d</link>
	</tutorials>
	<constructors>
		<constructor name="Vector2">
			<return type="Vector2" />
			<description>
				Constructs a default-initialized [Vector2] with all components set to [code]0[/code].
			</description>
		</constructor>
		<constructor name="Vector2">
			<return type="Vector2" />
			<argument index="0" name="from" type="Vector2" />
			<description>
				Constructs a [Vector2] as a copy of the given [Vector2].
			</description>
		</constructor>
		<constructor name="Vector2">
			<return type="Vector2" />
			<argument index="0" name="from" type="Vector2i" />
			<description>
				Constructs a new [Vector2] from [Vector2i].
			</description>
		</constructor>
		<constructor name="Vector2">
			<return type="Vector2" />
			<argument index="0" name="x" type="float" />
			<argument index="1" name="y" type="float" />
			<description>
				Constructs a new [Vector2] from the given [code]x[/code] and [code]y[/code].
			</description>
		</constructor>
	</constructors>
	<methods>
		<method name="abs" qualifiers="const">
			<return type="Vector2" />
			<description>
				Returns a new vector with all components in absolute values (i.e. positive).
			</description>
		</method>
		<method name="angle" qualifiers="const">
			<return type="float" />
			<description>
				Returns this vector's angle with respect to the positive X axis, or [code](1, 0)[/code] vector, in radians.
				For example, [code]Vector2.RIGHT.angle()[/code] will return zero, [code]Vector2.DOWN.angle()[/code] will return [code]PI / 2[/code] (a quarter turn, or 90 degrees), and [code]Vector2(1, -1).angle()[/code] will return [code]-PI / 4[/code] (a negative eighth turn, or -45 degrees).
				[url=https://raw.githubusercontent.com/godotengine/godot-docs/master/img/vector2_angle.png]Illustration of the returned angle.[/url]
				Equivalent to the result of [method @GlobalScope.atan2] when called with the vector's [member y] and [member x] as parameters: [code]atan2(y, x)[/code].
			</description>
		</method>
		<method name="angle_to" qualifiers="const">
			<return type="float" />
			<argument index="0" name="to" type="Vector2" />
			<description>
				Returns the angle to the given vector, in radians.
				[url=https://raw.githubusercontent.com/godotengine/godot-docs/master/img/vector2_angle_to.png]Illustration of the returned angle.[/url]
			</description>
		</method>
		<method name="angle_to_point" qualifiers="const">
			<return type="float" />
			<argument index="0" name="to" type="Vector2" />
			<description>
				Returns the angle between the line connecting the two points and the X axis, in radians.
				[code]a.angle_to_point(b)[/code] is equivalent of doing [code](b - a).angle()[/code].
				[url=https://raw.githubusercontent.com/godotengine/godot-docs/master/img/vector2_angle_to_point.png]Illustration of the returned angle.[/url]
			</description>
		</method>
		<method name="aspect" qualifiers="const">
			<return type="float" />
			<description>
				Returns the aspect ratio of this vector, the ratio of [member x] to [member y].
			</description>
		</method>
		<method name="bounce" qualifiers="const">
			<return type="Vector2" />
			<argument index="0" name="n" type="Vector2" />
			<description>
				Returns the vector "bounced off" from a plane defined by the given normal.
			</description>
		</method>
		<method name="ceil" qualifiers="const">
			<return type="Vector2" />
			<description>
				Returns a new vector with all components rounded up (towards positive infinity).
			</description>
		</method>
		<method name="clamp" qualifiers="const">
			<return type="Vector2" />
			<argument index="0" name="min" type="Vector2" />
			<argument index="1" name="max" type="Vector2" />
			<description>
				Returns a new vector with all components clamped between the components of [code]min[/code] and [code]max[/code], by running [method @GlobalScope.clamp] on each component.
			</description>
		</method>
		<method name="cross" qualifiers="const">
			<return type="float" />
			<argument index="0" name="with" type="Vector2" />
			<description>
				Returns the cross product of this vector and [code]with[/code].
			</description>
		</method>
		<method name="cubic_interpolate" qualifiers="const">
			<return type="Vector2" />
			<argument index="0" name="b" type="Vector2" />
			<argument index="1" name="pre_a" type="Vector2" />
			<argument index="2" name="post_b" type="Vector2" />
			<argument index="3" name="weight" type="float" />
			<description>
				Cubically interpolates between this vector and [code]b[/code] using [code]pre_a[/code] and [code]post_b[/code] as handles, and returns the result at position [code]weight[/code]. [code]weight[/code] is on the range of 0.0 to 1.0, representing the amount of interpolation.
			</description>
		</method>
		<method name="direction_to" qualifiers="const">
			<return type="Vector2" />
			<argument index="0" name="to" type="Vector2" />
			<description>
				Returns the normalized vector pointing from this vector to [code]to[/code]. This is equivalent to using [code](b - a).normalized()[/code].
			</description>
		</method>
		<method name="distance_squared_to" qualifiers="const">
			<return type="float" />
			<argument index="0" name="to" type="Vector2" />
			<description>
				Returns the squared distance between this vector and [code]to[/code].
				This method runs faster than [method distance_to], so prefer it if you need to compare vectors or need the squared distance for some formula.
			</description>
		</method>
		<method name="distance_to" qualifiers="const">
			<return type="float" />
			<argument index="0" name="to" type="Vector2" />
			<description>
				Returns the distance between this vector and [code]to[/code].
			</description>
		</method>
		<method name="dot" qualifiers="const">
			<return type="float" />
			<argument index="0" name="with" type="Vector2" />
			<description>
				Returns the dot product of this vector and [code]with[/code]. This can be used to compare the angle between two vectors. For example, this can be used to determine whether an enemy is facing the player.
				The dot product will be [code]0[/code] for a straight angle (90 degrees), greater than 0 for angles narrower than 90 degrees and lower than 0 for angles wider than 90 degrees.
				When using unit (normalized) vectors, the result will always be between [code]-1.0[/code] (180 degree angle) when the vectors are facing opposite directions, and [code]1.0[/code] (0 degree angle) when the vectors are aligned.
				[b]Note:[/b] [code]a.dot(b)[/code] is equivalent to [code]b.dot(a)[/code].
			</description>
		</method>
		<method name="floor" qualifiers="const">
			<return type="Vector2" />
			<description>
				Returns a new vector with all components rounded down (towards negative infinity).
			</description>
		</method>
		<method name="from_angle" qualifiers="static">
			<return type="Vector2" />
			<argument index="0" name="angle" type="float" />
			<description>
				Creates a unit [Vector2] rotated to the given [code]angle[/code] in radians. This is equivalent to doing [code]Vector2(cos(angle), sin(angle))[/code] or [code]Vector2.RIGHT.rotated(angle)[/code].
				[codeblock]
				print(Vector2.from_angle(0)) # Prints (1, 0).
				print(Vector2(1, 0).angle()) # Prints 0, which is the angle used above.
				print(Vector2.from_angle(PI / 2)) # Prints (0, 1).
				[/codeblock]
			</description>
		</method>
		<method name="is_equal_approx" qualifiers="const">
			<return type="bool" />
			<argument index="0" name="to" type="Vector2" />
			<description>
				Returns [code]true[/code] if this vector and [code]v[/code] are approximately equal, by running [method @GlobalScope.is_equal_approx] on each component.
			</description>
		</method>
		<method name="is_normalized" qualifiers="const">
			<return type="bool" />
			<description>
				Returns [code]true[/code] if the vector is normalized, [code]false[/code] otherwise.
			</description>
		</method>
		<method name="length" qualifiers="const">
			<return type="float" />
			<description>
				Returns the length (magnitude) of this vector.
			</description>
		</method>
		<method name="length_squared" qualifiers="const">
			<return type="float" />
			<description>
				Returns the squared length (squared magnitude) of this vector.
				This method runs faster than [method length], so prefer it if you need to compare vectors or need the squared distance for some formula.
			</description>
		</method>
		<method name="lerp" qualifiers="const">
			<return type="Vector2" />
			<argument index="0" name="to" type="Vector2" />
			<argument index="1" name="weight" type="float" />
			<description>
				Returns the result of the linear interpolation between this vector and [code]to[/code] by amount [code]weight[/code]. [code]weight[/code] is on the range of 0.0 to 1.0, representing the amount of interpolation.
			</description>
		</method>
		<method name="limit_length" qualifiers="const">
			<return type="Vector2" />
			<argument index="0" name="length" type="float" default="1.0" />
			<description>
				Returns the vector with a maximum length by limiting its length to [code]length[/code].
			</description>
		</method>
		<method name="max_axis_index" qualifiers="const">
			<return type="int" />
			<description>
				Returns the axis of the vector's highest value. See [code]AXIS_*[/code] constants. If all components are equal, this method returns [constant AXIS_X].
			</description>
		</method>
		<method name="min_axis_index" qualifiers="const">
			<return type="int" />
			<description>
				Returns the axis of the vector's lowest value. See [code]AXIS_*[/code] constants. If all components are equal, this method returns [constant AXIS_Y].
			</description>
		</method>
		<method name="move_toward" qualifiers="const">
			<return type="Vector2" />
			<argument index="0" name="to" type="Vector2" />
			<argument index="1" name="delta" type="float" />
			<description>
				Returns a new vector moved toward [code]to[/code] by the fixed [code]delta[/code] amount. Will not go past the final value.
			</description>
		</method>
		<method name="normalized" qualifiers="const">
			<return type="Vector2" />
			<description>
				Returns the vector scaled to unit length. Equivalent to [code]v / v.length()[/code].
			</description>
		</method>
		<method name="orthogonal" qualifiers="const">
			<return type="Vector2" />
			<description>
				Returns a perpendicular vector rotated 90 degrees counter-clockwise compared to the original, with the same length.
			</description>
		</method>
		<method name="posmod" qualifiers="const">
			<return type="Vector2" />
			<argument index="0" name="mod" type="float" />
			<description>
				Returns a vector composed of the [method @GlobalScope.fposmod] of this vector's components and [code]mod[/code].
			</description>
		</method>
		<method name="posmodv" qualifiers="const">
			<return type="Vector2" />
			<argument index="0" name="modv" type="Vector2" />
			<description>
				Returns a vector composed of the [method @GlobalScope.fposmod] of this vector's components and [code]modv[/code]'s components.
			</description>
		</method>
		<method name="project" qualifiers="const">
			<return type="Vector2" />
			<argument index="0" name="b" type="Vector2" />
			<description>
				Returns this vector projected onto the vector [code]b[/code].
			</description>
		</method>
		<method name="reflect" qualifiers="const">
			<return type="Vector2" />
			<argument index="0" name="n" type="Vector2" />
			<description>
				Returns the vector reflected (i.e. mirrored, or symmetric) over a line defined by the given direction vector [code]n[/code].
			</description>
		</method>
		<method name="rotated" qualifiers="const">
			<return type="Vector2" />
			<argument index="0" name="phi" type="float" />
			<description>
				Returns the vector rotated by [code]phi[/code] radians. See also [method @GlobalScope.deg2rad].
			</description>
		</method>
		<method name="round" qualifiers="const">
			<return type="Vector2" />
			<description>
				Returns a new vector with all components rounded to the nearest integer, with halfway cases rounded away from zero.
			</description>
		</method>
		<method name="sign" qualifiers="const">
			<return type="Vector2" />
			<description>
				Returns a new vector with each component set to one or negative one, depending on the signs of the components, or zero if the component is zero, by calling [method @GlobalScope.sign] on each component.
			</description>
		</method>
		<method name="slerp" qualifiers="const">
			<return type="Vector2" />
			<argument index="0" name="to" type="Vector2" />
			<argument index="1" name="weight" type="float" />
			<description>
				Returns the result of spherical linear interpolation between this vector and [code]to[/code], by amount [code]weight[/code]. [code]weight[/code] is on the range of 0.0 to 1.0, representing the amount of interpolation.
				This method also handles interpolating the lengths if the input vectors have different lengths. For the special case of one or both input vectors having zero length, this method behaves like [method lerp].
			</description>
		</method>
		<method name="slide" qualifiers="const">
			<return type="Vector2" />
			<argument index="0" name="n" type="Vector2" />
			<description>
				Returns this vector slid along a plane defined by the given normal.
			</description>
		</method>
		<method name="snapped" qualifiers="const">
			<return type="Vector2" />
			<argument index="0" name="step" type="Vector2" />
			<description>
				Returns this vector with each component snapped to the nearest multiple of [code]step[/code]. This can also be used to round to an arbitrary number of decimals.
			</description>
		</method>
	</methods>
	<members>
		<member name="x" type="float" setter="" getter="" default="0.0">
			The vector's X component. Also accessible by using the index position [code][0][/code].
		</member>
		<member name="y" type="float" setter="" getter="" default="0.0">
			The vector's Y component. Also accessible by using the index position [code][1][/code].
		</member>
	</members>
	<constants>
		<constant name="AXIS_X" value="0">
			Enumerated value for the X axis. Returned by [method max_axis_index] and [method min_axis_index].
		</constant>
		<constant name="AXIS_Y" value="1">
			Enumerated value for the Y axis. Returned by [method max_axis_index] and [method min_axis_index].
		</constant>
		<constant name="ZERO" value="Vector2(0, 0)">
			Zero vector, a vector with all components set to [code]0[/code].
		</constant>
		<constant name="ONE" value="Vector2(1, 1)">
			One vector, a vector with all components set to [code]1[/code].
		</constant>
		<constant name="INF" value="Vector2(inf, inf)">
			Infinity vector, a vector with all components set to [constant @GDScript.INF].
		</constant>
		<constant name="LEFT" value="Vector2(-1, 0)">
			Left unit vector. Represents the direction of left.
		</constant>
		<constant name="RIGHT" value="Vector2(1, 0)">
			Right unit vector. Represents the direction of right.
		</constant>
		<constant name="UP" value="Vector2(0, -1)">
			Up unit vector. Y is down in 2D, so this vector points -Y.
		</constant>
		<constant name="DOWN" value="Vector2(0, 1)">
			Down unit vector. Y is down in 2D, so this vector points +Y.
		</constant>
	</constants>
	<operators>
		<operator name="operator !=">
			<return type="bool" />
			<description>
			</description>
		</operator>
		<operator name="operator !=">
			<return type="bool" />
			<argument index="0" name="right" type="Vector2" />
			<description>
				Returns [code]true[/code] if the vectors are not equal.
				[b]Note:[/b] Due to floating-point precision errors, consider using [method is_equal_approx] instead, which is more reliable.
			</description>
		</operator>
		<operator name="operator *">
			<return type="Vector2" />
			<argument index="0" name="right" type="Transform2D" />
			<description>
				Inversely transforms (multiplies) the [Vector2] by the given [Transform2D] transformation matrix.
			</description>
		</operator>
		<operator name="operator *">
			<return type="Vector2" />
			<argument index="0" name="right" type="Vector2" />
			<description>
				Multiplies each component of the [Vector2] by the components of the given [Vector2].
				[codeblock]
				print(Vector2(10, 20) * Vector2(3, 4)) # Prints "(30, 80)"
				[/codeblock]
			</description>
		</operator>
		<operator name="operator *">
			<return type="Vector2" />
			<argument index="0" name="right" type="float" />
			<description>
				Multiplies each component of the [Vector2] by the given [float].
			</description>
		</operator>
		<operator name="operator *">
			<return type="Vector2" />
			<argument index="0" name="right" type="int" />
			<description>
				Multiplies each component of the [Vector2] by the given [int].
			</description>
		</operator>
		<operator name="operator +">
			<return type="Vector2" />
			<argument index="0" name="right" type="Vector2" />
			<description>
				Adds each component of the [Vector2] by the components of the given [Vector2].
				[codeblock]
				print(Vector2(10, 20) + Vector2(3, 4)) # Prints "(13, 24)"
				[/codeblock]
			</description>
		</operator>
		<operator name="operator -">
			<return type="Vector2" />
			<argument index="0" name="right" type="Vector2" />
			<description>
				Subtracts each component of the [Vector2] by the components of the given [Vector2].
				[codeblock]
				print(Vector2(10, 20) - Vector2(3, 4)) # Prints "(7, 16)"
				[/codeblock]
			</description>
		</operator>
		<operator name="operator /">
			<return type="Vector2" />
			<argument index="0" name="right" type="Vector2" />
			<description>
				Divides each component of the [Vector2] by the components of the given [Vector2].
				[codeblock]
				print(Vector2(10, 20) / Vector2(2, 5)) # Prints "(5, 4)"
				[/codeblock]
			</description>
		</operator>
		<operator name="operator /">
			<return type="Vector2" />
			<argument index="0" name="right" type="float" />
			<description>
				Divides each component of the [Vector2] by the given [float].
			</description>
		</operator>
		<operator name="operator /">
			<return type="Vector2" />
			<argument index="0" name="right" type="int" />
			<description>
				Divides each component of the [Vector2] by the given [int].
			</description>
		</operator>
		<operator name="operator &lt;">
			<return type="bool" />
			<argument index="0" name="right" type="Vector2" />
			<description>
				Compares two [Vector2] vectors by first checking if the X value of the left vector is less than the X value of the [code]right[/code] vector. If the X values are exactly equal, then it repeats this check with the Y values of the two vectors. This operator is useful for sorting vectors.
			</description>
		</operator>
		<operator name="operator &lt;=">
			<return type="bool" />
			<argument index="0" name="right" type="Vector2" />
			<description>
				Compares two [Vector2] vectors by first checking if the X value of the left vector is less than or equal to the X value of the [code]right[/code] vector. If the X values are exactly equal, then it repeats this check with the Y values of the two vectors. This operator is useful for sorting vectors.
			</description>
		</operator>
		<operator name="operator ==">
			<return type="bool" />
			<description>
			</description>
		</operator>
		<operator name="operator ==">
			<return type="bool" />
			<argument index="0" name="right" type="Vector2" />
			<description>
				Returns [code]true[/code] if the vectors are exactly equal.
				[b]Note:[/b] Due to floating-point precision errors, consider using [method is_equal_approx] instead, which is more reliable.
			</description>
		</operator>
		<operator name="operator &gt;">
			<return type="bool" />
			<argument index="0" name="right" type="Vector2" />
			<description>
				Compares two [Vector2] vectors by first checking if the X value of the left vector is greater than the X value of the [code]right[/code] vector. If the X values are exactly equal, then it repeats this check with the Y values of the two vectors. This operator is useful for sorting vectors.
			</description>
		</operator>
		<operator name="operator &gt;=">
			<return type="bool" />
			<argument index="0" name="right" type="Vector2" />
			<description>
				Compares two [Vector2] vectors by first checking if the X value of the left vector is greater than or equal to the X value of the [code]right[/code] vector. If the X values are exactly equal, then it repeats this check with the Y values of the two vectors. This operator is useful for sorting vectors.
			</description>
		</operator>
		<operator name="operator []">
			<return type="float" />
			<argument index="0" name="index" type="int" />
			<description>
				Access vector components using their index. [code]v[0][/code] is equivalent to [code]v.x[/code], and [code]v[1][/code] is equivalent to [code]v.y[/code].
			</description>
		</operator>
		<operator name="operator unary+">
			<return type="Vector2" />
			<description>
				Returns the same value as if the [code]+[/code] was not there. Unary [code]+[/code] does nothing, but sometimes it can make your code more readable.
			</description>
		</operator>
		<operator name="operator unary-">
			<return type="Vector2" />
			<description>
				Returns the negative value of the [Vector2]. This is the same as writing [code]Vector2(-v.x, -v.y)[/code]. This operation flips the direction of the vector while keeping the same magnitude. With floats, the number zero can be either positive or negative.
			</description>
		</operator>
	</operators>
</class>