summaryrefslogtreecommitdiff
path: root/doc/classes/Transform3D.xml
blob: cefc74867c24a5d63d16e04986e164d9a9aafff0 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
<?xml version="1.0" encoding="UTF-8" ?>
<class name="Transform3D" version="4.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:noNamespaceSchemaLocation="../class.xsd">
	<brief_description>
		3D transformation (3×4 matrix).
	</brief_description>
	<description>
		3×4 matrix (3 rows, 4 columns) used for 3D linear transformations. It can represent transformations such as translation, rotation, or scaling. It consists of a [member basis] (first 3 columns) and a [Vector3] for the [member origin] (last column).
		For more information, read the "Matrices and transforms" documentation article.
	</description>
	<tutorials>
		<link title="Math documentation index">$DOCS_URL/tutorials/math/index.html</link>
		<link title="Matrices and transforms">$DOCS_URL/tutorials/math/matrices_and_transforms.html</link>
		<link title="Using 3D transforms">$DOCS_URL/tutorials/3d/using_transforms.html</link>
		<link title="Matrix Transform Demo">https://godotengine.org/asset-library/asset/584</link>
		<link title="3D Platformer Demo">https://godotengine.org/asset-library/asset/125</link>
		<link title="2.5D Demo">https://godotengine.org/asset-library/asset/583</link>
	</tutorials>
	<constructors>
		<constructor name="Transform3D">
			<return type="Transform3D" />
			<description>
				Constructs a default-initialized [Transform3D] set to [constant IDENTITY].
			</description>
		</constructor>
		<constructor name="Transform3D">
			<return type="Transform3D" />
			<argument index="0" name="from" type="Transform3D" />
			<description>
				Constructs a [Transform3D] as a copy of the given [Transform3D].
			</description>
		</constructor>
		<constructor name="Transform3D">
			<return type="Transform3D" />
			<argument index="0" name="basis" type="Basis" />
			<argument index="1" name="origin" type="Vector3" />
			<description>
				Constructs a Transform3D from a [Basis] and [Vector3].
			</description>
		</constructor>
		<constructor name="Transform3D">
			<return type="Transform3D" />
			<argument index="0" name="from" type="Projection" />
			<description>
			</description>
		</constructor>
		<constructor name="Transform3D">
			<return type="Transform3D" />
			<argument index="0" name="x_axis" type="Vector3" />
			<argument index="1" name="y_axis" type="Vector3" />
			<argument index="2" name="z_axis" type="Vector3" />
			<argument index="3" name="origin" type="Vector3" />
			<description>
				Constructs a Transform3D from four [Vector3] values (matrix columns). Each axis corresponds to local basis vectors (some of which may be scaled).
			</description>
		</constructor>
	</constructors>
	<methods>
		<method name="affine_inverse" qualifiers="const">
			<return type="Transform3D" />
			<description>
				Returns the inverse of the transform, under the assumption that the transformation is composed of rotation, scaling and translation.
			</description>
		</method>
		<method name="interpolate_with" qualifiers="const">
			<return type="Transform3D" />
			<argument index="0" name="xform" type="Transform3D" />
			<argument index="1" name="weight" type="float" />
			<description>
				Returns a transform interpolated between this transform and another by a given [code]weight[/code] (on the range of 0.0 to 1.0).
			</description>
		</method>
		<method name="inverse" qualifiers="const">
			<return type="Transform3D" />
			<description>
				Returns the inverse of the transform, under the assumption that the transformation is composed of rotation and translation (no scaling, use [method affine_inverse] for transforms with scaling).
			</description>
		</method>
		<method name="is_equal_approx" qualifiers="const">
			<return type="bool" />
			<argument index="0" name="xform" type="Transform3D" />
			<description>
				Returns [code]true[/code] if this transform and [code]transform[/code] are approximately equal, by calling [code]is_equal_approx[/code] on each component.
			</description>
		</method>
		<method name="looking_at" qualifiers="const">
			<return type="Transform3D" />
			<argument index="0" name="target" type="Vector3" />
			<argument index="1" name="up" type="Vector3" default="Vector3(0, 1, 0)" />
			<description>
				Returns a copy of the transform rotated such that the forward axis (-Z) points towards the [code]target[/code] position.
				The up axis (+Y) points as close to the [code]up[/code] vector as possible while staying perpendicular to the forward axis. The resulting transform is orthonormalized. The existing rotation, scale, and skew information from the original transform is discarded. The [code]target[/code] and [code]up[/code] vectors cannot be zero, cannot be parallel to each other, and are defined in global/parent space.
			</description>
		</method>
		<method name="orthonormalized" qualifiers="const">
			<return type="Transform3D" />
			<description>
				Returns the transform with the basis orthogonal (90 degrees), and normalized axis vectors (scale of 1 or -1).
			</description>
		</method>
		<method name="rotated" qualifiers="const">
			<return type="Transform3D" />
			<argument index="0" name="axis" type="Vector3" />
			<argument index="1" name="angle" type="float" />
			<description>
				Returns a copy of the transform rotated around the given [code]axis[/code] by the given [code]angle[/code] (in radians).
				The [code]axis[/code] must be a normalized vector.
				This method is an optimized version of multiplying the given transform [code]X[/code]
				with a corresponding rotation transform [code]R[/code] from the left, i.e., [code]R * X[/code].
				This can be seen as transforming with respect to the global/parent frame.
			</description>
		</method>
		<method name="rotated_local" qualifiers="const">
			<return type="Transform3D" />
			<argument index="0" name="axis" type="Vector3" />
			<argument index="1" name="angle" type="float" />
			<description>
				Returns a copy of the transform rotated around the given [code]axis[/code] by the given [code]angle[/code] (in radians).
				The [code]axis[/code] must be a normalized vector.
				This method is an optimized version of multiplying the given transform [code]X[/code]
				with a corresponding rotation transform [code]R[/code] from the right, i.e., [code]X * R[/code].
				This can be seen as transforming with respect to the local frame.
			</description>
		</method>
		<method name="scaled" qualifiers="const">
			<return type="Transform3D" />
			<argument index="0" name="scale" type="Vector3" />
			<description>
				Returns a copy of the transform scaled by the given [code]scale[/code] factor.
				This method is an optimized version of multiplying the given transform [code]X[/code]
				with a corresponding scaling transform [code]S[/code] from the left, i.e., [code]S * X[/code].
				This can be seen as transforming with respect to the global/parent frame.
			</description>
		</method>
		<method name="scaled_local" qualifiers="const">
			<return type="Transform3D" />
			<argument index="0" name="scale" type="Vector3" />
			<description>
				Returns a copy of the transform scaled by the given [code]scale[/code] factor.
				This method is an optimized version of multiplying the given transform [code]X[/code]
				with a corresponding scaling transform [code]S[/code] from the right, i.e., [code]X * S[/code].
				This can be seen as transforming with respect to the local frame.
			</description>
		</method>
		<method name="spherical_interpolate_with" qualifiers="const">
			<return type="Transform3D" />
			<argument index="0" name="xform" type="Transform3D" />
			<argument index="1" name="weight" type="float" />
			<description>
				Returns a transform spherically interpolated between this transform and another by a given [code]weight[/code] (on the range of 0.0 to 1.0).
			</description>
		</method>
		<method name="translated" qualifiers="const">
			<return type="Transform3D" />
			<argument index="0" name="offset" type="Vector3" />
			<description>
				Returns a copy of the transform translated by the given [code]offset[/code].
				This method is an optimized version of multiplying the given transform [code]X[/code]
				with a corresponding translation transform [code]T[/code] from the left, i.e., [code]T * X[/code].
				This can be seen as transforming with respect to the global/parent frame.
			</description>
		</method>
		<method name="translated_local" qualifiers="const">
			<return type="Transform3D" />
			<argument index="0" name="offset" type="Vector3" />
			<description>
				Returns a copy of the transform translated by the given [code]offset[/code].
				This method is an optimized version of multiplying the given transform [code]X[/code]
				with a corresponding translation transform [code]T[/code] from the right, i.e., [code]X * T[/code].
				This can be seen as transforming with respect to the local frame.
			</description>
		</method>
	</methods>
	<members>
		<member name="basis" type="Basis" setter="" getter="" default="Basis(1, 0, 0, 0, 1, 0, 0, 0, 1)">
			The basis is a matrix containing 3 [Vector3] as its columns: X axis, Y axis, and Z axis. These vectors can be interpreted as the basis vectors of local coordinate system traveling with the object.
		</member>
		<member name="origin" type="Vector3" setter="" getter="" default="Vector3(0, 0, 0)">
			The translation offset of the transform (column 3, the fourth column). Equivalent to array index [code]3[/code].
		</member>
	</members>
	<constants>
		<constant name="IDENTITY" value="Transform3D(1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0)">
			[Transform3D] with no translation, rotation or scaling applied. When applied to other data structures, [constant IDENTITY] performs no transformation.
		</constant>
		<constant name="FLIP_X" value="Transform3D(-1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0)">
			[Transform3D] with mirroring applied perpendicular to the YZ plane.
		</constant>
		<constant name="FLIP_Y" value="Transform3D(1, 0, 0, 0, -1, 0, 0, 0, 1, 0, 0, 0)">
			[Transform3D] with mirroring applied perpendicular to the XZ plane.
		</constant>
		<constant name="FLIP_Z" value="Transform3D(1, 0, 0, 0, 1, 0, 0, 0, -1, 0, 0, 0)">
			[Transform3D] with mirroring applied perpendicular to the XY plane.
		</constant>
	</constants>
	<operators>
		<operator name="operator !=">
			<return type="bool" />
			<argument index="0" name="right" type="Transform3D" />
			<description>
				Returns [code]true[/code] if the transforms are not equal.
				[b]Note:[/b] Due to floating-point precision errors, consider using [method is_equal_approx] instead, which is more reliable.
			</description>
		</operator>
		<operator name="operator *">
			<return type="AABB" />
			<argument index="0" name="right" type="AABB" />
			<description>
				Transforms (multiplies) the [AABB] by the given [Transform3D] matrix.
			</description>
		</operator>
		<operator name="operator *">
			<return type="PackedVector3Array" />
			<argument index="0" name="right" type="PackedVector3Array" />
			<description>
				Transforms (multiplies) each element of the [Vector3] array by the given [Transform3D] matrix.
			</description>
		</operator>
		<operator name="operator *">
			<return type="Plane" />
			<argument index="0" name="right" type="Plane" />
			<description>
				Transforms (multiplies) the [Plane] by the given [Transform3D] transformation matrix.
			</description>
		</operator>
		<operator name="operator *">
			<return type="Transform3D" />
			<argument index="0" name="right" type="Transform3D" />
			<description>
				Composes these two transformation matrices by multiplying them together. This has the effect of transforming the second transform (the child) by the first transform (the parent).
			</description>
		</operator>
		<operator name="operator *">
			<return type="Vector3" />
			<argument index="0" name="right" type="Vector3" />
			<description>
				Transforms (multiplies) the [Vector3] by the given [Transform3D] matrix.
			</description>
		</operator>
		<operator name="operator *">
			<return type="Transform3D" />
			<argument index="0" name="right" type="float" />
			<description>
				This operator multiplies all components of the [Transform3D], including the origin vector, which scales it uniformly.
			</description>
		</operator>
		<operator name="operator *">
			<return type="Transform3D" />
			<argument index="0" name="right" type="int" />
			<description>
				This operator multiplies all components of the [Transform3D], including the origin vector, which scales it uniformly.
			</description>
		</operator>
		<operator name="operator ==">
			<return type="bool" />
			<argument index="0" name="right" type="Transform3D" />
			<description>
				Returns [code]true[/code] if the transforms are exactly equal.
				[b]Note:[/b] Due to floating-point precision errors, consider using [method is_equal_approx] instead, which is more reliable.
			</description>
		</operator>
	</operators>
</class>