1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
|
<?xml version="1.0" encoding="UTF-8" ?>
<class name="Transform2D" version="4.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:noNamespaceSchemaLocation="../class.xsd">
<brief_description>
2D transformation (2×3 matrix).
</brief_description>
<description>
2×3 matrix (2 rows, 3 columns) used for 2D linear transformations. It can represent transformations such as translation, rotation, or scaling. It consists of three [Vector2] values: [member x], [member y], and the [member origin].
For more information, read the "Matrices and transforms" documentation article.
</description>
<tutorials>
<link title="Math documentation index">$DOCS_URL/tutorials/math/index.html</link>
<link title="Matrices and transforms">$DOCS_URL/tutorials/math/matrices_and_transforms.html</link>
<link title="Matrix Transform Demo">https://godotengine.org/asset-library/asset/584</link>
<link title="2.5D Demo">https://godotengine.org/asset-library/asset/583</link>
</tutorials>
<constructors>
<constructor name="Transform2D">
<return type="Transform2D" />
<description>
Constructs a default-initialized [Transform2D] set to [constant IDENTITY].
</description>
</constructor>
<constructor name="Transform2D">
<return type="Transform2D" />
<param index="0" name="from" type="Transform2D" />
<description>
Constructs a [Transform2D] as a copy of the given [Transform2D].
</description>
</constructor>
<constructor name="Transform2D">
<return type="Transform2D" />
<param index="0" name="rotation" type="float" />
<param index="1" name="position" type="Vector2" />
<description>
Constructs the transform from a given angle (in radians) and position.
</description>
</constructor>
<constructor name="Transform2D">
<return type="Transform2D" />
<param index="0" name="rotation" type="float" />
<param index="1" name="scale" type="Vector2" />
<param index="2" name="skew" type="float" />
<param index="3" name="position" type="Vector2" />
<description>
Constructs the transform from a given angle (in radians), scale, skew (in radians) and position.
</description>
</constructor>
<constructor name="Transform2D">
<return type="Transform2D" />
<param index="0" name="x_axis" type="Vector2" />
<param index="1" name="y_axis" type="Vector2" />
<param index="2" name="origin" type="Vector2" />
<description>
Constructs the transform from 3 [Vector2] values representing [member x], [member y], and the [member origin] (the three column vectors).
</description>
</constructor>
</constructors>
<methods>
<method name="affine_inverse" qualifiers="const">
<return type="Transform2D" />
<description>
Returns the inverse of the transform, under the assumption that the transformation is composed of rotation, scaling and translation.
</description>
</method>
<method name="basis_xform" qualifiers="const">
<return type="Vector2" />
<param index="0" name="v" type="Vector2" />
<description>
Returns a vector transformed (multiplied) by the basis matrix.
This method does not account for translation (the origin vector).
</description>
</method>
<method name="basis_xform_inv" qualifiers="const">
<return type="Vector2" />
<param index="0" name="v" type="Vector2" />
<description>
Returns a vector transformed (multiplied) by the inverse basis matrix.
This method does not account for translation (the origin vector).
</description>
</method>
<method name="get_origin" qualifiers="const">
<return type="Vector2" />
<description>
Returns the transform's origin (translation).
</description>
</method>
<method name="get_rotation" qualifiers="const">
<return type="float" />
<description>
Returns the transform's rotation (in radians).
</description>
</method>
<method name="get_scale" qualifiers="const">
<return type="Vector2" />
<description>
Returns the scale.
</description>
</method>
<method name="get_skew" qualifiers="const">
<return type="float" />
<description>
Returns the transform's skew (in radians).
</description>
</method>
<method name="interpolate_with" qualifiers="const">
<return type="Transform2D" />
<param index="0" name="xform" type="Transform2D" />
<param index="1" name="weight" type="float" />
<description>
Returns a transform interpolated between this transform and another by a given [code]weight[/code] (on the range of 0.0 to 1.0).
</description>
</method>
<method name="inverse" qualifiers="const">
<return type="Transform2D" />
<description>
Returns the inverse of the transform, under the assumption that the transformation is composed of rotation and translation (no scaling, use [method affine_inverse] for transforms with scaling).
</description>
</method>
<method name="is_equal_approx" qualifiers="const">
<return type="bool" />
<param index="0" name="xform" type="Transform2D" />
<description>
Returns [code]true[/code] if this transform and [code]transform[/code] are approximately equal, by calling [code]is_equal_approx[/code] on each component.
</description>
</method>
<method name="looking_at" qualifiers="const">
<return type="Transform2D" />
<param index="0" name="target" type="Vector2" default="Vector2(0, 0)" />
<description>
Returns a copy of the transform rotated such that it's rotation on the X-axis points towards the [code]target[/code] position.
Operations take place in global space.
</description>
</method>
<method name="orthonormalized" qualifiers="const">
<return type="Transform2D" />
<description>
Returns the transform with the basis orthogonal (90 degrees), and normalized axis vectors (scale of 1 or -1).
</description>
</method>
<method name="rotated" qualifiers="const">
<return type="Transform2D" />
<param index="0" name="angle" type="float" />
<description>
Returns a copy of the transform rotated by the given [code]angle[/code] (in radians).
This method is an optimized version of multiplying the given transform [code]X[/code]
with a corresponding rotation transform [code]R[/code] from the left, i.e., [code]R * X[/code].
This can be seen as transforming with respect to the global/parent frame.
</description>
</method>
<method name="rotated_local" qualifiers="const">
<return type="Transform2D" />
<param index="0" name="angle" type="float" />
<description>
Returns a copy of the transform rotated by the given [code]angle[/code] (in radians).
This method is an optimized version of multiplying the given transform [code]X[/code]
with a corresponding rotation transform [code]R[/code] from the right, i.e., [code]X * R[/code].
This can be seen as transforming with respect to the local frame.
</description>
</method>
<method name="scaled" qualifiers="const">
<return type="Transform2D" />
<param index="0" name="scale" type="Vector2" />
<description>
Returns a copy of the transform scaled by the given [code]scale[/code] factor.
This method is an optimized version of multiplying the given transform [code]X[/code]
with a corresponding scaling transform [code]S[/code] from the left, i.e., [code]S * X[/code].
This can be seen as transforming with respect to the global/parent frame.
</description>
</method>
<method name="scaled_local" qualifiers="const">
<return type="Transform2D" />
<param index="0" name="scale" type="Vector2" />
<description>
Returns a copy of the transform scaled by the given [code]scale[/code] factor.
This method is an optimized version of multiplying the given transform [code]X[/code]
with a corresponding scaling transform [code]S[/code] from the right, i.e., [code]X * S[/code].
This can be seen as transforming with respect to the local frame.
</description>
</method>
<method name="set_rotation">
<return type="void" />
<param index="0" name="rotation" type="float" />
<description>
Sets the transform's rotation (in radians).
</description>
</method>
<method name="set_scale">
<return type="void" />
<param index="0" name="scale" type="Vector2" />
<description>
Sets the transform's scale.
[b]Note:[/b] Negative X scales in 2D are not decomposable from the transformation matrix. Due to the way scale is represented with transformation matrices in Godot, negative scales on the X axis will be changed to negative scales on the Y axis and a rotation of 180 degrees when decomposed.
</description>
</method>
<method name="set_skew">
<return type="void" />
<param index="0" name="skew" type="float" />
<description>
Sets the transform's skew (in radians).
</description>
</method>
<method name="translated" qualifiers="const">
<return type="Transform2D" />
<param index="0" name="offset" type="Vector2" />
<description>
Returns a copy of the transform translated by the given [code]offset[/code].
This method is an optimized version of multiplying the given transform [code]X[/code]
with a corresponding translation transform [code]T[/code] from the left, i.e., [code]T * X[/code].
This can be seen as transforming with respect to the global/parent frame.
</description>
</method>
<method name="translated_local" qualifiers="const">
<return type="Transform2D" />
<param index="0" name="offset" type="Vector2" />
<description>
Returns a copy of the transform translated by the given [code]offset[/code].
This method is an optimized version of multiplying the given transform [code]X[/code]
with a corresponding translation transform [code]T[/code] from the right, i.e., [code]X * T[/code].
This can be seen as transforming with respect to the local frame.
</description>
</method>
</methods>
<members>
<member name="origin" type="Vector2" setter="" getter="" default="Vector2(0, 0)">
The origin vector (column 2, the third column). Equivalent to array index [code]2[/code]. The origin vector represents translation.
</member>
<member name="x" type="Vector2" setter="" getter="" default="Vector2(1, 0)">
The basis matrix's X vector (column 0). Equivalent to array index [code]0[/code].
</member>
<member name="y" type="Vector2" setter="" getter="" default="Vector2(0, 1)">
The basis matrix's Y vector (column 1). Equivalent to array index [code]1[/code].
</member>
</members>
<constants>
<constant name="IDENTITY" value="Transform2D(1, 0, 0, 1, 0, 0)">
The identity [Transform2D] with no translation, rotation or scaling applied. When applied to other data structures, [constant IDENTITY] performs no transformation.
</constant>
<constant name="FLIP_X" value="Transform2D(-1, 0, 0, 1, 0, 0)">
The [Transform2D] that will flip something along the X axis.
</constant>
<constant name="FLIP_Y" value="Transform2D(1, 0, 0, -1, 0, 0)">
The [Transform2D] that will flip something along the Y axis.
</constant>
</constants>
<operators>
<operator name="operator !=">
<return type="bool" />
<param index="0" name="right" type="Transform2D" />
<description>
Returns [code]true[/code] if the transforms are not equal.
[b]Note:[/b] Due to floating-point precision errors, consider using [method is_equal_approx] instead, which is more reliable.
</description>
</operator>
<operator name="operator *">
<return type="PackedVector2Array" />
<param index="0" name="right" type="PackedVector2Array" />
<description>
Transforms (multiplies) each element of the [Vector2] array by the given [Transform2D] matrix.
</description>
</operator>
<operator name="operator *">
<return type="Rect2" />
<param index="0" name="right" type="Rect2" />
<description>
Transforms (multiplies) the [Rect2] by the given [Transform2D] matrix.
</description>
</operator>
<operator name="operator *">
<return type="Transform2D" />
<param index="0" name="right" type="Transform2D" />
<description>
Composes these two transformation matrices by multiplying them together. This has the effect of transforming the second transform (the child) by the first transform (the parent).
</description>
</operator>
<operator name="operator *">
<return type="Vector2" />
<param index="0" name="right" type="Vector2" />
<description>
Transforms (multiplies) the [Vector2] by the given [Transform2D] matrix.
</description>
</operator>
<operator name="operator *">
<return type="Transform2D" />
<param index="0" name="right" type="float" />
<description>
This operator multiplies all components of the [Transform2D], including the origin vector, which scales it uniformly.
</description>
</operator>
<operator name="operator *">
<return type="Transform2D" />
<param index="0" name="right" type="int" />
<description>
This operator multiplies all components of the [Transform2D], including the origin vector, which scales it uniformly.
</description>
</operator>
<operator name="operator ==">
<return type="bool" />
<param index="0" name="right" type="Transform2D" />
<description>
Returns [code]true[/code] if the transforms are exactly equal.
[b]Note:[/b] Due to floating-point precision errors, consider using [method is_equal_approx] instead, which is more reliable.
</description>
</operator>
<operator name="operator []">
<return type="Vector2" />
<param index="0" name="index" type="int" />
<description>
Access transform components using their index. [code]t[0][/code] is equivalent to [code]t.x[/code], [code]t[1][/code] is equivalent to [code]t.y[/code], and [code]t[2][/code] is equivalent to [code]t.origin[/code].
</description>
</operator>
</operators>
</class>
|