summaryrefslogtreecommitdiff
path: root/doc/classes/Transform2D.xml
blob: 2c4d35eae5039d015d547f856ccdbbd96c57dc2d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
<?xml version="1.0" encoding="UTF-8" ?>
<class name="Transform2D" version="4.0">
	<brief_description>
		2D transformation (2×3 matrix).
	</brief_description>
	<description>
		2×3 matrix (2 rows, 3 columns) used for 2D linear transformations. It can represent transformations such as translation, rotation, or scaling. It consists of a three [Vector2] values: [member x], [member y], and the [member origin].
		For more information, read the "Matrices and transforms" documentation article.
	</description>
	<tutorials>
		<link title="Math tutorial index">https://docs.godotengine.org/en/latest/tutorials/math/index.html</link>
		<link title="Matrices and transforms">https://docs.godotengine.org/en/latest/tutorials/math/matrices_and_transforms.html</link>
		<link title="Matrix Transform Demo">https://godotengine.org/asset-library/asset/584</link>
		<link title="2.5D Demo">https://godotengine.org/asset-library/asset/583</link>
	</tutorials>
	<methods>
		<method name="Transform2D" qualifiers="constructor">
			<return type="Transform2D">
			</return>
			<description>
				Constructs a default-initialized [Transform2D] set to [constant IDENTITY].
			</description>
		</method>
		<method name="Transform2D" qualifiers="constructor">
			<return type="Transform2D">
			</return>
			<argument index="0" name="from" type="Transform2D">
			</argument>
			<description>
				Constructs a [Transform2D] as a copy of the given [Transform2D].
			</description>
		</method>
		<method name="Transform2D" qualifiers="constructor">
			<return type="Transform2D">
			</return>
			<argument index="0" name="rotation" type="float">
			</argument>
			<argument index="1" name="position" type="Vector2">
			</argument>
			<description>
				Constructs the transform from a given angle (in radians) and position.
			</description>
		</method>
		<method name="Transform2D" qualifiers="constructor">
			<return type="Transform2D">
			</return>
			<argument index="0" name="x_axis" type="Vector2">
			</argument>
			<argument index="1" name="y_axis" type="Vector2">
			</argument>
			<argument index="2" name="origin" type="Vector2">
			</argument>
			<description>
				Constructs the transform from 3 [Vector2] values representing [member x], [member y], and the [member origin] (the three column vectors).
			</description>
		</method>
		<method name="affine_inverse" qualifiers="const">
			<return type="Transform2D">
			</return>
			<description>
				Returns the inverse of the transform, under the assumption that the transformation is composed of rotation, scaling and translation.
			</description>
		</method>
		<method name="basis_xform" qualifiers="const">
			<return type="Vector2">
			</return>
			<argument index="0" name="v" type="Vector2">
			</argument>
			<description>
				Returns a vector transformed (multiplied) by the basis matrix.
				This method does not account for translation (the origin vector).
			</description>
		</method>
		<method name="basis_xform_inv" qualifiers="const">
			<return type="Vector2">
			</return>
			<argument index="0" name="v" type="Vector2">
			</argument>
			<description>
				Returns a vector transformed (multiplied) by the inverse basis matrix.
				This method does not account for translation (the origin vector).
			</description>
		</method>
		<method name="get_origin" qualifiers="const">
			<return type="Vector2">
			</return>
			<description>
				Returns the transform's origin (translation).
			</description>
		</method>
		<method name="get_rotation" qualifiers="const">
			<return type="float">
			</return>
			<description>
				Returns the transform's rotation (in radians).
			</description>
		</method>
		<method name="get_scale" qualifiers="const">
			<return type="Vector2">
			</return>
			<description>
				Returns the scale.
			</description>
		</method>
		<method name="interpolate_with" qualifiers="const">
			<return type="Transform2D">
			</return>
			<argument index="0" name="xform" type="Transform2D">
			</argument>
			<argument index="1" name="weight" type="float">
			</argument>
			<description>
				Returns a transform interpolated between this transform and another by a given [code]weight[/code] (on the range of 0.0 to 1.0).
			</description>
		</method>
		<method name="inverse" qualifiers="const">
			<return type="Transform2D">
			</return>
			<description>
				Returns the inverse of the transform, under the assumption that the transformation is composed of rotation and translation (no scaling, use [method affine_inverse] for transforms with scaling).
			</description>
		</method>
		<method name="is_equal_approx" qualifiers="const">
			<return type="bool">
			</return>
			<argument index="0" name="xform" type="Transform2D">
			</argument>
			<description>
				Returns [code]true[/code] if this transform and [code]transform[/code] are approximately equal, by calling [code]is_equal_approx[/code] on each component.
			</description>
		</method>
		<method name="looking_at" qualifiers="const">
			<return type="Transform2D">
			</return>
			<argument index="0" name="target" type="Vector2" default="Transform2D(1, 0, 0, 1, 0, 0)">
			</argument>
			<description>
				Returns a copy of the transform rotated such that it's rotation on the X-axis points towards the [code]target[/code] position.
				Operations take place in global space.
			</description>
		</method>
		<method name="operator !=" qualifiers="operator">
			<return type="bool">
			</return>
			<argument index="0" name="right" type="Transform2D">
			</argument>
			<description>
			</description>
		</method>
		<method name="operator *" qualifiers="operator">
			<return type="PackedVector2Array">
			</return>
			<argument index="0" name="right" type="PackedVector2Array">
			</argument>
			<description>
			</description>
		</method>
		<method name="operator *" qualifiers="operator">
			<return type="Transform2D">
			</return>
			<argument index="0" name="right" type="Transform2D">
			</argument>
			<description>
			</description>
		</method>
		<method name="operator *" qualifiers="operator">
			<return type="Rect2">
			</return>
			<argument index="0" name="right" type="Rect2">
			</argument>
			<description>
			</description>
		</method>
		<method name="operator *" qualifiers="operator">
			<return type="Vector2">
			</return>
			<argument index="0" name="right" type="Vector2">
			</argument>
			<description>
			</description>
		</method>
		<method name="operator ==" qualifiers="operator">
			<return type="bool">
			</return>
			<argument index="0" name="right" type="Transform2D">
			</argument>
			<description>
			</description>
		</method>
		<method name="operator []" qualifiers="operator">
			<return type="Vector2">
			</return>
			<argument index="0" name="index" type="int">
			</argument>
			<description>
			</description>
		</method>
		<method name="orthonormalized" qualifiers="const">
			<return type="Transform2D">
			</return>
			<description>
				Returns the transform with the basis orthogonal (90 degrees), and normalized axis vectors (scale of 1 or -1).
			</description>
		</method>
		<method name="rotated" qualifiers="const">
			<return type="Transform2D">
			</return>
			<argument index="0" name="phi" type="float">
			</argument>
			<description>
				Rotates the transform by the given angle (in radians), using matrix multiplication.
			</description>
		</method>
		<method name="scaled" qualifiers="const">
			<return type="Transform2D">
			</return>
			<argument index="0" name="scale" type="Vector2">
			</argument>
			<description>
				Scales the transform by the given scale factor, using matrix multiplication.
			</description>
		</method>
		<method name="set_rotation">
			<return type="void">
			</return>
			<argument index="0" name="rotation" type="float">
			</argument>
			<description>
				Sets the transform's rotation (in radians).
			</description>
		</method>
		<method name="translated" qualifiers="const">
			<return type="Transform2D">
			</return>
			<argument index="0" name="offset" type="Vector2">
			</argument>
			<description>
				Translates the transform by the given offset, relative to the transform's basis vectors.
				Unlike [method rotated] and [method scaled], this does not use matrix multiplication.
			</description>
		</method>
	</methods>
	<members>
		<member name="origin" type="Vector2" setter="" getter="" default="Vector2(0, 0)">
			The origin vector (column 2, the third column). Equivalent to array index [code]2[/code]. The origin vector represents translation.
		</member>
		<member name="x" type="Vector2" setter="" getter="" default="Vector2(1, 0)">
			The basis matrix's X vector (column 0). Equivalent to array index [code]0[/code].
		</member>
		<member name="y" type="Vector2" setter="" getter="" default="Vector2(0, 1)">
			The basis matrix's Y vector (column 1). Equivalent to array index [code]1[/code].
		</member>
	</members>
	<constants>
		<constant name="IDENTITY" value="Transform2D(1, 0, 0, 1, 0, 0)">
			The identity [Transform2D] with no translation, rotation or scaling applied. When applied to other data structures, [constant IDENTITY] performs no transformation.
		</constant>
		<constant name="FLIP_X" value="Transform2D(-1, 0, 0, 1, 0, 0)">
			The [Transform2D] that will flip something along the X axis.
		</constant>
		<constant name="FLIP_Y" value="Transform2D(1, 0, 0, -1, 0, 0)">
			The [Transform2D] that will flip something along the Y axis.
		</constant>
	</constants>
</class>