1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
|
<?xml version="1.0" encoding="UTF-8" ?>
<class name="Transform" version="4.0">
<brief_description>
3D transformation (3×4 matrix).
</brief_description>
<description>
3×4 matrix (3 rows, 4 columns) used for 3D linear transformations. It can represent transformations such as translation, rotation, or scaling. It consists of a [member basis] (first 3 columns) and a [Vector3] for the [member origin] (last column).
For more information, read the "Matrices and transforms" documentation article.
</description>
<tutorials>
<link title="Math tutorial index">https://docs.godotengine.org/en/latest/tutorials/math/index.html</link>
<link title="Matrices and transforms">https://docs.godotengine.org/en/latest/tutorials/math/matrices_and_transforms.html</link>
<link title="Using 3D transforms">https://docs.godotengine.org/en/latest/tutorials/3d/using_transforms.html</link>
<link title="Matrix Transform Demo">https://godotengine.org/asset-library/asset/584</link>
<link title="3D Platformer Demo">https://godotengine.org/asset-library/asset/125</link>
<link title="2.5D Demo">https://godotengine.org/asset-library/asset/583</link>
</tutorials>
<methods>
<method name="Transform">
<return type="Transform">
</return>
<argument index="0" name="x_axis" type="Vector3">
</argument>
<argument index="1" name="y_axis" type="Vector3">
</argument>
<argument index="2" name="z_axis" type="Vector3">
</argument>
<argument index="3" name="origin" type="Vector3">
</argument>
<description>
Constructs a Transform from four [Vector3] values (matrix columns). Each axis corresponds to local basis vectors (some of which may be scaled).
</description>
</method>
<method name="Transform">
<return type="Transform">
</return>
<argument index="0" name="basis" type="Basis">
</argument>
<argument index="1" name="origin" type="Vector3">
</argument>
<description>
Constructs a Transform from a [Basis] and [Vector3].
</description>
</method>
<method name="Transform">
<return type="Transform">
</return>
<argument index="0" name="from" type="Transform2D">
</argument>
<description>
Constructs a Transform from a [Transform2D].
</description>
</method>
<method name="Transform">
<return type="Transform">
</return>
<argument index="0" name="from" type="Quat">
</argument>
<description>
Constructs a Transform from a [Quat]. The origin will be [code]Vector3(0, 0, 0)[/code].
</description>
</method>
<method name="Transform">
<return type="Transform">
</return>
<argument index="0" name="from" type="Basis">
</argument>
<description>
Constructs the Transform from a [Basis]. The origin will be Vector3(0, 0, 0).
</description>
</method>
<method name="affine_inverse">
<return type="Transform">
</return>
<description>
Returns the inverse of the transform, under the assumption that the transformation is composed of rotation, scaling and translation.
</description>
</method>
<method name="interpolate_with">
<return type="Transform">
</return>
<argument index="0" name="transform" type="Transform">
</argument>
<argument index="1" name="weight" type="float">
</argument>
<description>
Interpolates the transform to other Transform by weight amount (on the range of 0.0 to 1.0).
</description>
</method>
<method name="inverse">
<return type="Transform">
</return>
<description>
Returns the inverse of the transform, under the assumption that the transformation is composed of rotation and translation (no scaling, use affine_inverse for transforms with scaling).
</description>
</method>
<method name="is_equal_approx">
<return type="bool">
</return>
<argument index="0" name="transform" type="Transform">
</argument>
<description>
Returns [code]true[/code] if this transform and [code]transform[/code] are approximately equal, by calling [code]is_equal_approx[/code] on each component.
</description>
</method>
<method name="looking_at">
<return type="Transform">
</return>
<argument index="0" name="target" type="Vector3">
</argument>
<argument index="1" name="up" type="Vector3">
</argument>
<description>
Returns a copy of the transform rotated such that its -Z axis points towards the [code]target[/code] position.
The transform will first be rotated around the given [code]up[/code] vector, and then fully aligned to the target by a further rotation around an axis perpendicular to both the [code]target[/code] and [code]up[/code] vectors.
Operations take place in global space.
</description>
</method>
<method name="orthonormalized">
<return type="Transform">
</return>
<description>
Returns the transform with the basis orthogonal (90 degrees), and normalized axis vectors.
</description>
</method>
<method name="rotated">
<return type="Transform">
</return>
<argument index="0" name="axis" type="Vector3">
</argument>
<argument index="1" name="phi" type="float">
</argument>
<description>
Rotates the transform around the given axis by the given angle (in radians), using matrix multiplication. The axis must be a normalized vector.
</description>
</method>
<method name="scaled">
<return type="Transform">
</return>
<argument index="0" name="scale" type="Vector3">
</argument>
<description>
Scales basis and origin of the transform by the given scale factor, using matrix multiplication.
</description>
</method>
<method name="translated">
<return type="Transform">
</return>
<argument index="0" name="offset" type="Vector3">
</argument>
<description>
Translates the transform by the given offset, relative to the transform's basis vectors.
Unlike [method rotated] and [method scaled], this does not use matrix multiplication.
</description>
</method>
<method name="xform">
<return type="Variant">
</return>
<argument index="0" name="v" type="Variant">
</argument>
<description>
Transforms the given [Vector3], [Plane], [AABB], or [PackedVector3Array] by this transform.
</description>
</method>
<method name="xform_inv">
<return type="Variant">
</return>
<argument index="0" name="v" type="Variant">
</argument>
<description>
Inverse-transforms the given [Vector3], [Plane], [AABB], or [PackedVector3Array] by this transform.
</description>
</method>
</methods>
<members>
<member name="basis" type="Basis" setter="" getter="" default="Basis( 1, 0, 0, 0, 1, 0, 0, 0, 1 )">
The basis is a matrix containing 3 [Vector3] as its columns: X axis, Y axis, and Z axis. These vectors can be interpreted as the basis vectors of local coordinate system traveling with the object.
</member>
<member name="origin" type="Vector3" setter="" getter="" default="Vector3( 0, 0, 0 )">
The translation offset of the transform (column 3, the fourth column). Equivalent to array index [code]3[/code].
</member>
</members>
<constants>
<constant name="IDENTITY" value="Transform( 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0 )">
[Transform] with no translation, rotation or scaling applied. When applied to other data structures, [constant IDENTITY] performs no transformation.
</constant>
<constant name="FLIP_X" value="Transform( -1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0 )">
[Transform] with mirroring applied perpendicular to the YZ plane.
</constant>
<constant name="FLIP_Y" value="Transform( 1, 0, 0, 0, -1, 0, 0, 0, 1, 0, 0, 0 )">
[Transform] with mirroring applied perpendicular to the XZ plane.
</constant>
<constant name="FLIP_Z" value="Transform( 1, 0, 0, 0, 1, 0, 0, 0, -1, 0, 0, 0 )">
[Transform] with mirroring applied perpendicular to the XY plane.
</constant>
</constants>
</class>
|