1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
|
<?xml version="1.0" encoding="UTF-8" ?>
<class name="Geometry3D" inherits="Object" version="4.0">
<brief_description>
Helper node to calculate generic geometry operations in 3D space.
</brief_description>
<description>
Geometry3D provides users with a set of helper functions to create geometric shapes, compute intersections between shapes, and process various other geometric operations.
</description>
<tutorials>
</tutorials>
<methods>
<method name="build_box_planes">
<return type="Array" />
<argument index="0" name="extents" type="Vector3" />
<description>
Returns an array with 6 [Plane]s that describe the sides of a box centered at the origin. The box size is defined by [code]extents[/code], which represents one (positive) corner of the box (i.e. half its actual size).
</description>
</method>
<method name="build_capsule_planes">
<return type="Array" />
<argument index="0" name="radius" type="float" />
<argument index="1" name="height" type="float" />
<argument index="2" name="sides" type="int" />
<argument index="3" name="lats" type="int" />
<argument index="4" name="axis" type="int" enum="Vector3.Axis" default="2" />
<description>
Returns an array of [Plane]s closely bounding a faceted capsule centered at the origin with radius [code]radius[/code] and height [code]height[/code]. The parameter [code]sides[/code] defines how many planes will be generated for the side part of the capsule, whereas [code]lats[/code] gives the number of latitudinal steps at the bottom and top of the capsule. The parameter [code]axis[/code] describes the axis along which the capsule is oriented (0 for X, 1 for Y, 2 for Z).
</description>
</method>
<method name="build_cylinder_planes">
<return type="Array" />
<argument index="0" name="radius" type="float" />
<argument index="1" name="height" type="float" />
<argument index="2" name="sides" type="int" />
<argument index="3" name="axis" type="int" enum="Vector3.Axis" default="2" />
<description>
Returns an array of [Plane]s closely bounding a faceted cylinder centered at the origin with radius [code]radius[/code] and height [code]height[/code]. The parameter [code]sides[/code] defines how many planes will be generated for the round part of the cylinder. The parameter [code]axis[/code] describes the axis along which the cylinder is oriented (0 for X, 1 for Y, 2 for Z).
</description>
</method>
<method name="clip_polygon">
<return type="PackedVector3Array" />
<argument index="0" name="points" type="PackedVector3Array" />
<argument index="1" name="plane" type="Plane" />
<description>
Clips the polygon defined by the points in [code]points[/code] against the [code]plane[/code] and returns the points of the clipped polygon.
</description>
</method>
<method name="get_closest_point_to_segment">
<return type="Vector3" />
<argument index="0" name="point" type="Vector3" />
<argument index="1" name="s1" type="Vector3" />
<argument index="2" name="s2" type="Vector3" />
<description>
Returns the 3D point on the 3D segment ([code]s1[/code], [code]s2[/code]) that is closest to [code]point[/code]. The returned point will always be inside the specified segment.
</description>
</method>
<method name="get_closest_point_to_segment_uncapped">
<return type="Vector3" />
<argument index="0" name="point" type="Vector3" />
<argument index="1" name="s1" type="Vector3" />
<argument index="2" name="s2" type="Vector3" />
<description>
Returns the 3D point on the 3D line defined by ([code]s1[/code], [code]s2[/code]) that is closest to [code]point[/code]. The returned point can be inside the segment ([code]s1[/code], [code]s2[/code]) or outside of it, i.e. somewhere on the line extending from the segment.
</description>
</method>
<method name="get_closest_points_between_segments">
<return type="PackedVector3Array" />
<argument index="0" name="p1" type="Vector3" />
<argument index="1" name="p2" type="Vector3" />
<argument index="2" name="q1" type="Vector3" />
<argument index="3" name="q2" type="Vector3" />
<description>
Given the two 3D segments ([code]p1[/code], [code]p2[/code]) and ([code]q1[/code], [code]q2[/code]), finds those two points on the two segments that are closest to each other. Returns a [PackedVector3Array] that contains this point on ([code]p1[/code], [code]p2[/code]) as well the accompanying point on ([code]q1[/code], [code]q2[/code]).
</description>
</method>
<method name="ray_intersects_triangle">
<return type="Variant" />
<argument index="0" name="from" type="Vector3" />
<argument index="1" name="dir" type="Vector3" />
<argument index="2" name="a" type="Vector3" />
<argument index="3" name="b" type="Vector3" />
<argument index="4" name="c" type="Vector3" />
<description>
Tests if the 3D ray starting at [code]from[/code] with the direction of [code]dir[/code] intersects the triangle specified by [code]a[/code], [code]b[/code] and [code]c[/code]. If yes, returns the point of intersection as [Vector3]. If no intersection takes place, an empty [Variant] is returned.
</description>
</method>
<method name="segment_intersects_convex">
<return type="PackedVector3Array" />
<argument index="0" name="from" type="Vector3" />
<argument index="1" name="to" type="Vector3" />
<argument index="2" name="planes" type="Array" />
<description>
Given a convex hull defined though the [Plane]s in the array [code]planes[/code], tests if the segment ([code]from[/code], [code]to[/code]) intersects with that hull. If an intersection is found, returns a [PackedVector3Array] containing the point the intersection and the hull's normal. Otherwise, returns an empty array.
</description>
</method>
<method name="segment_intersects_cylinder">
<return type="PackedVector3Array" />
<argument index="0" name="from" type="Vector3" />
<argument index="1" name="to" type="Vector3" />
<argument index="2" name="height" type="float" />
<argument index="3" name="radius" type="float" />
<description>
Checks if the segment ([code]from[/code], [code]to[/code]) intersects the cylinder with height [code]height[/code] that is centered at the origin and has radius [code]radius[/code]. If no, returns an empty [PackedVector3Array]. If an intersection takes place, the returned array contains the point of intersection and the cylinder's normal at the point of intersection.
</description>
</method>
<method name="segment_intersects_sphere">
<return type="PackedVector3Array" />
<argument index="0" name="from" type="Vector3" />
<argument index="1" name="to" type="Vector3" />
<argument index="2" name="sphere_position" type="Vector3" />
<argument index="3" name="sphere_radius" type="float" />
<description>
Checks if the segment ([code]from[/code], [code]to[/code]) intersects the sphere that is located at [code]sphere_position[/code] and has radius [code]sphere_radius[/code]. If no, returns an empty [PackedVector3Array]. If yes, returns a [PackedVector3Array] containing the point of intersection and the sphere's normal at the point of intersection.
</description>
</method>
<method name="segment_intersects_triangle">
<return type="Variant" />
<argument index="0" name="from" type="Vector3" />
<argument index="1" name="to" type="Vector3" />
<argument index="2" name="a" type="Vector3" />
<argument index="3" name="b" type="Vector3" />
<argument index="4" name="c" type="Vector3" />
<description>
Tests if the segment ([code]from[/code], [code]to[/code]) intersects the triangle [code]a[/code], [code]b[/code], [code]c[/code]. If yes, returns the point of intersection as [Vector3]. If no intersection takes place, an empty [Variant] is returned.
</description>
</method>
</methods>
<constants>
</constants>
</class>
|