1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
|
<?xml version="1.0" encoding="UTF-8" ?>
<class name="Geometry" inherits="Object" version="3.2">
<brief_description>
Helper node to calculate generic geometry operations.
</brief_description>
<description>
Geometry provides users with a set of helper functions to create geometric shapes, compute intersections between shapes, and process various other geometric operations.
</description>
<tutorials>
</tutorials>
<methods>
<method name="build_box_planes">
<return type="Array">
</return>
<argument index="0" name="extents" type="Vector3">
</argument>
<description>
Returns an array with 6 [Plane]s that describe the sides of a box centered at the origin. The box size is defined by [code]extents[/code], which represents one (positive) corner of the box (i.e. half its actual size).
</description>
</method>
<method name="build_capsule_planes">
<return type="Array">
</return>
<argument index="0" name="radius" type="float">
</argument>
<argument index="1" name="height" type="float">
</argument>
<argument index="2" name="sides" type="int">
</argument>
<argument index="3" name="lats" type="int">
</argument>
<argument index="4" name="axis" type="int" enum="Vector3.Axis" default="2">
</argument>
<description>
Returns an array of [Plane]s closely bounding a faceted capsule centered at the origin with radius [code]radius[/code] and height [code]height[/code]. The parameter [code]sides[/code] defines how many planes will be generated for the side part of the capsule, whereas [code]lats[/code] gives the number of latitudinal steps at the bottom and top of the capsule. The parameter [code]axis[/code] describes the axis along which the capsule is oriented (0 for X, 1 for Y, 2 for Z).
</description>
</method>
<method name="build_cylinder_planes">
<return type="Array">
</return>
<argument index="0" name="radius" type="float">
</argument>
<argument index="1" name="height" type="float">
</argument>
<argument index="2" name="sides" type="int">
</argument>
<argument index="3" name="axis" type="int" enum="Vector3.Axis" default="2">
</argument>
<description>
Returns an array of [Plane]s closely bounding a faceted cylinder centered at the origin with radius [code]radius[/code] and height [code]height[/code]. The parameter [code]sides[/code] defines how many planes will be generated for the round part of the cylinder. The parameter [code]axis[/code] describes the axis along which the cylinder is oriented (0 for X, 1 for Y, 2 for Z).
</description>
</method>
<method name="clip_polygon">
<return type="PoolVector3Array">
</return>
<argument index="0" name="points" type="PoolVector3Array">
</argument>
<argument index="1" name="plane" type="Plane">
</argument>
<description>
Clips the polygon defined by the points in [code]points[/code] against the [code]plane[/code] and returns the points of the clipped polygon.
</description>
</method>
<method name="clip_polygons_2d">
<return type="Array">
</return>
<argument index="0" name="polygon_a" type="PoolVector2Array">
</argument>
<argument index="1" name="polygon_b" type="PoolVector2Array">
</argument>
<description>
Clips [code]polygon_a[/code] against [code]polygon_b[/code] and returns an array of clipped polygons. This performs [constant OPERATION_DIFFERENCE] between polygons. Returns an empty array if [code]polygon_b[/code] completely overlaps [code]polygon_a[/code].
If [code]polygon_b[/code] is enclosed by [code]polygon_a[/code], returns an outer polygon (boundary) and inner polygon (hole) which could be distiguished by calling [method is_polygon_clockwise].
</description>
</method>
<method name="clip_polyline_with_polygon_2d">
<return type="Array">
</return>
<argument index="0" name="polyline" type="PoolVector2Array">
</argument>
<argument index="1" name="polygon" type="PoolVector2Array">
</argument>
<description>
Clips [code]polyline[/code] against [code]polygon[/code] and returns an array of clipped polylines. This performs [constant OPERATION_DIFFERENCE] between the polyline and the polygon. This operation can be thought of as cutting a line with a closed shape.
</description>
</method>
<method name="convex_hull_2d">
<return type="PoolVector2Array">
</return>
<argument index="0" name="points" type="PoolVector2Array">
</argument>
<description>
Given an array of [Vector2]s, returns the convex hull as a list of points in counterclockwise order. The last point is the same as the first one.
</description>
</method>
<method name="exclude_polygons_2d">
<return type="Array">
</return>
<argument index="0" name="polygon_a" type="PoolVector2Array">
</argument>
<argument index="1" name="polygon_b" type="PoolVector2Array">
</argument>
<description>
Mutually excludes common area defined by intersection of [code]polygon_a[/code] and [code]polygon_b[/code] (see [method intersect_polygons_2d]) and returns an array of excluded polygons. This performs [constant OPERATION_XOR] between polygons. In other words, returns all but common area between polygons.
The operation may result in an outer polygon (boundary) and inner polygon (hole) produced which could be distiguished by calling [method is_polygon_clockwise].
</description>
</method>
<method name="get_closest_point_to_segment">
<return type="Vector3">
</return>
<argument index="0" name="point" type="Vector3">
</argument>
<argument index="1" name="s1" type="Vector3">
</argument>
<argument index="2" name="s2" type="Vector3">
</argument>
<description>
Returns the 3D point on the 3D segment ([code]s1[/code], [code]s2[/code]) that is closest to [code]point[/code]. The returned point will always be inside the specified segment.
</description>
</method>
<method name="get_closest_point_to_segment_2d">
<return type="Vector2">
</return>
<argument index="0" name="point" type="Vector2">
</argument>
<argument index="1" name="s1" type="Vector2">
</argument>
<argument index="2" name="s2" type="Vector2">
</argument>
<description>
Returns the 2D point on the 2D segment ([code]s1[/code], [code]s2[/code]) that is closest to [code]point[/code]. The returned point will always be inside the specified segment.
</description>
</method>
<method name="get_closest_point_to_segment_uncapped">
<return type="Vector3">
</return>
<argument index="0" name="point" type="Vector3">
</argument>
<argument index="1" name="s1" type="Vector3">
</argument>
<argument index="2" name="s2" type="Vector3">
</argument>
<description>
Returns the 3D point on the 3D line defined by ([code]s1[/code], [code]s2[/code]) that is closest to [code]point[/code]. The returned point can be inside the segment ([code]s1[/code], [code]s2[/code]) or outside of it, i.e. somewhere on the line extending from the segment.
</description>
</method>
<method name="get_closest_point_to_segment_uncapped_2d">
<return type="Vector2">
</return>
<argument index="0" name="point" type="Vector2">
</argument>
<argument index="1" name="s1" type="Vector2">
</argument>
<argument index="2" name="s2" type="Vector2">
</argument>
<description>
Returns the 2D point on the 2D line defined by ([code]s1[/code], [code]s2[/code]) that is closest to [code]point[/code]. The returned point can be inside the segment ([code]s1[/code], [code]s2[/code]) or outside of it, i.e. somewhere on the line extending from the segment.
</description>
</method>
<method name="get_closest_points_between_segments">
<return type="PoolVector3Array">
</return>
<argument index="0" name="p1" type="Vector3">
</argument>
<argument index="1" name="p2" type="Vector3">
</argument>
<argument index="2" name="q1" type="Vector3">
</argument>
<argument index="3" name="q2" type="Vector3">
</argument>
<description>
Given the two 3D segments ([code]p1[/code], [code]p2[/code]) and ([code]q1[/code], [code]q2[/code]), finds those two points on the two segments that are closest to each other. Returns a [PoolVector3Array] that contains this point on ([code]p1[/code], [code]p2[/code]) as well the accompanying point on ([code]q1[/code], [code]q2[/code]).
</description>
</method>
<method name="get_closest_points_between_segments_2d">
<return type="PoolVector2Array">
</return>
<argument index="0" name="p1" type="Vector2">
</argument>
<argument index="1" name="q1" type="Vector2">
</argument>
<argument index="2" name="p2" type="Vector2">
</argument>
<argument index="3" name="q2" type="Vector2">
</argument>
<description>
Given the two 2D segments ([code]p1[/code], [code]p2[/code]) and ([code]q1[/code], [code]q2[/code]), finds those two points on the two segments that are closest to each other. Returns a [PoolVector2Array] that contains this point on ([code]p1[/code], [code]p2[/code]) as well the accompanying point on ([code]q1[/code], [code]q2[/code]).
</description>
</method>
<method name="get_uv84_normal_bit">
<return type="int">
</return>
<argument index="0" name="normal" type="Vector3">
</argument>
<description>
Used internally by the engine.
</description>
</method>
<method name="intersect_polygons_2d">
<return type="Array">
</return>
<argument index="0" name="polygon_a" type="PoolVector2Array">
</argument>
<argument index="1" name="polygon_b" type="PoolVector2Array">
</argument>
<description>
Intersects [code]polygon_a[/code] with [code]polygon_b[/code] and returns an array of intersected polygons. This performs [constant OPERATION_INTERSECTION] between polygons. In other words, returns common area shared by polygons. Returns an empty array if no intersection occurs.
The operation may result in an outer polygon (boundary) and inner polygon (hole) produced which could be distinguished by calling [method is_polygon_clockwise].
</description>
</method>
<method name="intersect_polyline_with_polygon_2d">
<return type="Array">
</return>
<argument index="0" name="polyline" type="PoolVector2Array">
</argument>
<argument index="1" name="polygon" type="PoolVector2Array">
</argument>
<description>
Intersects [code]polyline[/code] with [code]polygon[/code] and returns an array of intersected polylines. This performs [constant OPERATION_INTERSECTION] between the polyline and the polygon. This operation can be thought of as chopping a line with a closed shape.
</description>
</method>
<method name="is_point_in_circle">
<return type="bool">
</return>
<argument index="0" name="point" type="Vector2">
</argument>
<argument index="1" name="circle_position" type="Vector2">
</argument>
<argument index="2" name="circle_radius" type="float">
</argument>
<description>
Returns [code]true[/code] if [code]point[/code] is inside the circle or if it's located exactly [i]on[/i] the circle's boundary, otherwise returns [code]false[/code].
</description>
</method>
<method name="is_point_in_polygon">
<return type="bool">
</return>
<argument index="0" name="point" type="Vector2">
</argument>
<argument index="1" name="polygon" type="PoolVector2Array">
</argument>
<description>
Returns [code]true[/code] if [code]point[/code] is inside [code]polygon[/code] or if it's located exactly [i]on[/i] polygon's boundary, otherwise returns [code]false[/code].
</description>
</method>
<method name="is_polygon_clockwise">
<return type="bool">
</return>
<argument index="0" name="polygon" type="PoolVector2Array">
</argument>
<description>
Returns [code]true[/code] if [code]polygon[/code]'s vertices are ordered in clockwise order, otherwise returns [code]false[/code].
</description>
</method>
<method name="line_intersects_line_2d">
<return type="Variant">
</return>
<argument index="0" name="from_a" type="Vector2">
</argument>
<argument index="1" name="dir_a" type="Vector2">
</argument>
<argument index="2" name="from_b" type="Vector2">
</argument>
<argument index="3" name="dir_b" type="Vector2">
</argument>
<description>
Checks if the two lines ([code]from_a[/code], [code]dir_a[/code]) and ([code]from_b[/code], [code]dir_b[/code]) intersect. If yes, return the point of intersection as [Vector2]. If no intersection takes place, returns an empty [Variant].
[b]Note:[/b] The lines are specified using direction vectors, not end points.
</description>
</method>
<method name="make_atlas">
<return type="Dictionary">
</return>
<argument index="0" name="sizes" type="PoolVector2Array">
</argument>
<description>
Given an array of [Vector2]s representing tiles, builds an atlas. The returned dictionary has two keys: [code]points[/code] is a vector of [Vector2] that specifies the positions of each tile, [code]size[/code] contains the overall size of the whole atlas as [Vector2].
</description>
</method>
<method name="merge_polygons_2d">
<return type="Array">
</return>
<argument index="0" name="polygon_a" type="PoolVector2Array">
</argument>
<argument index="1" name="polygon_b" type="PoolVector2Array">
</argument>
<description>
Merges (combines) [code]polygon_a[/code] and [code]polygon_b[/code] and returns an array of merged polygons. This performs [constant OPERATION_UNION] between polygons.
The operation may result in an outer polygon (boundary) and inner polygon (hole) produced which could be distinguished by calling [method is_polygon_clockwise].
</description>
</method>
<method name="offset_polygon_2d">
<return type="Array">
</return>
<argument index="0" name="polygon" type="PoolVector2Array">
</argument>
<argument index="1" name="delta" type="float">
</argument>
<argument index="2" name="join_type" type="int" enum="Geometry.PolyJoinType" default="0">
</argument>
<description>
Inflates or deflates [code]polygon[/code] by [code]delta[/code] units (pixels). If [code]delta[/code] is positive, makes the polygon grow outward. If [code]delta[/code] is negative, shrinks the polygon inward. Returns an array of polygons because inflating/deflating may result in multiple discrete polygons. Returns an empty array if [code]delta[/code] is negative and the absolute value of it approximately exceeds the minimum bounding rectangle dimensions of the polygon.
Each polygon's vertices will be rounded as determined by [code]join_type[/code], see [enum PolyJoinType].
The operation may result in an outer polygon (boundary) and inner polygon (hole) produced which could be distinguished by calling [method is_polygon_clockwise].
</description>
</method>
<method name="offset_polyline_2d">
<return type="Array">
</return>
<argument index="0" name="polyline" type="PoolVector2Array">
</argument>
<argument index="1" name="delta" type="float">
</argument>
<argument index="2" name="join_type" type="int" enum="Geometry.PolyJoinType" default="0">
</argument>
<argument index="3" name="end_type" type="int" enum="Geometry.PolyEndType" default="3">
</argument>
<description>
Inflates or deflates [code]polyline[/code] by [code]delta[/code] units (pixels), producing polygons. If [code]delta[/code] is positive, makes the polyline grow outward. Returns an array of polygons because inflating/deflating may result in multiple discrete polygons. If [code]delta[/code] is negative, returns an empty array.
Each polygon's vertices will be rounded as determined by [code]join_type[/code], see [enum PolyJoinType].
Each polygon's endpoints will be rounded as determined by [code]end_type[/code], see [enum PolyEndType].
The operation may result in an outer polygon (boundary) and inner polygon (hole) produced which could be distinguished by calling [method is_polygon_clockwise].
</description>
</method>
<method name="point_is_inside_triangle" qualifiers="const">
<return type="bool">
</return>
<argument index="0" name="point" type="Vector2">
</argument>
<argument index="1" name="a" type="Vector2">
</argument>
<argument index="2" name="b" type="Vector2">
</argument>
<argument index="3" name="c" type="Vector2">
</argument>
<description>
Returns if [code]point[/code] is inside the triangle specified by [code]a[/code], [code]b[/code] and [code]c[/code].
</description>
</method>
<method name="ray_intersects_triangle">
<return type="Variant">
</return>
<argument index="0" name="from" type="Vector3">
</argument>
<argument index="1" name="dir" type="Vector3">
</argument>
<argument index="2" name="a" type="Vector3">
</argument>
<argument index="3" name="b" type="Vector3">
</argument>
<argument index="4" name="c" type="Vector3">
</argument>
<description>
Tests if the 3D ray starting at [code]from[/code] with the direction of [code]dir[/code] intersects the triangle specified by [code]a[/code], [code]b[/code] and [code]c[/code]. If yes, returns the point of intersection as [Vector3]. If no intersection takes place, an empty [Variant] is returned.
</description>
</method>
<method name="segment_intersects_circle">
<return type="float">
</return>
<argument index="0" name="segment_from" type="Vector2">
</argument>
<argument index="1" name="segment_to" type="Vector2">
</argument>
<argument index="2" name="circle_position" type="Vector2">
</argument>
<argument index="3" name="circle_radius" type="float">
</argument>
<description>
Given the 2D segment ([code]segment_from[/code], [code]segment_to[/code]), returns the position on the segment (as a number between 0 and 1) at which the segment hits the circle that is located at position [code]circle_position[/code] and has radius [code]circle_radius[/code]. If the segment does not intersect the circle, -1 is returned (this is also the case if the line extending the segment would intersect the circle, but the segment does not).
</description>
</method>
<method name="segment_intersects_convex">
<return type="PoolVector3Array">
</return>
<argument index="0" name="from" type="Vector3">
</argument>
<argument index="1" name="to" type="Vector3">
</argument>
<argument index="2" name="planes" type="Array">
</argument>
<description>
Given a convex hull defined though the [Plane]s in the array [code]planes[/code], tests if the segment ([code]from[/code], [code]to[/code]) intersects with that hull. If an intersection is found, returns a [PoolVector3Array] containing the point the intersection and the hull's normal. If no intersecion is found, an the returned array is empty.
</description>
</method>
<method name="segment_intersects_cylinder">
<return type="PoolVector3Array">
</return>
<argument index="0" name="from" type="Vector3">
</argument>
<argument index="1" name="to" type="Vector3">
</argument>
<argument index="2" name="height" type="float">
</argument>
<argument index="3" name="radius" type="float">
</argument>
<description>
Checks if the segment ([code]from[/code], [code]to[/code]) intersects the cylinder with height [code]height[/code] that is centered at the origin and has radius [code]radius[/code]. If no, returns an empty [PoolVector3Array]. If an intersection takes place, the returned array contains the point of intersection and the cylinder's normal at the point of intersection.
</description>
</method>
<method name="segment_intersects_segment_2d">
<return type="Variant">
</return>
<argument index="0" name="from_a" type="Vector2">
</argument>
<argument index="1" name="to_a" type="Vector2">
</argument>
<argument index="2" name="from_b" type="Vector2">
</argument>
<argument index="3" name="to_b" type="Vector2">
</argument>
<description>
Checks if the two segments ([code]from_a[/code], [code]to_a[/code]) and ([code]from_b[/code], [code]to_b[/code]) intersect. If yes, return the point of intersection as [Vector2]. If no intersection takes place, returns an empty [Variant].
</description>
</method>
<method name="segment_intersects_sphere">
<return type="PoolVector3Array">
</return>
<argument index="0" name="from" type="Vector3">
</argument>
<argument index="1" name="to" type="Vector3">
</argument>
<argument index="2" name="sphere_position" type="Vector3">
</argument>
<argument index="3" name="sphere_radius" type="float">
</argument>
<description>
Checks if the segment ([code]from[/code], [code]to[/code]) intersects the sphere that is located at [code]sphere_position[/code] and has radius [code]sphere_radius[/code]. If no, returns an empty [PoolVector3Array]. If yes, returns a [PoolVector3Array] containing the point of intersection and the sphere's normal at the point of intersection.
</description>
</method>
<method name="segment_intersects_triangle">
<return type="Variant">
</return>
<argument index="0" name="from" type="Vector3">
</argument>
<argument index="1" name="to" type="Vector3">
</argument>
<argument index="2" name="a" type="Vector3">
</argument>
<argument index="3" name="b" type="Vector3">
</argument>
<argument index="4" name="c" type="Vector3">
</argument>
<description>
Tests if the segment ([code]from[/code], [code]to[/code]) intersects the triangle [code]a[/code], [code]b[/code], [code]c[/code]. If yes, returns the point of intersection as [Vector3]. If no intersection takes place, an empty [Variant] is returned.
</description>
</method>
<method name="triangulate_delaunay_2d">
<return type="PoolIntArray">
</return>
<argument index="0" name="points" type="PoolVector2Array">
</argument>
<description>
Triangulates the area specified by discrete set of [code]points[/code] such that no point is inside the circumcircle of any resulting triangle. Returns a [PoolIntArray] where each triangle consists of three consecutive point indices into [code]points[/code] (i.e. the returned array will have [code]n * 3[/code] elements, with [code]n[/code] being the number of found triangles). If the triangulation did not succeed, an empty [PoolIntArray] is returned.
</description>
</method>
<method name="triangulate_polygon">
<return type="PoolIntArray">
</return>
<argument index="0" name="polygon" type="PoolVector2Array">
</argument>
<description>
Triangulates the polygon specified by the points in [code]polygon[/code]. Returns a [PoolIntArray] where each triangle consists of three consecutive point indices into [code]polygon[/code] (i.e. the returned array will have [code]n * 3[/code] elements, with [code]n[/code] being the number of found triangles). If the triangulation did not succeed, an empty [PoolIntArray] is returned.
</description>
</method>
</methods>
<constants>
<constant name="OPERATION_UNION" value="0" enum="PolyBooleanOperation">
Create regions where either subject or clip polygons (or both) are filled.
</constant>
<constant name="OPERATION_DIFFERENCE" value="1" enum="PolyBooleanOperation">
Create regions where subject polygons are filled except where clip polygons are filled.
</constant>
<constant name="OPERATION_INTERSECTION" value="2" enum="PolyBooleanOperation">
Create regions where both subject and clip polygons are filled.
</constant>
<constant name="OPERATION_XOR" value="3" enum="PolyBooleanOperation">
Create regions where either subject or clip polygons are filled but not where both are filled.
</constant>
<constant name="JOIN_SQUARE" value="0" enum="PolyJoinType">
Squaring is applied uniformally at all convex edge joins at [code]1 * delta[/code].
</constant>
<constant name="JOIN_ROUND" value="1" enum="PolyJoinType">
While flattened paths can never perfectly trace an arc, they are approximated by a series of arc chords.
</constant>
<constant name="JOIN_MITER" value="2" enum="PolyJoinType">
There's a necessary limit to mitered joins since offsetting edges that join at very acute angles will produce excessively long and narrow "spikes". For any given edge join, when miter offsetting would exceed that maximum distance, "square" joining is applied.
</constant>
<constant name="END_POLYGON" value="0" enum="PolyEndType">
Endpoints are joined using the [enum PolyJoinType] value and the path filled as a polygon.
</constant>
<constant name="END_JOINED" value="1" enum="PolyEndType">
Endpoints are joined using the [enum PolyJoinType] value and the path filled as a polyline.
</constant>
<constant name="END_BUTT" value="2" enum="PolyEndType">
Endpoints are squared off with no extension.
</constant>
<constant name="END_SQUARE" value="3" enum="PolyEndType">
Endpoints are squared off and extended by [code]delta[/code] units.
</constant>
<constant name="END_ROUND" value="4" enum="PolyEndType">
Endpoints are rounded off and extended by [code]delta[/code] units.
</constant>
</constants>
</class>
|