1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
|
<?xml version="1.0" encoding="UTF-8" ?>
<class name="Geometry" inherits="Object" category="Core" version="3.1">
<brief_description>
</brief_description>
<description>
</description>
<tutorials>
</tutorials>
<demos>
</demos>
<methods>
<method name="build_box_planes">
<return type="Array">
</return>
<argument index="0" name="extents" type="Vector3">
</argument>
<description>
Returns an array with 6 [Plane]s that describe the sides of a box centered at the origin. The box size is defined by [code]extents[/code], which represents one (positive) corner of the box (i.e. half its actual size).
</description>
</method>
<method name="build_capsule_planes">
<return type="Array">
</return>
<argument index="0" name="radius" type="float">
</argument>
<argument index="1" name="height" type="float">
</argument>
<argument index="2" name="sides" type="int">
</argument>
<argument index="3" name="lats" type="int">
</argument>
<argument index="4" name="axis" type="int" enum="Vector3.Axis" default="2">
</argument>
<description>
Returns an array of [Plane]s closely bounding a faceted capsule centered at the origin with radius [code]radius[/code] and height [code]height[/code]. The parameter [code]sides[/code] defines how many planes will be generated for the side part of the capsule, whereas [code]lats[/code] gives the number of latitudinal steps at the bottom and top of the capsule. The parameter [code]axis[/code] describes the axis along which the capsule is oriented (0 for X, 1 for Y, 2 for Z).
</description>
</method>
<method name="build_cylinder_planes">
<return type="Array">
</return>
<argument index="0" name="radius" type="float">
</argument>
<argument index="1" name="height" type="float">
</argument>
<argument index="2" name="sides" type="int">
</argument>
<argument index="3" name="axis" type="int" enum="Vector3.Axis" default="2">
</argument>
<description>
Returns an array of [Plane]s closely bounding a faceted cylinder centered at the origin with radius [code]radius[/code] and height [code]height[/code]. The parameter [code]sides[/code] defines how many planes will be generated for the round part of the cylinder. The parameter [code]axis[/code] describes the axis along which the cylinder is oriented (0 for X, 1 for Y, 2 for Z).
</description>
</method>
<method name="clip_polygon">
<return type="PoolVector3Array">
</return>
<argument index="0" name="points" type="PoolVector3Array">
</argument>
<argument index="1" name="plane" type="Plane">
</argument>
<description>
Clips the polygon defined by the points in [code]points[/code] against the [code]plane[/code] and returns the points of the clipped polygon.
</description>
</method>
<method name="convex_hull_2d">
<return type="PoolVector2Array">
</return>
<argument index="0" name="points" type="PoolVector2Array">
</argument>
<description>
Given an array of [Vector2]s, returns the convex hull as a list of points in counter-clockwise order. The last point is the same as the first one.
</description>
</method>
<method name="get_closest_point_to_segment">
<return type="Vector3">
</return>
<argument index="0" name="point" type="Vector3">
</argument>
<argument index="1" name="s1" type="Vector3">
</argument>
<argument index="2" name="s2" type="Vector3">
</argument>
<description>
Returns the 3d point on the 3d segment ([code]s1[/code], [code]s2[/code]) that is closest to [code]point[/code]. The returned point will always be inside the specified segment.
</description>
</method>
<method name="get_closest_point_to_segment_2d">
<return type="Vector2">
</return>
<argument index="0" name="point" type="Vector2">
</argument>
<argument index="1" name="s1" type="Vector2">
</argument>
<argument index="2" name="s2" type="Vector2">
</argument>
<description>
Returns the 2d point on the 2d segment ([code]s1[/code], [code]s2[/code]) that is closest to [code]point[/code]. The returned point will always be inside the specified segment.
</description>
</method>
<method name="get_closest_point_to_segment_uncapped">
<return type="Vector3">
</return>
<argument index="0" name="point" type="Vector3">
</argument>
<argument index="1" name="s1" type="Vector3">
</argument>
<argument index="2" name="s2" type="Vector3">
</argument>
<description>
Returns the 3d point on the 3d line defined by ([code]s1[/code], [code]s2[/code]) that is closest to [code]point[/code]. The returned point can be inside the segment ([code]s1[/code], [code]s2[/code]) or outside of it, i.e. somewhere on the line extending from the segment.
</description>
</method>
<method name="get_closest_point_to_segment_uncapped_2d">
<return type="Vector2">
</return>
<argument index="0" name="point" type="Vector2">
</argument>
<argument index="1" name="s1" type="Vector2">
</argument>
<argument index="2" name="s2" type="Vector2">
</argument>
<description>
Returns the 2d point on the 2d line defined by ([code]s1[/code], [code]s2[/code]) that is closest to [code]point[/code]. The returned point can be inside the segment ([code]s1[/code], [code]s2[/code]) or outside of it, i.e. somewhere on the line extending from the segment.
</description>
</method>
<method name="get_closest_points_between_segments">
<return type="PoolVector3Array">
</return>
<argument index="0" name="p1" type="Vector3">
</argument>
<argument index="1" name="p2" type="Vector3">
</argument>
<argument index="2" name="q1" type="Vector3">
</argument>
<argument index="3" name="q2" type="Vector3">
</argument>
<description>
Given the two 3d segments ([code]p1[/code], [code]p2[/code]) and ([code]q1[/code], [code]q2[/code]), finds those two points on the two segments that are closest to each other. Returns a [PoolVector3Array] that contains this point on ([code]p1[/code], [code]p2[/code]) as well the accompanying point on ([code]q1[/code], [code]q2[/code]).
</description>
</method>
<method name="get_closest_points_between_segments_2d">
<return type="PoolVector2Array">
</return>
<argument index="0" name="p1" type="Vector2">
</argument>
<argument index="1" name="q1" type="Vector2">
</argument>
<argument index="2" name="p2" type="Vector2">
</argument>
<argument index="3" name="q2" type="Vector2">
</argument>
<description>
Given the two 2d segments ([code]p1[/code], [code]p2[/code]) and ([code]q1[/code], [code]q2[/code]), finds those two points on the two segments that are closest to each other. Returns a [PoolVector2Array] that contains this point on ([code]p1[/code], [code]p2[/code]) as well the accompanying point on ([code]q1[/code], [code]q2[/code]).
</description>
</method>
<method name="get_uv84_normal_bit">
<return type="int">
</return>
<argument index="0" name="normal" type="Vector3">
</argument>
<description>
</description>
</method>
<method name="make_atlas">
<return type="Dictionary">
</return>
<argument index="0" name="sizes" type="PoolVector2Array">
</argument>
<description>
Given an array of [Vector2]s representing tiles, builds an atlas. The returned dictionary has two keys: [code]points[/code] is a vector of [Vector2] that specifies the positions of each tile, [code]size[/code] contains the overall size of the whole atlas as [Vector2].
</description>
</method>
<method name="point_is_inside_triangle" qualifiers="const">
<return type="bool">
</return>
<argument index="0" name="point" type="Vector2">
</argument>
<argument index="1" name="a" type="Vector2">
</argument>
<argument index="2" name="b" type="Vector2">
</argument>
<argument index="3" name="c" type="Vector2">
</argument>
<description>
Returns if [code]point[/code] is inside the triangle specified by [code]a[/code], [code]b[/code] and [code]c[/code].
</description>
</method>
<method name="ray_intersects_triangle">
<return type="Variant">
</return>
<argument index="0" name="from" type="Vector3">
</argument>
<argument index="1" name="dir" type="Vector3">
</argument>
<argument index="2" name="a" type="Vector3">
</argument>
<argument index="3" name="b" type="Vector3">
</argument>
<argument index="4" name="c" type="Vector3">
</argument>
<description>
Tests if the 3d ray starting at [code]from[/code] with the direction of [code]dir[/code] intersects the triangle specified by [code]a[/code], [code]b[/code] and [code]c[/code]. If yes, returns the point of intersection as [Vector3]. If no intersection takes place, an empty [Variant] is returned.
</description>
</method>
<method name="segment_intersects_circle">
<return type="float">
</return>
<argument index="0" name="segment_from" type="Vector2">
</argument>
<argument index="1" name="segment_to" type="Vector2">
</argument>
<argument index="2" name="circle_position" type="Vector2">
</argument>
<argument index="3" name="circle_radius" type="float">
</argument>
<description>
Given the 2d segment ([code]segment_from[/code], [code]segment_to[/code]), returns the position on the segment (as a number between 0 and 1) at which the segment hits the circle that is located at position [code]circle_position[/code] and has radius [code]circle_radius[/code]. If the segment does not intersect the circle, -1 is returned (this is also the case if the line extending the segment would intersect the circle, but the segment does not).
</description>
</method>
<method name="segment_intersects_convex">
<return type="PoolVector3Array">
</return>
<argument index="0" name="from" type="Vector3">
</argument>
<argument index="1" name="to" type="Vector3">
</argument>
<argument index="2" name="planes" type="Array">
</argument>
<description>
Given a convex hull defined though the [Plane]s in the array [code]planes[/code], tests if the segment ([code]from[/code], [code]to[/code]) intersects with that hull. If an intersection is found, returns a [PoolVector3Array] containing the point the intersection and the hull's normal. If no intersecion is found, an the returned array is empty.
</description>
</method>
<method name="segment_intersects_cylinder">
<return type="PoolVector3Array">
</return>
<argument index="0" name="from" type="Vector3">
</argument>
<argument index="1" name="to" type="Vector3">
</argument>
<argument index="2" name="height" type="float">
</argument>
<argument index="3" name="radius" type="float">
</argument>
<description>
Checks if the segment ([code]from[/code], [code]to[/code]) intersects the cylinder with height [code]height[/code] that is centered at the origin and has radius [code]radius[/code]. If no, returns an empty [PoolVector3Array]. If an intersection takes place, the returned array contains the point of intersection and the cylinder's normal at the point of intersection.
</description>
</method>
<method name="segment_intersects_segment_2d">
<return type="Variant">
</return>
<argument index="0" name="from_a" type="Vector2">
</argument>
<argument index="1" name="to_a" type="Vector2">
</argument>
<argument index="2" name="from_b" type="Vector2">
</argument>
<argument index="3" name="to_b" type="Vector2">
</argument>
<description>
Checks if the two segments ([code]from_a[/code], [code]to_a[/code]) and ([code]from_b[/code], [code]to_b[/code]) intersect. If yes, return the point of intersection as [Vector2]. If no intersection takes place, returns an empty [Variant].
</description>
</method>
<method name="line_intersects_line_2d">
<return type="Variant">
</return>
<argument index="0" name="from_a" type="Vector2">
</argument>
<argument index="1" name="dir_a" type="Vector2">
</argument>
<argument index="2" name="from_b" type="Vector2">
</argument>
<argument index="3" name="dir_b" type="Vector2">
</argument>
<description>
Checks if the two lines ([code]from_a[/code], [code]dir_a[/code]) and ([code]from_b[/code], [code]dir_b[/code]) intersect. If yes, return the point of intersection as [Vector2]. If no intersection takes place, returns an empty [Variant]. Note that the lines are specified using direction vectors, not end points.
</description>
</method>
<method name="segment_intersects_sphere">
<return type="PoolVector3Array">
</return>
<argument index="0" name="from" type="Vector3">
</argument>
<argument index="1" name="to" type="Vector3">
</argument>
<argument index="2" name="sphere_position" type="Vector3">
</argument>
<argument index="3" name="sphere_radius" type="float">
</argument>
<description>
Checks if the segment ([code]from[/code], [code]to[/code]) intersects the sphere that is located at [code]sphere_position[/code] and has radius [code]sphere_radius[/code]. If no, returns an empty [PoolVector3Array]. If yes, returns a [PoolVector3Array] containing the point of intersection and the sphere's normal at the point of intersection.
</description>
</method>
<method name="segment_intersects_triangle">
<return type="Variant">
</return>
<argument index="0" name="from" type="Vector3">
</argument>
<argument index="1" name="to" type="Vector3">
</argument>
<argument index="2" name="a" type="Vector3">
</argument>
<argument index="3" name="b" type="Vector3">
</argument>
<argument index="4" name="c" type="Vector3">
</argument>
<description>
Tests if the segment ([code]from[/code], [code]to[/code]) intersects the triangle [code]a[/code], [code]b[/code], [code]c[/code]. If yes, returns the point of intersection as [Vector3]. If no intersection takes place, an empty [Variant] is returned.
</description>
</method>
<method name="triangulate_polygon">
<return type="PoolIntArray">
</return>
<argument index="0" name="polygon" type="PoolVector2Array">
</argument>
<description>
Triangulates the polygon specified by the points in [code]polygon[/code]. Returns a [PoolIntArray] where each triangle consists of three consecutive point indices into [code]polygon[/code] (i.e. the returned array will have [code]n * 3[/code] elements, with [code]n[/code] being the number of found triangles). If the triangulation did not succeed, an empty [PoolIntArray] is returned.
</description>
</method>
</methods>
<constants>
</constants>
</class>
|