1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
|
<?xml version="1.0" encoding="UTF-8" ?>
<class name="Curve2D" inherits="Resource" version="4.0">
<brief_description>
Describes a Bézier curve in 2D space.
</brief_description>
<description>
This class describes a Bézier curve in 2D space. It is mainly used to give a shape to a [Path2D], but can be manually sampled for other purposes.
It keeps a cache of precalculated points along the curve, to speed up further calculations.
</description>
<tutorials>
</tutorials>
<methods>
<method name="add_point">
<return type="void">
</return>
<argument index="0" name="position" type="Vector2">
</argument>
<argument index="1" name="in" type="Vector2" default="Vector2(0, 0)">
</argument>
<argument index="2" name="out" type="Vector2" default="Vector2(0, 0)">
</argument>
<argument index="3" name="at_position" type="int" default="-1">
</argument>
<description>
Adds a point to a curve at [code]position[/code], with control points [code]in[/code] and [code]out[/code].
If [code]at_position[/code] is given, the point is inserted before the point number [code]at_position[/code], moving that point (and every point after) after the inserted point. If [code]at_position[/code] is not given, or is an illegal value ([code]at_position <0[/code] or [code]at_position >= [method get_point_count][/code]), the point will be appended at the end of the point list.
</description>
</method>
<method name="clear_points">
<return type="void">
</return>
<description>
Removes all points from the curve.
</description>
</method>
<method name="get_baked_length" qualifiers="const">
<return type="float">
</return>
<description>
Returns the total length of the curve, based on the cached points. Given enough density (see [member bake_interval]), it should be approximate enough.
</description>
</method>
<method name="get_baked_points" qualifiers="const">
<return type="PackedVector2Array">
</return>
<description>
Returns the cache of points as a [PackedVector2Array].
</description>
</method>
<method name="get_closest_offset" qualifiers="const">
<return type="float">
</return>
<argument index="0" name="to_point" type="Vector2">
</argument>
<description>
Returns the closest offset to [code]to_point[/code]. This offset is meant to be used in [method interpolate_baked].
[code]to_point[/code] must be in this curve's local space.
</description>
</method>
<method name="get_closest_point" qualifiers="const">
<return type="Vector2">
</return>
<argument index="0" name="to_point" type="Vector2">
</argument>
<description>
Returns the closest baked point (in curve's local space) to [code]to_point[/code].
[code]to_point[/code] must be in this curve's local space.
</description>
</method>
<method name="get_point_count" qualifiers="const">
<return type="int">
</return>
<description>
Returns the number of points describing the curve.
</description>
</method>
<method name="get_point_in" qualifiers="const">
<return type="Vector2">
</return>
<argument index="0" name="idx" type="int">
</argument>
<description>
Returns the position of the control point leading to the vertex [code]idx[/code]. The returned position is relative to the vertex [code]idx[/code]. If the index is out of bounds, the function sends an error to the console, and returns [code](0, 0)[/code].
</description>
</method>
<method name="get_point_out" qualifiers="const">
<return type="Vector2">
</return>
<argument index="0" name="idx" type="int">
</argument>
<description>
Returns the position of the control point leading out of the vertex [code]idx[/code]. The returned position is relative to the vertex [code]idx[/code]. If the index is out of bounds, the function sends an error to the console, and returns [code](0, 0)[/code].
</description>
</method>
<method name="get_point_position" qualifiers="const">
<return type="Vector2">
</return>
<argument index="0" name="idx" type="int">
</argument>
<description>
Returns the position of the vertex [code]idx[/code]. If the index is out of bounds, the function sends an error to the console, and returns [code](0, 0)[/code].
</description>
</method>
<method name="interpolate" qualifiers="const">
<return type="Vector2">
</return>
<argument index="0" name="idx" type="int">
</argument>
<argument index="1" name="t" type="float">
</argument>
<description>
Returns the position between the vertex [code]idx[/code] and the vertex [code]idx + 1[/code], where [code]t[/code] controls if the point is the first vertex ([code]t = 0.0[/code]), the last vertex ([code]t = 1.0[/code]), or in between. Values of [code]t[/code] outside the range ([code]0.0 >= t <=1[/code]) give strange, but predictable results.
If [code]idx[/code] is out of bounds it is truncated to the first or last vertex, and [code]t[/code] is ignored. If the curve has no points, the function sends an error to the console, and returns [code](0, 0)[/code].
</description>
</method>
<method name="interpolate_baked" qualifiers="const">
<return type="Vector2">
</return>
<argument index="0" name="offset" type="float">
</argument>
<argument index="1" name="cubic" type="bool" default="false">
</argument>
<description>
Returns a point within the curve at position [code]offset[/code], where [code]offset[/code] is measured as a pixel distance along the curve.
To do that, it finds the two cached points where the [code]offset[/code] lies between, then interpolates the values. This interpolation is cubic if [code]cubic[/code] is set to [code]true[/code], or linear if set to [code]false[/code].
Cubic interpolation tends to follow the curves better, but linear is faster (and often, precise enough).
</description>
</method>
<method name="interpolatef" qualifiers="const">
<return type="Vector2">
</return>
<argument index="0" name="fofs" type="float">
</argument>
<description>
Returns the position at the vertex [code]fofs[/code]. It calls [method interpolate] using the integer part of [code]fofs[/code] as [code]idx[/code], and its fractional part as [code]t[/code].
</description>
</method>
<method name="remove_point">
<return type="void">
</return>
<argument index="0" name="idx" type="int">
</argument>
<description>
Deletes the point [code]idx[/code] from the curve. Sends an error to the console if [code]idx[/code] is out of bounds.
</description>
</method>
<method name="set_point_in">
<return type="void">
</return>
<argument index="0" name="idx" type="int">
</argument>
<argument index="1" name="position" type="Vector2">
</argument>
<description>
Sets the position of the control point leading to the vertex [code]idx[/code]. If the index is out of bounds, the function sends an error to the console. The position is relative to the vertex.
</description>
</method>
<method name="set_point_out">
<return type="void">
</return>
<argument index="0" name="idx" type="int">
</argument>
<argument index="1" name="position" type="Vector2">
</argument>
<description>
Sets the position of the control point leading out of the vertex [code]idx[/code]. If the index is out of bounds, the function sends an error to the console. The position is relative to the vertex.
</description>
</method>
<method name="set_point_position">
<return type="void">
</return>
<argument index="0" name="idx" type="int">
</argument>
<argument index="1" name="position" type="Vector2">
</argument>
<description>
Sets the position for the vertex [code]idx[/code]. If the index is out of bounds, the function sends an error to the console.
</description>
</method>
<method name="tessellate" qualifiers="const">
<return type="PackedVector2Array">
</return>
<argument index="0" name="max_stages" type="int" default="5">
</argument>
<argument index="1" name="tolerance_degrees" type="float" default="4">
</argument>
<description>
Returns a list of points along the curve, with a curvature controlled point density. That is, the curvier parts will have more points than the straighter parts.
This approximation makes straight segments between each point, then subdivides those segments until the resulting shape is similar enough.
[code]max_stages[/code] controls how many subdivisions a curve segment may face before it is considered approximate enough. Each subdivision splits the segment in half, so the default 5 stages may mean up to 32 subdivisions per curve segment. Increase with care!
[code]tolerance_degrees[/code] controls how many degrees the midpoint of a segment may deviate from the real curve, before the segment has to be subdivided.
</description>
</method>
</methods>
<members>
<member name="bake_interval" type="float" setter="set_bake_interval" getter="get_bake_interval" default="5.0">
The distance in pixels between two adjacent cached points. Changing it forces the cache to be recomputed the next time the [method get_baked_points] or [method get_baked_length] function is called. The smaller the distance, the more points in the cache and the more memory it will consume, so use with care.
</member>
</members>
<constants>
</constants>
</class>
|