summaryrefslogtreecommitdiff
path: root/doc/classes/Basis.xml
blob: 3710bc3de6d1ebdeb9bd7618994e1fd4da20f6df (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
<?xml version="1.0" encoding="UTF-8" ?>
<class name="Basis" category="Built-In Types" version="3.2">
	<brief_description>
		3x3 matrix datatype.
	</brief_description>
	<description>
		3x3 matrix used for 3D rotation and scale. Contains 3 vector fields x,y and z as its columns, which can be interpreted as the local basis vectors of a transformation. Can also be accessed as array of 3D vectors. These vectors are orthogonal to each other, but are not necessarily normalized (due to scaling). Almost always used as orthogonal basis for a [Transform].
		For such use, it is composed of a scaling and a rotation matrix, in that order (M = R.S).
	</description>
	<tutorials>
		<link>https://docs.godotengine.org/en/latest/tutorials/3d/using_transforms.html</link>
	</tutorials>
	<demos>
	</demos>
	<methods>
		<method name="Basis">
			<return type="Basis">
			</return>
			<argument index="0" name="from" type="Quat">
			</argument>
			<description>
				Create a rotation matrix from the given quaternion.
			</description>
		</method>
		<method name="Basis">
			<return type="Basis">
			</return>
			<argument index="0" name="from" type="Vector3">
			</argument>
			<description>
				Create a rotation matrix (in the YXZ convention: first Z, then X, and Y last) from the specified Euler angles, given in the vector format as (X-angle, Y-angle, Z-angle).
			</description>
		</method>
		<method name="Basis">
			<return type="Basis">
			</return>
			<argument index="0" name="axis" type="Vector3">
			</argument>
			<argument index="1" name="phi" type="float">
			</argument>
			<description>
				Create a rotation matrix which rotates around the given axis by the specified angle, in radians. The axis must be a normalized vector.
			</description>
		</method>
		<method name="Basis">
			<return type="Basis">
			</return>
			<argument index="0" name="x_axis" type="Vector3">
			</argument>
			<argument index="1" name="y_axis" type="Vector3">
			</argument>
			<argument index="2" name="z_axis" type="Vector3">
			</argument>
			<description>
				Create a matrix from 3 axis vectors.
			</description>
		</method>
		<method name="determinant">
			<return type="float">
			</return>
			<description>
				Return the determinant of the matrix.
			</description>
		</method>
		<method name="get_euler">
			<return type="Vector3">
			</return>
			<description>
				Assuming that the matrix is a proper rotation matrix (orthonormal matrix with determinant +1), return Euler angles (in the YXZ convention: first Z, then X, and Y last). Returned vector contains the rotation angles in the format (X-angle, Y-angle, Z-angle).
			</description>
		</method>
		<method name="get_orthogonal_index">
			<return type="int">
			</return>
			<description>
				This function considers a discretization of rotations into 24 points on unit sphere, lying along the vectors (x,y,z) with each component being either -1,0 or 1, and returns the index of the point best representing the orientation of the object. It is mainly used by the grid map editor. For further details, refer to Godot source code.
			</description>
		</method>
		<method name="get_rotation_quat">
			<return type="Quat">
			</return>
			<description>
			</description>
		</method>
		<method name="get_scale">
			<return type="Vector3">
			</return>
			<description>
				Assuming that the matrix is the combination of a rotation and scaling, return the absolute value of scaling factors along each axis.
			</description>
		</method>
		<method name="inverse">
			<return type="Basis">
			</return>
			<description>
				Return the inverse of the matrix.
			</description>
		</method>
		<method name="is_equal_approx">
			<return type="bool">
			</return>
			<argument index="0" name="b" type="Basis">
			</argument>
			<argument index="1" name="epsilon" type="float" default="0.00001">
			</argument>
			<description>
			</description>
		</method>
		<method name="orthonormalized">
			<return type="Basis">
			</return>
			<description>
				Return the orthonormalized version of the matrix (useful to call from time to time to avoid rounding error for orthogonal matrices). This performs a Gram-Schmidt orthonormalization on the basis of the matrix.
			</description>
		</method>
		<method name="rotated">
			<return type="Basis">
			</return>
			<argument index="0" name="axis" type="Vector3">
			</argument>
			<argument index="1" name="phi" type="float">
			</argument>
			<description>
				Introduce an additional rotation around the given axis by phi (radians). The axis must be a normalized vector.
			</description>
		</method>
		<method name="scaled">
			<return type="Basis">
			</return>
			<argument index="0" name="scale" type="Vector3">
			</argument>
			<description>
				Introduce an additional scaling specified by the given 3D scaling factor.
			</description>
		</method>
		<method name="slerp">
			<return type="Basis">
			</return>
			<argument index="0" name="b" type="Basis">
			</argument>
			<argument index="1" name="t" type="float">
			</argument>
			<description>
				Assuming that the matrix is a proper rotation matrix, slerp performs a spherical-linear interpolation with another rotation matrix.
			</description>
		</method>
		<method name="tdotx">
			<return type="float">
			</return>
			<argument index="0" name="with" type="Vector3">
			</argument>
			<description>
				Transposed dot product with the x axis of the matrix.
			</description>
		</method>
		<method name="tdoty">
			<return type="float">
			</return>
			<argument index="0" name="with" type="Vector3">
			</argument>
			<description>
				Transposed dot product with the y axis of the matrix.
			</description>
		</method>
		<method name="tdotz">
			<return type="float">
			</return>
			<argument index="0" name="with" type="Vector3">
			</argument>
			<description>
				Transposed dot product with the z axis of the matrix.
			</description>
		</method>
		<method name="transposed">
			<return type="Basis">
			</return>
			<description>
				Return the transposed version of the matrix.
			</description>
		</method>
		<method name="xform">
			<return type="Vector3">
			</return>
			<argument index="0" name="v" type="Vector3">
			</argument>
			<description>
				Return a vector transformed (multiplied) by the matrix.
			</description>
		</method>
		<method name="xform_inv">
			<return type="Vector3">
			</return>
			<argument index="0" name="v" type="Vector3">
			</argument>
			<description>
				Return a vector transformed (multiplied) by the transposed matrix. Note that this results in a multiplication by the inverse of the matrix only if it represents a rotation-reflection.
			</description>
		</method>
	</methods>
	<members>
		<member name="x" type="Vector3" setter="" getter="">
			The basis matrix's x vector.
		</member>
		<member name="y" type="Vector3" setter="" getter="">
			The basis matrix's y vector.
		</member>
		<member name="z" type="Vector3" setter="" getter="">
			The basis matrix's z vector.
		</member>
	</members>
	<constants>
	</constants>
</class>