summaryrefslogtreecommitdiff
path: root/doc/classes/AStar3D.xml
blob: efce94e25d4a44633538406c8592136cd5ee8171 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
<?xml version="1.0" encoding="UTF-8" ?>
<class name="AStar3D" inherits="RefCounted" version="4.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:noNamespaceSchemaLocation="../class.xsd">
	<brief_description>
		An implementation of A* to find the shortest paths among connected points in space.
	</brief_description>
	<description>
		A* (A star) is a computer algorithm that is widely used in pathfinding and graph traversal, the process of plotting short paths among vertices (points), passing through a given set of edges (segments). It enjoys widespread use due to its performance and accuracy. Godot's A* implementation uses points in three-dimensional space and Euclidean distances by default.
		You must add points manually with [method add_point] and create segments manually with [method connect_points]. Then you can test if there is a path between two points with the [method are_points_connected] function, get a path containing indices by [method get_id_path], or one containing actual coordinates with [method get_point_path].
		It is also possible to use non-Euclidean distances. To do so, create a class that extends [code]AStar3D[/code] and override methods [method _compute_cost] and [method _estimate_cost]. Both take two indices and return a length, as is shown in the following example.
		[codeblocks]
		[gdscript]
		class MyAStar:
		    extends AStar3D

		    func _compute_cost(u, v):
		        return abs(u - v)

		    func _estimate_cost(u, v):
		        return min(0, abs(u - v) - 1)
		[/gdscript]
		[csharp]
		public class MyAStar : AStar3D
		{
		    public override float _ComputeCost(int u, int v)
		    {
		        return Mathf.Abs(u - v);
		    }
		    public override float _EstimateCost(int u, int v)
		    {
		        return Mathf.Min(0, Mathf.Abs(u - v) - 1);
		    }
		}
		[/csharp]
		[/codeblocks]
		[method _estimate_cost] should return a lower bound of the distance, i.e. [code]_estimate_cost(u, v) &lt;= _compute_cost(u, v)[/code]. This serves as a hint to the algorithm because the custom [code]_compute_cost[/code] might be computation-heavy. If this is not the case, make [method _estimate_cost] return the same value as [method _compute_cost] to provide the algorithm with the most accurate information.
		If the default [method _estimate_cost] and [method _compute_cost] methods are used, or if the supplied [method _estimate_cost] method returns a lower bound of the cost, then the paths returned by A* will be the lowest-cost paths. Here, the cost of a path equals the sum of the [method _compute_cost] results of all segments in the path multiplied by the [code]weight_scale[/code]s of the endpoints of the respective segments. If the default methods are used and the [code]weight_scale[/code]s of all points are set to [code]1.0[/code], then this equals the sum of Euclidean distances of all segments in the path.
	</description>
	<tutorials>
	</tutorials>
	<methods>
		<method name="_compute_cost" qualifiers="virtual const">
			<return type="float" />
			<param index="0" name="from_id" type="int" />
			<param index="1" name="to_id" type="int" />
			<description>
				Called when computing the cost between two connected points.
				Note that this function is hidden in the default [code]AStar3D[/code] class.
			</description>
		</method>
		<method name="_estimate_cost" qualifiers="virtual const">
			<return type="float" />
			<param index="0" name="from_id" type="int" />
			<param index="1" name="to_id" type="int" />
			<description>
				Called when estimating the cost between a point and the path's ending point.
				Note that this function is hidden in the default [code]AStar3D[/code] class.
			</description>
		</method>
		<method name="add_point">
			<return type="void" />
			<param index="0" name="id" type="int" />
			<param index="1" name="position" type="Vector3" />
			<param index="2" name="weight_scale" type="float" default="1.0" />
			<description>
				Adds a new point at the given position with the given identifier. The [param id] must be 0 or larger, and the [param weight_scale] must be 0.0 or greater.
				The [param weight_scale] is multiplied by the result of [method _compute_cost] when determining the overall cost of traveling across a segment from a neighboring point to this point. Thus, all else being equal, the algorithm prefers points with lower [param weight_scale]s to form a path.
				[codeblocks]
				[gdscript]
				var astar = AStar3D.new()
				astar.add_point(1, Vector3(1, 0, 0), 4) # Adds the point (1, 0, 0) with weight_scale 4 and id 1
				[/gdscript]
				[csharp]
				var astar = new AStar3D();
				astar.AddPoint(1, new Vector3(1, 0, 0), 4); // Adds the point (1, 0, 0) with weight_scale 4 and id 1
				[/csharp]
				[/codeblocks]
				If there already exists a point for the given [param id], its position and weight scale are updated to the given values.
			</description>
		</method>
		<method name="are_points_connected" qualifiers="const">
			<return type="bool" />
			<param index="0" name="id" type="int" />
			<param index="1" name="to_id" type="int" />
			<param index="2" name="bidirectional" type="bool" default="true" />
			<description>
				Returns whether the two given points are directly connected by a segment. If [param bidirectional] is [code]false[/code], returns whether movement from [param id] to [param to_id] is possible through this segment.
			</description>
		</method>
		<method name="clear">
			<return type="void" />
			<description>
				Clears all the points and segments.
			</description>
		</method>
		<method name="connect_points">
			<return type="void" />
			<param index="0" name="id" type="int" />
			<param index="1" name="to_id" type="int" />
			<param index="2" name="bidirectional" type="bool" default="true" />
			<description>
				Creates a segment between the given points. If [param bidirectional] is [code]false[/code], only movement from [param id] to [param to_id] is allowed, not the reverse direction.
				[codeblocks]
				[gdscript]
				var astar = AStar3D.new()
				astar.add_point(1, Vector3(1, 1, 0))
				astar.add_point(2, Vector3(0, 5, 0))
				astar.connect_points(1, 2, false)
				[/gdscript]
				[csharp]
				var astar = new AStar3D();
				astar.AddPoint(1, new Vector3(1, 1, 0));
				astar.AddPoint(2, new Vector3(0, 5, 0));
				astar.ConnectPoints(1, 2, false);
				[/csharp]
				[/codeblocks]
			</description>
		</method>
		<method name="disconnect_points">
			<return type="void" />
			<param index="0" name="id" type="int" />
			<param index="1" name="to_id" type="int" />
			<param index="2" name="bidirectional" type="bool" default="true" />
			<description>
				Deletes the segment between the given points. If [param bidirectional] is [code]false[/code], only movement from [param id] to [param to_id] is prevented, and a unidirectional segment possibly remains.
			</description>
		</method>
		<method name="get_available_point_id" qualifiers="const">
			<return type="int" />
			<description>
				Returns the next available point ID with no point associated to it.
			</description>
		</method>
		<method name="get_closest_point" qualifiers="const">
			<return type="int" />
			<param index="0" name="to_position" type="Vector3" />
			<param index="1" name="include_disabled" type="bool" default="false" />
			<description>
				Returns the ID of the closest point to [param to_position], optionally taking disabled points into account. Returns [code]-1[/code] if there are no points in the points pool.
				[b]Note:[/b] If several points are the closest to [param to_position], the one with the smallest ID will be returned, ensuring a deterministic result.
			</description>
		</method>
		<method name="get_closest_position_in_segment" qualifiers="const">
			<return type="Vector3" />
			<param index="0" name="to_position" type="Vector3" />
			<description>
				Returns the closest position to [param to_position] that resides inside a segment between two connected points.
				[codeblocks]
				[gdscript]
				var astar = AStar3D.new()
				astar.add_point(1, Vector3(0, 0, 0))
				astar.add_point(2, Vector3(0, 5, 0))
				astar.connect_points(1, 2)
				var res = astar.get_closest_position_in_segment(Vector3(3, 3, 0)) # Returns (0, 3, 0)
				[/gdscript]
				[csharp]
				var astar = new AStar3D();
				astar.AddPoint(1, new Vector3(0, 0, 0));
				astar.AddPoint(2, new Vector3(0, 5, 0));
				astar.ConnectPoints(1, 2);
				Vector3 res = astar.GetClosestPositionInSegment(new Vector3(3, 3, 0)); // Returns (0, 3, 0)
				[/csharp]
				[/codeblocks]
				The result is in the segment that goes from [code]y = 0[/code] to [code]y = 5[/code]. It's the closest position in the segment to the given point.
			</description>
		</method>
		<method name="get_id_path">
			<return type="PackedInt64Array" />
			<param index="0" name="from_id" type="int" />
			<param index="1" name="to_id" type="int" />
			<description>
				Returns an array with the IDs of the points that form the path found by AStar3D between the given points. The array is ordered from the starting point to the ending point of the path.
				[codeblocks]
				[gdscript]
				var astar = AStar3D.new()
				astar.add_point(1, Vector3(0, 0, 0))
				astar.add_point(2, Vector3(0, 1, 0), 1) # Default weight is 1
				astar.add_point(3, Vector3(1, 1, 0))
				astar.add_point(4, Vector3(2, 0, 0))

				astar.connect_points(1, 2, false)
				astar.connect_points(2, 3, false)
				astar.connect_points(4, 3, false)
				astar.connect_points(1, 4, false)

				var res = astar.get_id_path(1, 3) # Returns [1, 2, 3]
				[/gdscript]
				[csharp]
				var astar = new AStar3D();
				astar.AddPoint(1, new Vector3(0, 0, 0));
				astar.AddPoint(2, new Vector3(0, 1, 0), 1); // Default weight is 1
				astar.AddPoint(3, new Vector3(1, 1, 0));
				astar.AddPoint(4, new Vector3(2, 0, 0));
				astar.ConnectPoints(1, 2, false);
				astar.ConnectPoints(2, 3, false);
				astar.ConnectPoints(4, 3, false);
				astar.ConnectPoints(1, 4, false);
				int[] res = astar.GetIdPath(1, 3); // Returns [1, 2, 3]
				[/csharp]
				[/codeblocks]
				If you change the 2nd point's weight to 3, then the result will be [code][1, 4, 3][/code] instead, because now even though the distance is longer, it's "easier" to get through point 4 than through point 2.
			</description>
		</method>
		<method name="get_point_capacity" qualifiers="const">
			<return type="int" />
			<description>
				Returns the capacity of the structure backing the points, useful in conjunction with [code]reserve_space[/code].
			</description>
		</method>
		<method name="get_point_connections">
			<return type="PackedInt64Array" />
			<param index="0" name="id" type="int" />
			<description>
				Returns an array with the IDs of the points that form the connection with the given point.
				[codeblocks]
				[gdscript]
				var astar = AStar3D.new()
				astar.add_point(1, Vector3(0, 0, 0))
				astar.add_point(2, Vector3(0, 1, 0))
				astar.add_point(3, Vector3(1, 1, 0))
				astar.add_point(4, Vector3(2, 0, 0))

				astar.connect_points(1, 2, true)
				astar.connect_points(1, 3, true)

				var neighbors = astar.get_point_connections(1) # Returns [2, 3]
				[/gdscript]
				[csharp]
				var astar = new AStar3D();
				astar.AddPoint(1, new Vector3(0, 0, 0));
				astar.AddPoint(2, new Vector3(0, 1, 0));
				astar.AddPoint(3, new Vector3(1, 1, 0));
				astar.AddPoint(4, new Vector3(2, 0, 0));
				astar.ConnectPoints(1, 2, true);
				astar.ConnectPoints(1, 3, true);

				int[] neighbors = astar.GetPointConnections(1); // Returns [2, 3]
				[/csharp]
				[/codeblocks]
			</description>
		</method>
		<method name="get_point_count" qualifiers="const">
			<return type="int" />
			<description>
				Returns the number of points currently in the points pool.
			</description>
		</method>
		<method name="get_point_ids">
			<return type="Array" />
			<description>
				Returns an array of all point IDs.
			</description>
		</method>
		<method name="get_point_path">
			<return type="PackedVector3Array" />
			<param index="0" name="from_id" type="int" />
			<param index="1" name="to_id" type="int" />
			<description>
				Returns an array with the points that are in the path found by AStar3D between the given points. The array is ordered from the starting point to the ending point of the path.
				[b]Note:[/b] This method is not thread-safe. If called from a [Thread], it will return an empty [PackedVector3Array] and will print an error message.
			</description>
		</method>
		<method name="get_point_position" qualifiers="const">
			<return type="Vector3" />
			<param index="0" name="id" type="int" />
			<description>
				Returns the position of the point associated with the given [param id].
			</description>
		</method>
		<method name="get_point_weight_scale" qualifiers="const">
			<return type="float" />
			<param index="0" name="id" type="int" />
			<description>
				Returns the weight scale of the point associated with the given [param id].
			</description>
		</method>
		<method name="has_point" qualifiers="const">
			<return type="bool" />
			<param index="0" name="id" type="int" />
			<description>
				Returns whether a point associated with the given [param id] exists.
			</description>
		</method>
		<method name="is_point_disabled" qualifiers="const">
			<return type="bool" />
			<param index="0" name="id" type="int" />
			<description>
				Returns whether a point is disabled or not for pathfinding. By default, all points are enabled.
			</description>
		</method>
		<method name="remove_point">
			<return type="void" />
			<param index="0" name="id" type="int" />
			<description>
				Removes the point associated with the given [param id] from the points pool.
			</description>
		</method>
		<method name="reserve_space">
			<return type="void" />
			<param index="0" name="num_nodes" type="int" />
			<description>
				Reserves space internally for [param num_nodes] points, useful if you're adding a known large number of points at once, for a grid for instance. New capacity must be greater or equals to old capacity.
			</description>
		</method>
		<method name="set_point_disabled">
			<return type="void" />
			<param index="0" name="id" type="int" />
			<param index="1" name="disabled" type="bool" default="true" />
			<description>
				Disables or enables the specified point for pathfinding. Useful for making a temporary obstacle.
			</description>
		</method>
		<method name="set_point_position">
			<return type="void" />
			<param index="0" name="id" type="int" />
			<param index="1" name="position" type="Vector3" />
			<description>
				Sets the [param position] for the point with the given [param id].
			</description>
		</method>
		<method name="set_point_weight_scale">
			<return type="void" />
			<param index="0" name="id" type="int" />
			<param index="1" name="weight_scale" type="float" />
			<description>
				Sets the [param weight_scale] for the point with the given [param id]. The [param weight_scale] is multiplied by the result of [method _compute_cost] when determining the overall cost of traveling across a segment from a neighboring point to this point.
			</description>
		</method>
	</methods>
</class>