1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
|
<?xml version="1.0" encoding="UTF-8" ?>
<class name="AABB" version="4.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:noNamespaceSchemaLocation="../class.xsd">
<brief_description>
Axis-Aligned Bounding Box.
</brief_description>
<description>
[AABB] consists of a position, a size, and several utility functions. It is typically used for fast overlap tests.
It uses floating-point coordinates. The 2D counterpart to [AABB] is [Rect2].
Negative values for [member size] are not supported and will not work for most methods. Use [method abs] to get an AABB with a positive size.
[b]Note:[/b] Unlike [Rect2], [AABB] does not have a variant that uses integer coordinates.
</description>
<tutorials>
<link title="Math documentation index">$DOCS_URL/tutorials/math/index.html</link>
<link title="Vector math">$DOCS_URL/tutorials/math/vector_math.html</link>
<link title="Advanced vector math">$DOCS_URL/tutorials/math/vectors_advanced.html</link>
</tutorials>
<constructors>
<constructor name="AABB">
<return type="AABB" />
<description>
Constructs a default-initialized [AABB] with default (zero) values of [member position] and [member size].
</description>
</constructor>
<constructor name="AABB">
<return type="AABB" />
<param index="0" name="from" type="AABB" />
<description>
Constructs an [AABB] as a copy of the given [AABB].
</description>
</constructor>
<constructor name="AABB">
<return type="AABB" />
<param index="0" name="position" type="Vector3" />
<param index="1" name="size" type="Vector3" />
<description>
Constructs an [AABB] from a position and size.
</description>
</constructor>
</constructors>
<methods>
<method name="abs" qualifiers="const">
<return type="AABB" />
<description>
Returns an AABB with equivalent position and size, modified so that the most-negative corner is the origin and the size is positive.
</description>
</method>
<method name="encloses" qualifiers="const">
<return type="bool" />
<param index="0" name="with" type="AABB" />
<description>
Returns [code]true[/code] if this [AABB] completely encloses another one.
</description>
</method>
<method name="expand" qualifiers="const">
<return type="AABB" />
<param index="0" name="to_point" type="Vector3" />
<description>
Returns a copy of this [AABB] expanded to include a given point.
[b]Example:[/b]
[codeblocks]
[gdscript]
# position (-3, 2, 0), size (1, 1, 1)
var box = AABB(Vector3(-3, 2, 0), Vector3(1, 1, 1))
# position (-3, -1, 0), size (3, 4, 2), so we fit both the original AABB and Vector3(0, -1, 2)
var box2 = box.expand(Vector3(0, -1, 2))
[/gdscript]
[csharp]
// position (-3, 2, 0), size (1, 1, 1)
var box = new Aabb(new Vector3(-3, 2, 0), new Vector3(1, 1, 1));
// position (-3, -1, 0), size (3, 4, 2), so we fit both the original AABB and Vector3(0, -1, 2)
var box2 = box.Expand(new Vector3(0, -1, 2));
[/csharp]
[/codeblocks]
</description>
</method>
<method name="get_center" qualifiers="const">
<return type="Vector3" />
<description>
Returns the center of the [AABB], which is equal to [member position] + ([member size] / 2).
</description>
</method>
<method name="get_endpoint" qualifiers="const">
<return type="Vector3" />
<param index="0" name="idx" type="int" />
<description>
Gets the position of the 8 endpoints of the [AABB] in space.
</description>
</method>
<method name="get_longest_axis" qualifiers="const">
<return type="Vector3" />
<description>
Returns the normalized longest axis of the [AABB].
</description>
</method>
<method name="get_longest_axis_index" qualifiers="const">
<return type="int" />
<description>
Returns the index of the longest axis of the [AABB] (according to [Vector3]'s [code]AXIS_*[/code] constants).
</description>
</method>
<method name="get_longest_axis_size" qualifiers="const">
<return type="float" />
<description>
Returns the scalar length of the longest axis of the [AABB].
</description>
</method>
<method name="get_shortest_axis" qualifiers="const">
<return type="Vector3" />
<description>
Returns the normalized shortest axis of the [AABB].
</description>
</method>
<method name="get_shortest_axis_index" qualifiers="const">
<return type="int" />
<description>
Returns the index of the shortest axis of the [AABB] (according to [Vector3]::AXIS* enum).
</description>
</method>
<method name="get_shortest_axis_size" qualifiers="const">
<return type="float" />
<description>
Returns the scalar length of the shortest axis of the [AABB].
</description>
</method>
<method name="get_support" qualifiers="const">
<return type="Vector3" />
<param index="0" name="dir" type="Vector3" />
<description>
Returns the support point in a given direction. This is useful for collision detection algorithms.
</description>
</method>
<method name="get_volume" qualifiers="const">
<return type="float" />
<description>
Returns the volume of the [AABB].
</description>
</method>
<method name="grow" qualifiers="const">
<return type="AABB" />
<param index="0" name="by" type="float" />
<description>
Returns a copy of the [AABB] grown a given number of units towards all the sides.
</description>
</method>
<method name="has_point" qualifiers="const">
<return type="bool" />
<param index="0" name="point" type="Vector3" />
<description>
Returns [code]true[/code] if the [AABB] contains a point. Points on the faces of the AABB are considered included, though float-point precision errors may impact the accuracy of such checks.
[b]Note:[/b] This method is not reliable for [AABB] with a [i]negative size[/i]. Use [method abs] to get a positive sized equivalent [AABB] to check for contained points.
</description>
</method>
<method name="has_surface" qualifiers="const">
<return type="bool" />
<description>
Returns [code]true[/code] if the [AABB] has a surface or a length, and [code]false[/code] if the [AABB] is empty (all components of [member size] are zero or negative).
</description>
</method>
<method name="has_volume" qualifiers="const">
<return type="bool" />
<description>
Returns [code]true[/code] if the [AABB] has a volume, and [code]false[/code] if the [AABB] is flat, empty, or has a negative [member size].
</description>
</method>
<method name="intersection" qualifiers="const">
<return type="AABB" />
<param index="0" name="with" type="AABB" />
<description>
Returns the intersection between two [AABB]. An empty AABB (size [code](0, 0, 0)[/code]) is returned on failure.
</description>
</method>
<method name="intersects" qualifiers="const">
<return type="bool" />
<param index="0" name="with" type="AABB" />
<description>
Returns [code]true[/code] if the [AABB] overlaps with another.
</description>
</method>
<method name="intersects_plane" qualifiers="const">
<return type="bool" />
<param index="0" name="plane" type="Plane" />
<description>
Returns [code]true[/code] if the [AABB] is on both sides of a plane.
</description>
</method>
<method name="intersects_ray" qualifiers="const">
<return type="Variant" />
<param index="0" name="from" type="Vector3" />
<param index="1" name="dir" type="Vector3" />
<description>
Returns the point of intersection of the given ray with this [AABB] or [code]null[/code] if there is no intersection. Ray length is infinite.
</description>
</method>
<method name="intersects_segment" qualifiers="const">
<return type="Variant" />
<param index="0" name="from" type="Vector3" />
<param index="1" name="to" type="Vector3" />
<description>
Returns the point of intersection between [param from] and [param to] with this [AABB] or [code]null[/code] if there is no intersection.
</description>
</method>
<method name="is_equal_approx" qualifiers="const">
<return type="bool" />
<param index="0" name="aabb" type="AABB" />
<description>
Returns [code]true[/code] if this [AABB] and [param aabb] are approximately equal, by calling [method @GlobalScope.is_equal_approx] on each component.
</description>
</method>
<method name="is_finite" qualifiers="const">
<return type="bool" />
<description>
Returns [code]true[/code] if this [AABB] is finite, by calling [method @GlobalScope.is_finite] on each component.
</description>
</method>
<method name="merge" qualifiers="const">
<return type="AABB" />
<param index="0" name="with" type="AABB" />
<description>
Returns a larger [AABB] that contains both this [AABB] and [param with].
</description>
</method>
</methods>
<members>
<member name="end" type="Vector3" setter="" getter="" default="Vector3(0, 0, 0)">
Ending corner. This is calculated as [code]position + size[/code]. Setting this value will change the size.
</member>
<member name="position" type="Vector3" setter="" getter="" default="Vector3(0, 0, 0)">
Beginning corner. Typically has values lower than [member end].
</member>
<member name="size" type="Vector3" setter="" getter="" default="Vector3(0, 0, 0)">
Size from [member position] to [member end]. Typically, all components are positive.
If the size is negative, you can use [method abs] to fix it.
</member>
</members>
<operators>
<operator name="operator !=">
<return type="bool" />
<param index="0" name="right" type="AABB" />
<description>
Returns [code]true[/code] if the AABBs are not equal.
[b]Note:[/b] Due to floating-point precision errors, consider using [method is_equal_approx] instead, which is more reliable.
</description>
</operator>
<operator name="operator *">
<return type="AABB" />
<param index="0" name="right" type="Transform3D" />
<description>
Inversely transforms (multiplies) the [AABB] by the given [Transform3D] transformation matrix.
</description>
</operator>
<operator name="operator ==">
<return type="bool" />
<param index="0" name="right" type="AABB" />
<description>
Returns [code]true[/code] if the AABBs are exactly equal.
[b]Note:[/b] Due to floating-point precision errors, consider using [method is_equal_approx] instead, which is more reliable.
</description>
</operator>
</operators>
</class>
|