1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
|
/*************************************************************************/
/* hash_set.h */
/*************************************************************************/
/* This file is part of: */
/* GODOT ENGINE */
/* https://godotengine.org */
/*************************************************************************/
/* Copyright (c) 2007-2022 Juan Linietsky, Ariel Manzur. */
/* Copyright (c) 2014-2022 Godot Engine contributors (cf. AUTHORS.md). */
/* */
/* Permission is hereby granted, free of charge, to any person obtaining */
/* a copy of this software and associated documentation files (the */
/* "Software"), to deal in the Software without restriction, including */
/* without limitation the rights to use, copy, modify, merge, publish, */
/* distribute, sublicense, and/or sell copies of the Software, and to */
/* permit persons to whom the Software is furnished to do so, subject to */
/* the following conditions: */
/* */
/* The above copyright notice and this permission notice shall be */
/* included in all copies or substantial portions of the Software. */
/* */
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
/*************************************************************************/
#ifndef HASH_SET_H
#define HASH_SET_H
#include "core/math/math_funcs.h"
#include "core/os/memory.h"
#include "core/templates/hash_map.h"
#include "core/templates/hashfuncs.h"
#include "core/templates/paged_allocator.h"
/**
* Implementation of Set using a bidi indexed hash map.
* Use RBSet instead of this only if the following conditions are met:
*
* - You need to keep an iterator or const pointer to Key and you intend to add/remove elements in the meantime.
* - Iteration order does matter (via operator<)
*
*/
template <class TKey,
class Hasher = HashMapHasherDefault,
class Comparator = HashMapComparatorDefault<TKey>>
class HashSet {
public:
static constexpr uint32_t MIN_CAPACITY_INDEX = 2; // Use a prime.
static constexpr float MAX_OCCUPANCY = 0.75;
static constexpr uint32_t EMPTY_HASH = 0;
private:
TKey *keys = nullptr;
uint32_t *hash_to_key = nullptr;
uint32_t *key_to_hash = nullptr;
uint32_t *hashes = nullptr;
uint32_t capacity_index = 0;
uint32_t num_elements = 0;
_FORCE_INLINE_ uint32_t _hash(const TKey &p_key) const {
uint32_t hash = Hasher::hash(p_key);
if (unlikely(hash == EMPTY_HASH)) {
hash = EMPTY_HASH + 1;
}
return hash;
}
_FORCE_INLINE_ uint32_t _get_probe_length(uint32_t p_pos, uint32_t p_hash, uint32_t p_capacity) const {
uint32_t original_pos = p_hash % p_capacity;
return (p_pos - original_pos + p_capacity) % p_capacity;
}
bool _lookup_pos(const TKey &p_key, uint32_t &r_pos) const {
if (keys == nullptr) {
return false; // Failed lookups, no elements
}
uint32_t capacity = hash_table_size_primes[capacity_index];
uint32_t hash = _hash(p_key);
uint32_t pos = hash % capacity;
uint32_t distance = 0;
while (true) {
if (hashes[pos] == EMPTY_HASH) {
return false;
}
if (distance > _get_probe_length(pos, hashes[pos], capacity)) {
return false;
}
if (hashes[pos] == hash && Comparator::compare(keys[hash_to_key[pos]], p_key)) {
r_pos = hash_to_key[pos];
return true;
}
pos = (pos + 1) % capacity;
distance++;
}
}
uint32_t _insert_with_hash(uint32_t p_hash, uint32_t p_index) {
uint32_t capacity = hash_table_size_primes[capacity_index];
uint32_t hash = p_hash;
uint32_t index = p_index;
uint32_t distance = 0;
uint32_t pos = hash % capacity;
while (true) {
if (hashes[pos] == EMPTY_HASH) {
hashes[pos] = hash;
key_to_hash[index] = pos;
hash_to_key[pos] = index;
return pos;
}
// Not an empty slot, let's check the probing length of the existing one.
uint32_t existing_probe_len = _get_probe_length(pos, hashes[pos], capacity);
if (existing_probe_len < distance) {
key_to_hash[index] = pos;
SWAP(hash, hashes[pos]);
SWAP(index, hash_to_key[pos]);
distance = existing_probe_len;
}
pos = (pos + 1) % capacity;
distance++;
}
}
void _resize_and_rehash(uint32_t p_new_capacity_index) {
// Capacity can't be 0.
capacity_index = MAX((uint32_t)MIN_CAPACITY_INDEX, p_new_capacity_index);
uint32_t capacity = hash_table_size_primes[capacity_index];
uint32_t *old_hashes = hashes;
uint32_t *old_key_to_hash = key_to_hash;
hashes = reinterpret_cast<uint32_t *>(Memory::alloc_static(sizeof(uint32_t) * capacity));
keys = reinterpret_cast<TKey *>(Memory::realloc_static(keys, sizeof(TKey) * capacity));
key_to_hash = reinterpret_cast<uint32_t *>(Memory::alloc_static(sizeof(uint32_t) * capacity));
hash_to_key = reinterpret_cast<uint32_t *>(Memory::realloc_static(hash_to_key, sizeof(uint32_t) * capacity));
for (uint32_t i = 0; i < capacity; i++) {
hashes[i] = EMPTY_HASH;
}
for (uint32_t i = 0; i < num_elements; i++) {
uint32_t h = old_hashes[old_key_to_hash[i]];
_insert_with_hash(h, i);
}
Memory::free_static(old_hashes);
Memory::free_static(old_key_to_hash);
}
_FORCE_INLINE_ int32_t _insert(const TKey &p_key) {
uint32_t capacity = hash_table_size_primes[capacity_index];
if (unlikely(keys == nullptr)) {
// Allocate on demand to save memory.
hashes = reinterpret_cast<uint32_t *>(Memory::alloc_static(sizeof(uint32_t) * capacity));
keys = reinterpret_cast<TKey *>(Memory::alloc_static(sizeof(TKey) * capacity));
key_to_hash = reinterpret_cast<uint32_t *>(Memory::alloc_static(sizeof(uint32_t) * capacity));
hash_to_key = reinterpret_cast<uint32_t *>(Memory::alloc_static(sizeof(uint32_t) * capacity));
for (uint32_t i = 0; i < capacity; i++) {
hashes[i] = EMPTY_HASH;
}
}
uint32_t pos = 0;
bool exists = _lookup_pos(p_key, pos);
if (exists) {
return pos;
} else {
if (num_elements + 1 > MAX_OCCUPANCY * capacity) {
ERR_FAIL_COND_V_MSG(capacity_index + 1 == HASH_TABLE_SIZE_MAX, -1, "Hash table maximum capacity reached, aborting insertion.");
_resize_and_rehash(capacity_index + 1);
}
uint32_t hash = _hash(p_key);
memnew_placement(&keys[num_elements], TKey(p_key));
_insert_with_hash(hash, num_elements);
num_elements++;
return num_elements - 1;
}
}
void _init_from(const HashSet &p_other) {
capacity_index = p_other.capacity_index;
num_elements = p_other.num_elements;
if (p_other.num_elements == 0) {
return;
}
uint32_t capacity = hash_table_size_primes[capacity_index];
hashes = reinterpret_cast<uint32_t *>(Memory::alloc_static(sizeof(uint32_t) * capacity));
keys = reinterpret_cast<TKey *>(Memory::alloc_static(sizeof(TKey) * capacity));
key_to_hash = reinterpret_cast<uint32_t *>(Memory::alloc_static(sizeof(uint32_t) * capacity));
hash_to_key = reinterpret_cast<uint32_t *>(Memory::alloc_static(sizeof(uint32_t) * capacity));
for (uint32_t i = 0; i < num_elements; i++) {
memnew_placement(&keys[i], TKey(p_other.keys[i]));
key_to_hash[i] = p_other.key_to_hash[i];
}
for (uint32_t i = 0; i < capacity; i++) {
hashes[i] = p_other.hashes[i];
hash_to_key[i] = p_other.hash_to_key[i];
}
}
public:
_FORCE_INLINE_ uint32_t get_capacity() const { return hash_table_size_primes[capacity_index]; }
_FORCE_INLINE_ uint32_t size() const { return num_elements; }
/* Standard Godot Container API */
bool is_empty() const {
return num_elements == 0;
}
void clear() {
if (keys == nullptr) {
return;
}
uint32_t capacity = hash_table_size_primes[capacity_index];
for (uint32_t i = 0; i < capacity; i++) {
hashes[i] = EMPTY_HASH;
}
for (uint32_t i = 0; i < num_elements; i++) {
keys[i].~TKey();
}
num_elements = 0;
}
_FORCE_INLINE_ bool has(const TKey &p_key) const {
uint32_t _pos = 0;
return _lookup_pos(p_key, _pos);
}
bool erase(const TKey &p_key) {
uint32_t pos = 0;
bool exists = _lookup_pos(p_key, pos);
if (!exists) {
return false;
}
uint32_t key_pos = pos;
pos = key_to_hash[pos]; //make hash pos
uint32_t capacity = hash_table_size_primes[capacity_index];
uint32_t next_pos = (pos + 1) % capacity;
while (hashes[next_pos] != EMPTY_HASH && _get_probe_length(next_pos, hashes[next_pos], capacity) != 0) {
uint32_t kpos = hash_to_key[pos];
uint32_t kpos_next = hash_to_key[next_pos];
SWAP(key_to_hash[kpos], key_to_hash[kpos_next]);
SWAP(hashes[next_pos], hashes[pos]);
SWAP(hash_to_key[next_pos], hash_to_key[pos]);
pos = next_pos;
next_pos = (pos + 1) % capacity;
}
hashes[pos] = EMPTY_HASH;
keys[key_pos].~TKey();
num_elements--;
if (key_pos < num_elements) {
// Not the last key, move the last one here to keep keys lineal
memnew_placement(&keys[key_pos], TKey(keys[num_elements]));
keys[num_elements].~TKey();
key_to_hash[key_pos] = key_to_hash[num_elements];
hash_to_key[key_to_hash[num_elements]] = key_pos;
}
return true;
}
// Reserves space for a number of elements, useful to avoid many resizes and rehashes.
// If adding a known (possibly large) number of elements at once, must be larger than old capacity.
void reserve(uint32_t p_new_capacity) {
uint32_t new_index = capacity_index;
while (hash_table_size_primes[new_index] < p_new_capacity) {
ERR_FAIL_COND_MSG(new_index + 1 == (uint32_t)HASH_TABLE_SIZE_MAX, nullptr);
new_index++;
}
if (new_index == capacity_index) {
return;
}
if (keys == nullptr) {
capacity_index = new_index;
return; // Unallocated yet.
}
_resize_and_rehash(new_index);
}
/** Iterator API **/
struct Iterator {
_FORCE_INLINE_ const TKey &operator*() const {
return keys[index];
}
_FORCE_INLINE_ const TKey *operator->() const {
return &keys[index];
}
_FORCE_INLINE_ Iterator &operator++() {
index++;
if (index >= (int32_t)num_keys) {
index = -1;
keys = nullptr;
num_keys = 0;
}
return *this;
}
_FORCE_INLINE_ Iterator &operator--() {
index--;
if (index < 0) {
index = -1;
keys = nullptr;
num_keys = 0;
}
return *this;
}
_FORCE_INLINE_ bool operator==(const Iterator &b) const { return keys == b.keys && index == b.index; }
_FORCE_INLINE_ bool operator!=(const Iterator &b) const { return keys != b.keys || index != b.index; }
_FORCE_INLINE_ explicit operator bool() const {
return keys != nullptr;
}
_FORCE_INLINE_ Iterator(const TKey *p_keys, uint32_t p_num_keys, int32_t p_index = -1) {
keys = p_keys;
num_keys = p_num_keys;
index = p_index;
}
_FORCE_INLINE_ Iterator() {}
_FORCE_INLINE_ Iterator(const Iterator &p_it) {
keys = p_it.keys;
num_keys = p_it.num_keys;
index = p_it.index;
}
_FORCE_INLINE_ void operator=(const Iterator &p_it) {
keys = p_it.keys;
num_keys = p_it.num_keys;
index = p_it.index;
}
private:
const TKey *keys = nullptr;
uint32_t num_keys = 0;
int32_t index = -1;
};
_FORCE_INLINE_ Iterator begin() const {
return num_elements ? Iterator(keys, num_elements, 0) : Iterator();
}
_FORCE_INLINE_ Iterator end() const {
return Iterator();
}
_FORCE_INLINE_ Iterator last() const {
if (num_elements == 0) {
return Iterator();
}
return Iterator(keys, num_elements, num_elements - 1);
}
_FORCE_INLINE_ Iterator find(const TKey &p_key) const {
uint32_t pos = 0;
bool exists = _lookup_pos(p_key, pos);
if (!exists) {
return end();
}
return Iterator(keys, num_elements, pos);
}
_FORCE_INLINE_ void remove(const Iterator &p_iter) {
if (p_iter) {
erase(*p_iter);
}
}
/* Insert */
Iterator insert(const TKey &p_key) {
uint32_t pos = _insert(p_key);
return Iterator(keys, num_elements, pos);
}
/* Constructors */
HashSet(const HashSet &p_other) {
_init_from(p_other);
}
void operator=(const HashSet &p_other) {
if (this == &p_other) {
return; // Ignore self assignment.
}
clear();
if (keys != nullptr) {
Memory::free_static(keys);
Memory::free_static(key_to_hash);
Memory::free_static(hash_to_key);
Memory::free_static(hashes);
keys = nullptr;
hashes = nullptr;
hash_to_key = nullptr;
key_to_hash = nullptr;
}
_init_from(p_other);
}
HashSet(uint32_t p_initial_capacity) {
// Capacity can't be 0.
capacity_index = 0;
reserve(p_initial_capacity);
}
HashSet() {
capacity_index = MIN_CAPACITY_INDEX;
}
void reset() {
clear();
if (keys != nullptr) {
Memory::free_static(keys);
Memory::free_static(key_to_hash);
Memory::free_static(hash_to_key);
Memory::free_static(hashes);
keys = nullptr;
hashes = nullptr;
hash_to_key = nullptr;
key_to_hash = nullptr;
}
capacity_index = MIN_CAPACITY_INDEX;
}
~HashSet() {
clear();
if (keys != nullptr) {
Memory::free_static(keys);
Memory::free_static(key_to_hash);
Memory::free_static(hash_to_key);
Memory::free_static(hashes);
}
}
};
#endif // HASH_SET_H
|