summaryrefslogtreecommitdiff
path: root/core/templates/hash_map.h
blob: f3944fcd0df9812eecbe59e6f5c03d9246bc0d41 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
/**************************************************************************/
/*  hash_map.h                                                            */
/**************************************************************************/
/*                         This file is part of:                          */
/*                             GODOT ENGINE                               */
/*                        https://godotengine.org                         */
/**************************************************************************/
/* Copyright (c) 2014-present Godot Engine contributors (see AUTHORS.md). */
/* Copyright (c) 2007-2014 Juan Linietsky, Ariel Manzur.                  */
/*                                                                        */
/* Permission is hereby granted, free of charge, to any person obtaining  */
/* a copy of this software and associated documentation files (the        */
/* "Software"), to deal in the Software without restriction, including    */
/* without limitation the rights to use, copy, modify, merge, publish,    */
/* distribute, sublicense, and/or sell copies of the Software, and to     */
/* permit persons to whom the Software is furnished to do so, subject to  */
/* the following conditions:                                              */
/*                                                                        */
/* The above copyright notice and this permission notice shall be         */
/* included in all copies or substantial portions of the Software.        */
/*                                                                        */
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,        */
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF     */
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. */
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY   */
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,   */
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE      */
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.                 */
/**************************************************************************/

#ifndef HASH_MAP_H
#define HASH_MAP_H

#include "core/math/math_funcs.h"
#include "core/os/memory.h"
#include "core/templates/hashfuncs.h"
#include "core/templates/paged_allocator.h"
#include "core/templates/pair.h"

/**
 * A HashMap implementation that uses open addressing with Robin Hood hashing.
 * Robin Hood hashing swaps out entries that have a smaller probing distance
 * than the to-be-inserted entry, that evens out the average probing distance
 * and enables faster lookups. Backward shift deletion is employed to further
 * improve the performance and to avoid infinite loops in rare cases.
 *
 * Keys and values are stored in a double linked list by insertion order. This
 * has a slight performance overhead on lookup, which can be mostly compensated
 * using a paged allocator if required.
 *
 * The assignment operator copy the pairs from one map to the other.
 */

template <class TKey, class TValue>
struct HashMapElement {
	HashMapElement *next = nullptr;
	HashMapElement *prev = nullptr;
	KeyValue<TKey, TValue> data;
	HashMapElement() {}
	HashMapElement(const TKey &p_key, const TValue &p_value) :
			data(p_key, p_value) {}
};

template <class TKey, class TValue,
		class Hasher = HashMapHasherDefault,
		class Comparator = HashMapComparatorDefault<TKey>,
		class Allocator = DefaultTypedAllocator<HashMapElement<TKey, TValue>>>
class HashMap {
public:
	const uint32_t MIN_CAPACITY_INDEX = 2; // Use a prime.
	const float MAX_OCCUPANCY = 0.75;
	const uint32_t EMPTY_HASH = 0;

private:
	Allocator element_alloc;
	HashMapElement<TKey, TValue> **elements = nullptr;
	uint32_t *hashes = nullptr;
	HashMapElement<TKey, TValue> *head_element = nullptr;
	HashMapElement<TKey, TValue> *tail_element = nullptr;

	uint32_t capacity_index = 0;
	uint32_t num_elements = 0;

	_FORCE_INLINE_ uint32_t _hash(const TKey &p_key) const {
		uint32_t hash = Hasher::hash(p_key);

		if (unlikely(hash == EMPTY_HASH)) {
			hash = EMPTY_HASH + 1;
		}

		return hash;
	}

	static _FORCE_INLINE_ uint32_t _get_probe_length(const uint32_t p_pos, const uint32_t p_hash, const uint32_t p_capacity, const uint64_t p_capacity_inv) {
		const uint32_t original_pos = fastmod(p_hash, p_capacity_inv, p_capacity);
		return fastmod(p_pos - original_pos + p_capacity, p_capacity_inv, p_capacity);
	}

	bool _lookup_pos(const TKey &p_key, uint32_t &r_pos) const {
		if (elements == nullptr) {
			return false; // Failed lookups, no elements
		}

		const uint32_t capacity = hash_table_size_primes[capacity_index];
		const uint64_t capacity_inv = hash_table_size_primes_inv[capacity_index];
		uint32_t hash = _hash(p_key);
		uint32_t pos = fastmod(hash, capacity_inv, capacity);
		uint32_t distance = 0;

		while (true) {
			if (hashes[pos] == EMPTY_HASH) {
				return false;
			}

			if (distance > _get_probe_length(pos, hashes[pos], capacity, capacity_inv)) {
				return false;
			}

			if (hashes[pos] == hash && Comparator::compare(elements[pos]->data.key, p_key)) {
				r_pos = pos;
				return true;
			}

			pos = fastmod((pos + 1), capacity_inv, capacity);
			distance++;
		}
	}

	void _insert_with_hash(uint32_t p_hash, HashMapElement<TKey, TValue> *p_value) {
		const uint32_t capacity = hash_table_size_primes[capacity_index];
		const uint64_t capacity_inv = hash_table_size_primes_inv[capacity_index];
		uint32_t hash = p_hash;
		HashMapElement<TKey, TValue> *value = p_value;
		uint32_t distance = 0;
		uint32_t pos = fastmod(hash, capacity_inv, capacity);

		while (true) {
			if (hashes[pos] == EMPTY_HASH) {
				elements[pos] = value;
				hashes[pos] = hash;

				num_elements++;

				return;
			}

			// Not an empty slot, let's check the probing length of the existing one.
			uint32_t existing_probe_len = _get_probe_length(pos, hashes[pos], capacity, capacity_inv);
			if (existing_probe_len < distance) {
				SWAP(hash, hashes[pos]);
				SWAP(value, elements[pos]);
				distance = existing_probe_len;
			}

			pos = fastmod((pos + 1), capacity_inv, capacity);
			distance++;
		}
	}

	void _resize_and_rehash(uint32_t p_new_capacity_index) {
		uint32_t old_capacity = hash_table_size_primes[capacity_index];

		// Capacity can't be 0.
		capacity_index = MAX((uint32_t)MIN_CAPACITY_INDEX, p_new_capacity_index);

		uint32_t capacity = hash_table_size_primes[capacity_index];

		HashMapElement<TKey, TValue> **old_elements = elements;
		uint32_t *old_hashes = hashes;

		num_elements = 0;
		hashes = reinterpret_cast<uint32_t *>(Memory::alloc_static(sizeof(uint32_t) * capacity));
		elements = reinterpret_cast<HashMapElement<TKey, TValue> **>(Memory::alloc_static(sizeof(HashMapElement<TKey, TValue> *) * capacity));

		for (uint32_t i = 0; i < capacity; i++) {
			hashes[i] = 0;
			elements[i] = nullptr;
		}

		if (old_capacity == 0) {
			// Nothing to do.
			return;
		}

		for (uint32_t i = 0; i < old_capacity; i++) {
			if (old_hashes[i] == EMPTY_HASH) {
				continue;
			}

			_insert_with_hash(old_hashes[i], old_elements[i]);
		}

		Memory::free_static(old_elements);
		Memory::free_static(old_hashes);
	}

	_FORCE_INLINE_ HashMapElement<TKey, TValue> *_insert(const TKey &p_key, const TValue &p_value, bool p_front_insert = false) {
		uint32_t capacity = hash_table_size_primes[capacity_index];
		if (unlikely(elements == nullptr)) {
			// Allocate on demand to save memory.

			hashes = reinterpret_cast<uint32_t *>(Memory::alloc_static(sizeof(uint32_t) * capacity));
			elements = reinterpret_cast<HashMapElement<TKey, TValue> **>(Memory::alloc_static(sizeof(HashMapElement<TKey, TValue> *) * capacity));

			for (uint32_t i = 0; i < capacity; i++) {
				hashes[i] = EMPTY_HASH;
				elements[i] = nullptr;
			}
		}

		uint32_t pos = 0;
		bool exists = _lookup_pos(p_key, pos);

		if (exists) {
			elements[pos]->data.value = p_value;
			return elements[pos];
		} else {
			if (num_elements + 1 > MAX_OCCUPANCY * capacity) {
				ERR_FAIL_COND_V_MSG(capacity_index + 1 == HASH_TABLE_SIZE_MAX, nullptr, "Hash table maximum capacity reached, aborting insertion.");
				_resize_and_rehash(capacity_index + 1);
			}

			HashMapElement<TKey, TValue> *elem = element_alloc.new_allocation(HashMapElement<TKey, TValue>(p_key, p_value));

			if (tail_element == nullptr) {
				head_element = elem;
				tail_element = elem;
			} else if (p_front_insert) {
				head_element->prev = elem;
				elem->next = head_element;
				head_element = elem;
			} else {
				tail_element->next = elem;
				elem->prev = tail_element;
				tail_element = elem;
			}

			uint32_t hash = _hash(p_key);
			_insert_with_hash(hash, elem);
			return elem;
		}
	}

public:
	_FORCE_INLINE_ uint32_t get_capacity() const { return hash_table_size_primes[capacity_index]; }
	_FORCE_INLINE_ uint32_t size() const { return num_elements; }

	/* Standard Godot Container API */

	bool is_empty() const {
		return num_elements == 0;
	}

	void clear() {
		if (elements == nullptr) {
			return;
		}
		uint32_t capacity = hash_table_size_primes[capacity_index];
		for (uint32_t i = 0; i < capacity; i++) {
			if (hashes[i] == EMPTY_HASH) {
				continue;
			}

			hashes[i] = EMPTY_HASH;
			element_alloc.delete_allocation(elements[i]);
			elements[i] = nullptr;
		}

		tail_element = nullptr;
		head_element = nullptr;
		num_elements = 0;
	}

	TValue &get(const TKey &p_key) {
		uint32_t pos = 0;
		bool exists = _lookup_pos(p_key, pos);
		CRASH_COND_MSG(!exists, "HashMap key not found.");
		return elements[pos]->data.value;
	}

	const TValue &get(const TKey &p_key) const {
		uint32_t pos = 0;
		bool exists = _lookup_pos(p_key, pos);
		CRASH_COND_MSG(!exists, "HashMap key not found.");
		return elements[pos]->data.value;
	}

	const TValue *getptr(const TKey &p_key) const {
		uint32_t pos = 0;
		bool exists = _lookup_pos(p_key, pos);

		if (exists) {
			return &elements[pos]->data.value;
		}
		return nullptr;
	}

	TValue *getptr(const TKey &p_key) {
		uint32_t pos = 0;
		bool exists = _lookup_pos(p_key, pos);

		if (exists) {
			return &elements[pos]->data.value;
		}
		return nullptr;
	}

	_FORCE_INLINE_ bool has(const TKey &p_key) const {
		uint32_t _pos = 0;
		return _lookup_pos(p_key, _pos);
	}

	bool erase(const TKey &p_key) {
		uint32_t pos = 0;
		bool exists = _lookup_pos(p_key, pos);

		if (!exists) {
			return false;
		}

		const uint32_t capacity = hash_table_size_primes[capacity_index];
		const uint64_t capacity_inv = hash_table_size_primes_inv[capacity_index];
		uint32_t next_pos = fastmod((pos + 1), capacity_inv, capacity);
		while (hashes[next_pos] != EMPTY_HASH && _get_probe_length(next_pos, hashes[next_pos], capacity, capacity_inv) != 0) {
			SWAP(hashes[next_pos], hashes[pos]);
			SWAP(elements[next_pos], elements[pos]);
			pos = next_pos;
			next_pos = fastmod((pos + 1), capacity_inv, capacity);
		}

		hashes[pos] = EMPTY_HASH;

		if (head_element == elements[pos]) {
			head_element = elements[pos]->next;
		}

		if (tail_element == elements[pos]) {
			tail_element = elements[pos]->prev;
		}

		if (elements[pos]->prev) {
			elements[pos]->prev->next = elements[pos]->next;
		}

		if (elements[pos]->next) {
			elements[pos]->next->prev = elements[pos]->prev;
		}

		element_alloc.delete_allocation(elements[pos]);
		elements[pos] = nullptr;

		num_elements--;
		return true;
	}

	// Reserves space for a number of elements, useful to avoid many resizes and rehashes.
	// If adding a known (possibly large) number of elements at once, must be larger than old capacity.
	void reserve(uint32_t p_new_capacity) {
		uint32_t new_index = capacity_index;

		while (hash_table_size_primes[new_index] < p_new_capacity) {
			ERR_FAIL_COND_MSG(new_index + 1 == (uint32_t)HASH_TABLE_SIZE_MAX, nullptr);
			new_index++;
		}

		if (new_index == capacity_index) {
			return;
		}

		if (elements == nullptr) {
			capacity_index = new_index;
			return; // Unallocated yet.
		}
		_resize_and_rehash(new_index);
	}

	/** Iterator API **/

	struct ConstIterator {
		_FORCE_INLINE_ const KeyValue<TKey, TValue> &operator*() const {
			return E->data;
		}
		_FORCE_INLINE_ const KeyValue<TKey, TValue> *operator->() const { return &E->data; }
		_FORCE_INLINE_ ConstIterator &operator++() {
			if (E) {
				E = E->next;
			}
			return *this;
		}
		_FORCE_INLINE_ ConstIterator &operator--() {
			if (E) {
				E = E->prev;
			}
			return *this;
		}

		_FORCE_INLINE_ bool operator==(const ConstIterator &b) const { return E == b.E; }
		_FORCE_INLINE_ bool operator!=(const ConstIterator &b) const { return E != b.E; }

		_FORCE_INLINE_ explicit operator bool() const {
			return E != nullptr;
		}

		_FORCE_INLINE_ ConstIterator(const HashMapElement<TKey, TValue> *p_E) { E = p_E; }
		_FORCE_INLINE_ ConstIterator() {}
		_FORCE_INLINE_ ConstIterator(const ConstIterator &p_it) { E = p_it.E; }
		_FORCE_INLINE_ void operator=(const ConstIterator &p_it) {
			E = p_it.E;
		}

	private:
		const HashMapElement<TKey, TValue> *E = nullptr;
	};

	struct Iterator {
		_FORCE_INLINE_ KeyValue<TKey, TValue> &operator*() const {
			return E->data;
		}
		_FORCE_INLINE_ KeyValue<TKey, TValue> *operator->() const { return &E->data; }
		_FORCE_INLINE_ Iterator &operator++() {
			if (E) {
				E = E->next;
			}
			return *this;
		}
		_FORCE_INLINE_ Iterator &operator--() {
			if (E) {
				E = E->prev;
			}
			return *this;
		}

		_FORCE_INLINE_ bool operator==(const Iterator &b) const { return E == b.E; }
		_FORCE_INLINE_ bool operator!=(const Iterator &b) const { return E != b.E; }

		_FORCE_INLINE_ explicit operator bool() const {
			return E != nullptr;
		}

		_FORCE_INLINE_ Iterator(HashMapElement<TKey, TValue> *p_E) { E = p_E; }
		_FORCE_INLINE_ Iterator() {}
		_FORCE_INLINE_ Iterator(const Iterator &p_it) { E = p_it.E; }
		_FORCE_INLINE_ void operator=(const Iterator &p_it) {
			E = p_it.E;
		}

		operator ConstIterator() const {
			return ConstIterator(E);
		}

	private:
		HashMapElement<TKey, TValue> *E = nullptr;
	};

	_FORCE_INLINE_ Iterator begin() {
		return Iterator(head_element);
	}
	_FORCE_INLINE_ Iterator end() {
		return Iterator(nullptr);
	}
	_FORCE_INLINE_ Iterator last() {
		return Iterator(tail_element);
	}

	_FORCE_INLINE_ Iterator find(const TKey &p_key) {
		uint32_t pos = 0;
		bool exists = _lookup_pos(p_key, pos);
		if (!exists) {
			return end();
		}
		return Iterator(elements[pos]);
	}

	_FORCE_INLINE_ void remove(const Iterator &p_iter) {
		if (p_iter) {
			erase(p_iter->key);
		}
	}

	_FORCE_INLINE_ ConstIterator begin() const {
		return ConstIterator(head_element);
	}
	_FORCE_INLINE_ ConstIterator end() const {
		return ConstIterator(nullptr);
	}
	_FORCE_INLINE_ ConstIterator last() const {
		return ConstIterator(tail_element);
	}

	_FORCE_INLINE_ ConstIterator find(const TKey &p_key) const {
		uint32_t pos = 0;
		bool exists = _lookup_pos(p_key, pos);
		if (!exists) {
			return end();
		}
		return ConstIterator(elements[pos]);
	}

	/* Indexing */

	const TValue &operator[](const TKey &p_key) const {
		uint32_t pos = 0;
		bool exists = _lookup_pos(p_key, pos);
		CRASH_COND(!exists);
		return elements[pos]->data.value;
	}

	TValue &operator[](const TKey &p_key) {
		uint32_t pos = 0;
		bool exists = _lookup_pos(p_key, pos);
		if (!exists) {
			return _insert(p_key, TValue())->data.value;
		} else {
			return elements[pos]->data.value;
		}
	}

	/* Insert */

	Iterator insert(const TKey &p_key, const TValue &p_value, bool p_front_insert = false) {
		return Iterator(_insert(p_key, p_value, p_front_insert));
	}

	/* Constructors */

	HashMap(const HashMap &p_other) {
		reserve(hash_table_size_primes[p_other.capacity_index]);

		if (p_other.num_elements == 0) {
			return;
		}

		for (const KeyValue<TKey, TValue> &E : p_other) {
			insert(E.key, E.value);
		}
	}

	void operator=(const HashMap &p_other) {
		if (this == &p_other) {
			return; // Ignore self assignment.
		}
		if (num_elements != 0) {
			clear();
		}

		reserve(hash_table_size_primes[p_other.capacity_index]);

		if (p_other.elements == nullptr) {
			return; // Nothing to copy.
		}

		for (const KeyValue<TKey, TValue> &E : p_other) {
			insert(E.key, E.value);
		}
	}

	HashMap(uint32_t p_initial_capacity) {
		// Capacity can't be 0.
		capacity_index = 0;
		reserve(p_initial_capacity);
	}
	HashMap() {
		capacity_index = MIN_CAPACITY_INDEX;
	}

	uint32_t debug_get_hash(uint32_t p_index) {
		if (num_elements == 0) {
			return 0;
		}
		ERR_FAIL_INDEX_V(p_index, get_capacity(), 0);
		return hashes[p_index];
	}
	Iterator debug_get_element(uint32_t p_index) {
		if (num_elements == 0) {
			return Iterator();
		}
		ERR_FAIL_INDEX_V(p_index, get_capacity(), Iterator());
		return Iterator(elements[p_index]);
	}

	~HashMap() {
		clear();

		if (elements != nullptr) {
			Memory::free_static(elements);
			Memory::free_static(hashes);
		}
	}
};

#endif // HASH_MAP_H